CONTROLLING POLARIZATION FOR LIQUID CRYSTAL DISPLAYS
Certain embodiments of liquid crystal display protection panels and liquid crystal display protection panel integrals have low reflection for outdoor applications. Various embodiments also have the advantage of being able to provide increased contrast and brightness for certain convenient viewing directions for outdoor viewers wearing polarized sunglasses.
This application is a continuation of patent application of Ser. No. 11/438,905 entitled “Controlling Polarization for Liquid Crystal Displays” filed May 23, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/298,755 entitled “Controlling Polarization for Liquid Crystal Displays” filed Dec. 9, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/135,609 entitled “Controlling Polarization For Liquid Crystal Displays” filed May 23, 2005, each of which is incorporated herein by reference in their entirety.
FIELD OF INVENTIONThe present invention relates to liquid crystal displays and polarization.
DESCRIPTION OF RELATED TECHNOLOGYMany features of liquid crystal displays (LCDs), such as light weight, compact dimensions, low power consumption and high resolution, make LCDs popular choices in various outdoor electronic applications, including for PDAs, navigation systems, rugged notebooks, and information terminals. To avoid direct exposure to the outdoor environment, many LCDs in these applications are overlaid with an outer transparent protection panel, which introduces extra air-surface interfaces and generates a significant amount of back-reflection that reduces the readability of these displays. Often this outer transparent protection panel is a touch interface, such as a resistive touch panel, a capacitive touch panel, a SAW touch panel, a near field touch panel, or a IR touch panel. Some of the devices may also include other functional parts, such as EMI shield, IR block, and screen heater. However, these highly reflective functional parts also generate large amount of back reflection and further interfere with the readability of the system. Thus, providing a sunlight readable display system integrated with a protection panel or a touch panel, EMI, IR block, and screen heater becomes highly challenging.
In addition, a common optical property of a conventional liquid crystal display and a polarized touch panel is that they both selectively pass linearly polarized light from the LCD at a transmission direction with respect to the horizontal and vertical axes defined by the display or touch panel that is normally other than a vertical direction. Viewers of outdoor display systems may often wear vertically polarized sunglasses in order to block out horizontally polarized sunlight, especially in some working environments, such as on the sea or in the air, where the horizontally polarized sunlight is particularly strong. A conventional liquid crystal display or a liquid crystal display with a polarized touch screen that emits linearly polarized light would thus appear to be black for viewers wearing polarized sunglasses for common viewing directions, which is inconvenient for outdoor applications.
SUMMARYCertain embodiments of liquid crystal displays, liquid crystal display protection panels and liquid crystal display protection panel integrals have low reflection for outdoor applications and also have the advantage of being able to provide increased contrast and brightness for certain convenient viewing directions for outdoor viewers wearing polarized sunglasses.
One embodiment, for example, comprises a liquid crystal display comprising: a liquid crystal cell configured to modulate light; a linear polarizer layer forward said liquid crystal cell; a retarder layer comprising one or more retarders; and a display front surface through which said modulated light exits, wherein said one or more retarders and said linear polarizer layer are oriented such that said modulated light that exits said display front surface has an elliptical or circular polarization.
Another embodiment comprises a functional part integrated display comprising: a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell comprising a liquid crystal layer sandwiched between two sheets of transparent electrodes; a first linear polarizer forward said liquid crystal cell, said first linear polarizer having a first linear polarization axis; a first retarder layer forward said first linear polarizer, said first retarder layer has a retardance of about (2n+1)λ/4 and a first slow axis which forms an angle θ1 with respect to said first linear polarization axis, where n is an integer and λ between about 400 to 700 nanometers (nm); a functional element forward of said first retarder layer, said functional element comprising at least one of an EMI shield, an infrared filter, and an LCD heater; a second retarder layer forward of said functional element, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 with respect to said second slow axis; and a display front surface through which said modulated light exits.
Another embodiment comprises a touch panel integrated display comprising a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell comprising a liquid crystal layer sandwiched between two sheets of substantially optically transmissive electrodes; a first linear polarizer forward said liquid crystal cell, said first linear polarizer having a first linear polarization axis; a first retarder layer forward said first linear polarizer, said first retarder layer having a retardance of about (2n+1)λ/4 and a first slow axis which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a resistive touch panel forward of said first retarder layer; a second retarder layer forward of said resistive touch panel, said second retarder layer has a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which said modulated light exits, wherein said resistive touch panel is isotropic and (m+n) is not zero.
Another embodiment comprise a touch panel integrated liquid crystal display comprising: a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell comprising a liquid crystal layer sandwiched between two sheets of transparent electrodes; a first linear polarizer forward said liquid crystal cell, said first linear polarizer having a first linear polarization axis; a first quarter wave retarder forward said first linear polarizer, said quarter wave retarder having a first slow axis; a resistive touch panel forward said first quarter wave retarder; a second quarter wave retarder forward said resistive touch panel, said quarter wave retarder having a second slow axis and a rear surface through which incident light passes; a second linear polarizer forward said second quarter wave retarder, said second linear polarizer oriented relative to said second quarter wave retarder such that said incident light which passes said rear surface of said second quarter wave retarder has a substantially circular polarization; and a display front surface through which said modulated light exits, wherein said second slow axis of said second quarter wave retarder is oriented at an angle other than about 0° or 90° with respect to said horizontal axis and other than at about 90° with respect to said first slow axis of said first quarter wave retarder.
Another embodiment of the invention comprises a polarized touch panel comprises: a resistive touch panel module defining the vertical and horizontal axes; a first quarter wave retarder forward said touch panel module, said first quarter wave retarder having a first slow axis; a second quarter wave retarder rearward said resistive touch panel module, said second quarter wave retarder having a second slow axis which is oriented at about 0° or 90° with respect to said horizontal axis; a linear polarizer forward said first quarter wave retarder, said linear polarizer having a linear polarization axis; and a display front surface through which modulated light of a display exits, wherein said first slow axis of said first quarter wave retarder is oriented at an angle other than about 90° with respect to said horizontal axis and other than about 90° relative to said second slow axis of said second quarter wave retarder.
Another embodiment of the invention comprises a polarized touch panel comprising: a resistive touch panel module defining the vertical and horizontal axes; a first retarder layer forward said touch panel module, said first retarder layer having a retardance of about (2n+1)λ/4 and a first slow axis, where n is an integer and λ is 400 nm to 700 nm; a linear polarizer forward said first retarder layer, said linear polarizer having a linear polarization axis; a second retarder layer forward said linear polarizer; and a display front surface through which modulated light of a display exits, wherein said slow axis of said first retarder layer is set at an angle of about ±45° relative to said linear polarization axis of said linear polarizer.
Another embodiment of the invention comprises a reflective functional part integrated display comprising: a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell comprising a liquid crystal layer sandwiched between two sheets; a partial reflector rearward said liquid crystal layer; a first linear polarizer forward said liquid crystal cell, said first linear polarizer having a front surface and a first linear polarization axis; a first retarder layer forward said first linear polarizer, said first retarder layer having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward of said first retarder layer, said reflective functional part having a rear surface and comprising at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater; a second retarder layer forward of said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which said modulated light exits.
Another embodiment of the invention comprises a reflective functional part integrated display comprising: a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell having a front surface and comprising a liquid crystal layer sandwiched between two sheets; a partial reflector rearward said liquid crystal cell; said partial reflector comprising a reflective polarizer having a first linear polarizing axis; a first retarder layer forward said liquid crystal cell, said first retarder layer having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward of said first retarder layer, said reflective functional part having a rear surface and comprising at least one of a resistive touch panel, an EMI shield, an infrared filter and an LCD heater; a second retarder layer forward of said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which said modulated light exits.
Another embodiment of the invention comprises a reflective functional part integrated transflective display comprising: a liquid crystal cell configured to modulate light defining vertical and horizontal axes, said liquid crystal cell having a front surface and comprising a liquid crystal layer sandwiched between two sheets; a first linear polarizer rearward said liquid crystal cell, said first linear polarizer having a rear surface and a first linear polarization axis; a partial reflector rearward said first linear polarizer; a first retarder layer forward said liquid crystal cell, said first retarder layer having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward of said first retarder layer, said reflective functional part having a rear surface and comprising at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater; a second retarder layer forward of said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which said modulated light exits.
Another embodiment of the invention comprises a reflective functional part integrated transflective display comprising: a transflective liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a first linear polarization axis, said liquid crystal display module comprising a liquid crystal cell, a partial reflector, and a backlight module; a first retarder layer forward said liquid crystal display module, said first retarder layer having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward said first retarder layer, said reflective functional part having a rear surface; a second retarder layer forward said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which light from said backlight module exits. In some embodiment, said reflective functional part comprises at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater.
Another embodiment of the invention comprises a reflective functional part integrated transflective display comprising: a liquid crystal display module having a module front surface, said liquid crystal display module comprising, from front to rear, a liquid crystal cell, a partial reflector comprising a reflective polarizer having a first linear polarization axis, and a light module; a first retarder layer forward said liquid crystal display module, said first retarder layer having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward said first retarder layer, said reflective functional part having a rear surface; a second retarder layer forward said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which light from the light module exits. In some embodiment, said reflective functional part comprises at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater.
Another embodiment of the invention comprises a reflective functional part integrated display comprising: a liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a first linear polarization axis, said liquid crystal display module comprising, from front to rear, a liquid crystal cell, and a light module; a reflective functional part forward said liquid crystal display module, said reflective functional part having a rear surface; a second retarder layer forward said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which light from said light module exits, wherein said liquid crystal display module front surface includes at least one of an anti-reflection treatment and a diffusing structure. In certain embodiments anti-reflection treatment comprises a multi-layer AR coating or a laminated sheet member with AR coating. In some embodiment, said reflective functional part comprises at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater.
Another embodiment of the invention comprises a reflective functional part integrated display comprising: a liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a first linear polarization axis, said liquid crystal display module comprising, from front to rear, a liquid crystal cell and a light module; a first retarder layer forward said liquid crystal display module, said first retarder layer having a front surface, a retardance of about (2n+1)λ/4, and a first slow axis which forms an angle θ1 to said first linear polarization axis, where n is an integer and λ is between about 400 nm to 700 nm; a reflective functional part forward said first retarder layer, said reflective functional part having a rear surface; a second retarder layer forward of said reflective functional part, said second retarder layer having a second slow axis and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a second linear polarizer forward said second retarder layer, said second linear polarizer having a second polarization axis, which forms an angle θ2 to said second slow axis of said second retarder layer; and a display front surface through which light exits, wherein at least one of said first retarder layer front surface and said reflective functional part rear surface includes at least one of an anti-reflection treatment and a diffusing structure. In certain embodiments the anti-reflection treatment comprising a multi-layer AR coating or a laminated sheet member with AR coating. In some embodiment, said reflective functional part comprises at least one of a resistive touch panel, an EMI shield, an infrared filter, and an LCD heater.
Another embodiment of the invention comprises a polarizing liquid crystal display protection panel having a protection panel rear surface and a protection panel front surface through which light from a display module may pass and exit to a viewer, said protection panel comprising: a retarder layer RB having a front surface, a rear surface, a slow axis RBX, and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm; a linear polarizer PB forward said retarder layer RB and closer to the viewer, said linear polarizer PB having a linear polarization axis PBX that forms an angle θ2 of about 45° or −45° to said slow axis RBX of said retarder layer RB; and a transparent supportive panel, said transparent supportive panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device, wherein at least one of said panel front and rear surfaces comprises an anti-reflection treatment.
Another embodiment of the invention comprises a polarizing protection panel liquid crystal display integral comprising: a liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a linear polarization axis PAX, said liquid crystal display module comprising a backlight module and a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates; a polarizing protection panel forward said liquid crystal display module, said polarizing protection panel has a protection panel rear surface and a protection panel front surface and comprises a transparent supportive panel and a linear polarizer PB with a linear polarization axis PBX that is positioned either forward or rearward said transparent supportive panel; and a display front surface through which light from said backlight module exits, wherein said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device and at least one of said display front surface, said protection panel rear surface, and said module front surface comprises an anti-reflection treatment.
Another embodiment of the invention comprises a polarizing protection panel transflective liquid crystal display integral comprising: a transflective liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a linear polarization axis PAX, said transflective liquid crystal display module comprising a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a partial reflector comprising a reflective electrode or reflective sheet member, and a backlight module; a retarder layer RA forward said transflective liquid crystal display module, said retarder layer RA having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said linear polarization axis PAX, where n is an integer and λ is between about 400 nm to 700 nm; a polarizing protection panel forward said liquid crystal display module, said protection panel having a protection panel rear surface and a protection panel front surface and comprising a transparent supportive panel, a retarder layer RB having a slow axis RBX with a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm, and a linear polarizer PB having a linear polarization axis PBX, which forms an angle θ2 to said slow axis RBX; and a display front surface through which light from said backlight module exits, wherein said linear polarizer PB of said protection panel is disposed at the front side of said retarder layer RB of said protection panel and said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device and is positioned forward said linear polarizer PB, rearward said retarder layer RB, or between said linear polarizer PB and said retarder layer RB.
Another embodiment of the invention comprises a polarizing protection panel transflective liquid crystal display integral comprising: a transflective liquid crystal display module having a module front surface, said transflective liquid crystal display module comprising, from front to rear, a linear polarizer PA having a linear polarization axis PAX, a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a partial reflector comprising reflective electrode or reflective sheet members, and a backlight module; a retarder layer RA forward said transflective liquid crystal display module, said retarder layer RA having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said linear polarization axis PAX, where n is an integer and λ is between about 400 nm to 700 nm; a polarizing protection panel forward said liquid crystal display module, said protection panel having a protection panel rear surface and a protection panel front surface and comprising a transparent supportive panel, a retarder layer RB having a slow axis RBX with a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm, and a linear polarizer PB having a linear polarization axis PBX, which forms an angle θ2 to said slow axis RBX; and a display front surface through which light from said backlight module exits, wherein said linear polarizer PB of said protection panel is at the front side of said retarder layer RB of said protection panel and said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a type of touch input device and is positioned forward said linear polarizer PB, rearward said retarder layer RB, or between said linear polarizer PB and said retarder layer RB.
BRIEF DESCRIPTION OF THE DRAWINGS
A retardation plate is a birefringent optical element, in which light propagating longitudinally in a z-axis direction travels with different velocities for different polarizations oriented along orthogonal x and y axes. Thus, the light wave may have orthogonal polarization components, one of which is retarded relative to the other, by an amount that may be expressed as a retardance, R. The retardance R is determined by d(Ns−Nf), wherein Ns is the refractive index of the slow axis of the retardation plate, Nf is the fast axis of the retardation plate, and d is the physical thickness of the plate. A retardation plate with retardance, R, will cause a phase difference of 2πR/λ between the orthogonal polarizations of a light wave that passes therethrough. Thus, when the angle between the linear polarization axis of the incident light beam and the slow axis of a quarter wave plate (where R=λ/4) is at about 45 degrees, a phase difference of 2πR/λ=90° between the orthogonal polarizations of the incident light beam results. Hence, the linearly polarized light wave is converted into a circularly polarized light wave with rotation directions either clockwise or counterclockwise. If the retardance is other than (2n+1)λ/4, where n is an integer, or the slow axis of a quarter wave plate and the linear polarization axis of the incident light beam are at angles other than 45 degrees, elliptically polarized light is produced. An integer is defined herein as including the values . . . −2, −1, 0, 1, 2 . . .
A linearly polarized light wave can be transformed into circularly polarized light by using various retarder layers comprising one or more retarder plates in proper arrangement. To facilitate the discussion below, quarter wave plates, half wave plates, and full wave plates will be used as examples. In
Although the term plate is used in describing retarders herein, retarders may comprise a thin or thick film, a layer, a sheet, or a plate, having varying degrees of thickness, rigidity, and other optical and non-optical properties. Reference to a retarder plate is thus not limiting as the retarder may likewise comprise a film, layer, sheet or other medium that introduces retardance. Similarly, the film, layer, sheet, or plate may comprise multiple portions itself. Accordingly, layers are described as comprising plates but may otherwise comprise sublayers comprising films, sheets, etc.
As illustrated in
Although not shown, there are many other combinations of retarder layers having an effective retardance of (2n+1)λ/4, where n is an integer (e.g., . . . −2, −1, 0, 1, 2 . . . ) and λ/4 is between about 400 nm-700 nm, which produce either clockwise (right-handed), or counterclockwise (left-handed) circularly polarized light. In some embodiments, the retardation plates comprising the retarder layer can be loosely stacked or laminated. As described above, these layers may comprise sublayers comprising different layers of film. It is also applicable to manufacture a single thick sheet retarder, which has (2n+1)λ/4 equivalent retardance and which circularly polarizes a linearly polarized light like a single quarter wave plate. A thick film may also be deposited. Thus, “a retarder layer” having (2n+1)λ/4 retardance, comprised of a single sheet retarder or a thick film, or a stack of laminated or loose sheets or other sublayers comprising quarter wave plates, half wave plates, or full wave plates, would have a “collective” slow axis and a “collective” fast axis that functions similarly to the slow and fast axes of a single quarter wave plate. Such a retarder layer will be termed as “quarter wave retarder.” As discussed above, an incident angle other than 45° or −45° (and 0° and 90°) between the polarization axis of linearly polarized light and the slow axis of a quarter wave retarder will result in elliptically polarized light. Passing light through a retarder layer with retardance other than about (2n+1)λ/4 also results in elliptically polarized light.
Referring now to
The NLP-LCD 200 also includes a first linear polarizer 206 bonded to the front surface of the liquid crystal cell 210. The NLP-LCD 200 further comprises a first retarder layer 205, for example, a quarter wave retarder having a retardance of about (2n+1)λ/4 where n is an integer and λ is between about 400 nm-700 nm, forward of the first linear polarizer 206. The first retarder layer 205 has a front surface 207, e.g., with a haze value less than about 30%. The low haze value of the surface is useful for reducing the specular reflections for clear outdoor visibility. The front surface 207 can be a highly efficient multilayer anti-reflection coating, for example, having reflection less than about 1.5%, to reduce the surface reflection 230 and to maximize the entry of light beam 140 for reflective illumination 250. The front surface 207 can further be a separate transmissive substrate or layer comprising, e.g., glass or plastic, such as PET, PEN, TAC, PC, ARTON, etc., having its low haze front surface coated with the high efficient multilayer anti-reflection coating, for example, having reflection less than about 1.5%, and with its rear surface being laminated to or coated on the front surface of the first retarder layer 205 with index matching pressure sensitive adhesive (PSA). In other embodiments, the front surface 207 may comprise a retarder or a thin film coating or multilayer disposed thereon. Still other configurations are possible (for example, the anti-reflective coating may be located elsewhere).
The first retarder layer 205 may be a single sheet retarder or a stack of laminated or loose sheets or may be a film or multiple films. This first retarder layer may comprise various combinations of retarder plates or layers or sublayers, e.g., quarter wave plates, half wave plates, or full wave plates as previously discussed. A quarter wave plate with R/λ=0.25, where λ is the wavelength in the visible light region, would be a particularly suitable retardation plate for the application. However, a perfect quarter wave plate with R/λ=0.25 is difficult to make due to the dispersion effect, as shown in
Projections of two different configurations 410 and 420 between the first retarder layer 205 and the first linear polarizer 206 are shown in
Referring now back to
In various embodiment, convenient viewing zones of a display are achieved by converting the light polarization direction output by the display to 90 degrees. The advantages of such an arrangement is discussed more fully below.
Referring now to
The rear surface of the second linear polarizer 807 can be laminated to or formed on the front surface of the second retarder layer 805. The polarization axis of the second linear polarizer 807 may be set substantially at an angle in the range of about ±(25°-65°) to the slow axis of the second retarder layer 805, for example, at about ±45° to form the second circularly polarizing plate 840. However, as discussed below, the polarization axis of the second linear polarizer 807 can be conveniently set at an orientation anywhere from 0 to 360° regardless of the orientation of polarization axis of the first linear polarizer 205.
In
To better understand the operation of the first and second circularly polarizing retarders 260 and 840 in the NLP-LCD shell structure, propagation of a light wave through retardation plates between two linear polarizers is discussed with reference to
In arrangement 900 in
In arrangement 910 in
It can be generalized that in order to have substantial transmission of light wave 901 from the first linear polarizer 206 through the second linear polarizer 807, an even number of quarter wave plates are arranged between two linear polarizers 206 and 807, producing a retardance of about 2pλ/4, where p is a positive integer. In the arrangements shown, the slow axes of the retarder plates are parallel. In certain embodiments, the slow axes of the retarder plates may be arranged with other orientations and result in an effective retardance of 2pλ/4, and still allow the efficient transmission of light 901 through 807. A retarder layer having effective retardance other than 2pλ/4, however, will allow transmission of 901 through 807 with less efficiency.
In addition to efficient transmission of light 901, it is also desirable to have a setup that can effectively prevent reflection of incident light from components in the display system. Illustration 960 in
Referring back to
In certain embodiments, the orientation of the second linear polarizer 807 can be set freely at any angle from 0 to 360 degrees as discussed more fully below. This free rotation of the second linear polarizer can result in a display, e.g., a functional part integrated display, with convenient viewing zones for viewers wearing polarized sunglasses. As shown in
The result is shown in
Accordingly embodiments such as shown in
Accordingly, it is advantageous to set the polarization axis of the second linear polarizer 807 (see
As discussed above, many outdoor electronic applications also might entail the addition of a transparent protection panel or other functional parts comprising highly reflective films, such as EMI shield (EMI), IR block (IR), LCD screen heater (heater), and resistive touch panel (RTP). The following discussions will demonstrate such protection panel and functional parts can readily be incorporated into the shell structure of NLP-LCD 800 (e.g., shown in
In one embodiment, the sheet member 1201 can simply comprise a reflective polarizer. In other embodiments, the sheet member 1201 is comprised of a diffusing element or structure 1234 and a reflective polarizer 1235. The reflective polarizer 1235 may absorb less than about 10% of incident the light energy. The reflective polarizer 1235 may also have an extinction coefficient, defined as the transmission of the p state polarization over the transmission of the s state polarization, ranging from about 1.5 to 9, for example. In addition, the polarization axis of the reflective polarizer 1235 may be parallel to or within about (+/−) 60 degrees in relation to the polarization axis of the rear polarizer 204 in some embodiments. The rear polarizer 204 and the reflective polarizer 1235 can be formed as an integral by being laminated with a layer of adhesive. It is also possible that in some embodiments the reflective polarizer is used as the rear polarizer 204.
The reflective polarizer 1235 can be formed with multiple sheets of a selective reflective polarizer with optimized polarization axes. The reflective polarizer 1235 can also be a diffuser laminated selective reflective polarizer. The diffusing element or structure 1234 may be a corrugated surface with haze in the range of about 10% to 85% in some embodiments. The corrugated surface can be a roughened surface on the rear surface of the rear polarizer 204 or on a separate transmissive polymeric substrate, such as PET, PC, PEN, TAC, or ARTON etc. The corrugated surface can also be a dielectric or other material, and may comprise, e.g., TiO2, Ta2O5, SiO2, SiN, ITO, ZnS, Al2O3, LaF3, MgF2, Ge, or Si, deposited on the rear surface of the rear polarizer 204, or on a separate sheet of transmissive substrate. The corrugated surface may comprise small metal particles, ranging in size from about 10 nm to 10000 nm, deposited on the rear surface of the rear polarizer 204 or on a separate sheet transmissive substrate. The choice of the metal includes, for example, silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof. One or more sheets of loose-packed or optically bonded transmissive substrates with the corrugated surface can make up the diffusing element 1234. In addition, diffusing element 1234 can be optically bonded to the rear surface of the rear polarizer 204 or/and to the front surface of the reflective polarizer 1235. The diffusing element can also be a layer of adhesive material, which bonds the rear polarizer 204 and the reflective polarizer 1235 and comprises dispersed particles such that the haze value of the layer is in the range of about 10% to 85% in some embodiments. In other embodiments such as described herein where a diffuser is utilized, an adhesive material comprising diffusing particles may be used. This adhesive material comprising diffusing particles can diffuse the light. In certain embodiments, the diffusing adhesive has a haze value in the range of about 10% to 85% as described above. Values outside these ranges as well as different configurations both well known as well as those yet devised are possible. Other types of diffusing structures may also be used and may be located elsewhere.
With continued reference to
The slow axis of the first retarder layer 205 may be set at an angle θ1 in the range of about 25° to 65° or −(25° to 65°), for example at about 45° or −45°, with respect to the polarization axis of the first linear polarizer 206. While viewed from the front side of the retardation plate 205 looking towards the LCD light source, as shown in
Further referring to
Still referring to
The polarization axis of the second linear polarizer 807 may be set at an angle θ2 in the range of about ±(25°-65°), for example at about ±45°, to the slow axis of the second retarder layer 805 forming the second circular polarizer 1240. This second circular retarder effectively reduces or prevents the reflections from the reflective surfaces, such as 1212 and 207 or other highly reflective functional parts (not shown). However, as previously disclosed, the polarization axis of the second linear polarizer 807 can be conveniently set at an angle in the range of 0 to 360° regardless the orientation of the polarization axis of the first linear polarizer 205.
The following examples illustrate that in such an arrangement, the reflections generated by the air-surface interfaces or the conductive film coated surfaces 1212 and 207 are effectively reduced by the second circularly polarizing plate 1240 comprised by the linear polarizing plate 807 and the retarder layer 805 in
As briefly discussed with reference to
With reference back to
On the other hand, if (n+m) is an odd integer and the retardance of the functional parts is not significant, the configurations of the first and second circular polarizers 260 and 1240 can be determined to be opposite as each other (e.g., one right-handed and one left-handed, like in
In some other embodiments, the functional parts may contain significant retardance. The retardance of the functional parts may be integrated as a part of the first retarder layer retardance, which may be adjusted to obtain an effective retardance of about (2m+1)λ/4. The configurations of the first and second circular retarders 260 and 1240 may be determined accordingly. Thus, efficient delivery of both reflective illumination 1250 and transmissive illumination 1221 to viewer's eyes can be achieved.
In various preferred embodiments, an air gap between components creates two air-material interfaces, which cause reflections due to index mismatch. These reflections may interfere and compromise the optical performances of the integral. The air-material interfaces can be eliminated by laminating the separate parts together and removing the air gap therebetween. However, adequately applying anti-reflection treatment or incorporating diffusing property on surfaces can also conveniently reduce undesirable backreflections and the resultant interference and enhance the optical properties of the integral. For example, the rear surface of the first retarder layer 205 can be laminated to the front surface of the first linear polarizer 206 to form an integrated display module as described in
In some arrangements, depending on the properties of the first and second retarder layers 205 and 805 used, color distortion may sometime be observed. Color correction can be achieved by offsetting either angle θ1 between the first retarder layer 205 and the first linear polarizer 206, or angle θ2 between the second linear polarizer 807 and the second retarder layer 805. For example, angle θ1 may be offset. The amount of angle adjustment can be within about ±20° off the ±45°. In other embodiments, 2n equivalent quarter wave plates, n being an integer, can be introduced between the first retarder layer 205 and the protection panel 1210 as color correcting sheets (not shown). With proper arrangement of the optical axes among the plates, satisfactory color corrections can be obtained. In one embodiment, depending on the equivalent retardance of the plates introduced for the color correction, configurations of the first and second circularly polarizers 260 and 1240 may need to be adjusted according to the discussion presented above in connection with
With continued reference to
Still referring to
In one embodiment, the sheet member 1501 can simply comprise a reflective polarizer, which can be laminated to the rear surface of the linear polarizer 206 to form an integral. In other embodiments, the sheet member 1501 is comprised of a diffusing element or structure 1534 and a reflective polarizer 1535. The reflective polarizer 1535 may absorb less than about 10% of the incident light energy in some embodiments. The reflective polarizer 1535 may also have an extinction coefficient, defined as the transmission of the p state polarization over the transmission of the s state polarization, ranging from about 1.5 to 9, for example. In addition, the polarization axis of the reflective polarizer 1535 may be parallel to or within about (+/−) 60 degrees in relation to the polarization axis of the first linear polarizer 206 in some embodiments. The first linear polarizer 206 and the reflective polarizer 1535 can be formed as an integral by being laminated with a layer of adhesive. It is also possible that in some embodiments, the reflective polarizer 1535 is used as the first linear polarizer 206.
The reflective polarizer 1535 can be formed with multiple sheets of a selective reflective polarizer with optimized polarization axes. The reflective polarizer 1535 can also be a reflective polarizer that comprises a diffuser laminated thereto. The diffusing element or structure 1534 may be a corrugated surface with haze in the range of about 10% to 85% in some embodiments. The corrugated surface can be a roughened surface on the rear surface of the first linear polarizer 206 or on a separate transmissive polymeric substrate, such as PET, PC, PEN, TAC, or ARTON etc. The corrugated surface can also be a dielectric or other material, and may comprise, e.g., TiO2, Ta2O5, SiO2, SiN, ITO, ZnS, Al2O3, LaF3, MgF2, Ge, or Si, deposited on the rear surface of the first linear polarizer 206, or on a separate sheet of transmissive substrate. The corrugated surface may comprise small metal particles, ranging in size from about 10 nm to 10000 nm, deposited on the rear surface of the first linear polarizer 206 or on a separate sheet transmissive substrate. The choice of the metal includes, for example, silver, gold, aluminum, copper, titanium, tantalum, chromium, nickel or an alloy thereof. One or more sheets of loose-packed or optically bonded transmissive substrates at least one of which has a corrugated surface can make up the diffusing element 1534. In addition, diffusing element 1534 can be optically bonded to the rear surface of the first linear polarizer 206 or/and to the front surface of the reflective polarizer 1535. The diffusing element can also be a layer of adhesive material, which bonds the first linear polarizer 206 and the reflective polarizer 1535 and comprises dispersed particles such that the haze value of the layer is in the range of about 10% to 85% in some embodiments. In other embodiments such as described herein where a diffuser is utilized, an adhesive material comprising diffusing particles may be used. This adhesive material comprising diffusing particles can diffuse the light. In certain embodiments, the diffusing adhesive has a haze value in the range of about 10% to 85% as described above. Values outside these ranges as well as different configurations both well known as well as those yet devised are possible. Other types of diffusing structures may also be used and may be located elsewhere.
With continued reference to
The light polarization and configuration of the first circularly polarizing plate 1560 in arrangement of 1500 can be understood by the light polarization and configuration of the first circularly polarizing plate 1560 illustrated in
Referring back to
Still referring to
The polarization axis of the second linear polarizer 807 may be set at an angle θ2 in the range of about ±(25°-65°), for example at about ±45°, to the slow axis of the second retarder layer 805 forming the second circular polarizer 1540. This second circular retarder effectively reduces or prevents the reflections from the reflective surfaces 1512, the front surface 207 of 205, or other highly reflective functional parts (not shown). However, as previously disclosed, the polarization axis of the second linear polarizer 807 can be conveniently set at an angle in the range of 0 to 360° regardless the orientation of the polarization axis of the first linear polarizer 205.
As discussed with reference to
As described above, however, the liquid crystal cell 210 may introduce a 90 degree rotation of a linearly polarized light in some embodiments. The design of the structure 1500 may be adjusted to accommodate this 90° polarization change. In particular, the orientation of the polarizers and/or retarders may be altered in the first or second circular retarders, or both, in certain preferred embodiments.
With reference back to
On the other hand, if (n+m) is an odd integer and the retardance of the functional parts is not significant, the configurations of the first and second circular retarders 1560 and 1540 can be determined to be opposite as each other (e.g., one right-handed and one left-handed, like in
In some other embodiments, the functional parts may contain significant retardance. The retardance of the functional parts may be integrated as a part of the first retarder layer retardance, which may be adjusted to obtain an effective retardance of about (2m+1)λ/4. The configurations of the first and second circular retarders 1560 and 1540 may be determined accordingly. Thus, efficient delivery of both reflective illumination 1550 and transmissive illumination 1521 to viewer's eyes can be achieved. Other configurations are also possible.
In various preferred embodiments, an air gap between components creates two air-material interfaces, which cause reflections due to index mismatch. These reflections may interfere and compromise the optical performances of the integral. The air-material interfaces can be eliminated by laminating the separate parts together and removing the air gap therebetween. However, adequately applying anti-reflection treatment or incorporating a diffusing property onto surfaces can also conveniently reduce undesirable backreflections and the resultant interference and enhance the optical properties of the integral. In some embodiments, the rear surface of the first retarder layer 205 can be laminated to the front surface of the liquid crystal cell 210 to form an integrated display module as described in
In such arrangements, the color tone and contrast of the display may be substantially maintained by reducing or minimizing the optical path of light 1521. Color tone can also be maintained by setting the transmission direction of the second linear polarizer 807 at 90 degree with respect to the polarization axis of the first linear polarizer 206 or the reflective polarizer 1535.
With continued reference to
With further reference to
Several examples are presented below; however these examples are not limiting.
EXAMPLE 1A 10.4″ NLP-LCD with right-handed circular polarization output was tested and demonstrates no dark viewing zones for viewers wearing polarized sunglasses.
In comparison, an 10.4″ LCD with 45 degree linear polarization output with 200 nits measured brightness, shows dark viewing zones in directions of about 1:00 and 7:00 o'clock when viewed with polarized sunglasses on. This LCD was converted to an NLP-LCD with right-handed circular polarization output by laminating a quarter wave retardation film, 65 um in thickness, with its slow axis oriented at an angle of −45 degree with respect to the linear polarization of the LCD. The brightness of the converted LCD was measured as 185 nits and showed no dark viewing zones when viewed with polarized sunglasses on.
EXAMPLE 2 A 10.4″ NLP-LCD integrated with a polarized resistive touch panel shows no limitation on the orientation of the second circularly polarizing plate on the touch panel. The second right-handed circularly polarizing plates were prepared by laminating together a quarter wave plate retarder described in Example 1 and a linear polarizer having a thickness of 100 um, a transmission ˜43%, and a polarization coefficient ˜96%. The second right-handed circular polarizer was laminated in various orientations on a 5-wired 10.4″ resistive touch panel (82% transmission) to generate low reflection polarized touch panels. The low reflection polarized touch panel with various orientation of the second linear polarization axis was then disposed on the NLP-LCD generated as described in Example 1. Brightness of light output was measured. The brightness measured and the various orientations of the polarization axis are summarized below:
As it can be seen from the measurements, the brightness is generally constant and was not affected by the orientation of the second linear polarization axis of the polarized touch panel. The orientation of 90° showed almost full brightness when it was viewed at 6:00 o'clock of direction and showed dark viewing zones in viewing directions of 3:00 and 9:00 o'clock when viewed through polarized sunglasses. Overall, an arrangement with the second linear polarization axis being at 90° provides more convenient viewing experiences for viewers wearing polarized sunglasses.
In various embodiments describe herein, commercial TFT LCDs, protective panels, resistive touch panel, and conductive films for EMI shield, IR block, screen heater of various sizes and structures can be readily be modified and integrated to generate multi-function display structures that are viewable under direct sunlight and also providing convenient viewing zones for viewers wearing polarized sunglasses. Other advantages are also possible.
Other configurations may also be used. Additional components may be added, components may be removed, or the order of the components may be altered. Values other than those specifically recited above may be used. Other variations, both those well known in the area as well as those yet to be devised are also possible.
Claims
1. A polarizing liquid crystal display protection panel having a protection panel rear surface and a protection panel front surface through which light from a display module may pass and exit to a viewer, said protection panel comprising:
- a retarder layer RB having a front surface, a rear surface, a slow axis RBX, and a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm;
- a linear polarizer PB forward said retarder layer RB and closer to the viewer, said linear polarizer PB having a linear polarization axis PBX that forms an angle θ2 of about 45° or −45° to said slow axis RBX of said retarder layer RB; and
- a transparent supportive panel, said transparent supportive panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device,
- wherein at least one of said panel front and rear surfaces comprises an anti-reflection treatment.
2. The protection panel of claim 1, wherein said transparent supportive panel is positioned forward said linear polarizer PB.
3. The protection panel of claim 1, wherein said transparent supportive panel is positioned between said linear polarizer PB and said retarder layer RB.
4. The protection panel of claim 1, wherein said transparent supportive panel is positioned rearward said retarder layer RB.
5. The protection panel of claim 1 further comprising a retarder layer RC, said retarder layer RC comprising one or more retarders oriented such that display module light exits as elliptical or circular polarized light.
6. A polarizing protection panel liquid crystal display integral comprising:
- a liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a linear polarization axis PAX, said liquid crystal display module comprising a backlight module and a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates;
- a polarizing protection panel forward said liquid crystal display module, said polarizing protection panel has a protection panel rear surface and a protection panel front surface and comprises a transparent supportive panel and a linear polarizer PB with a linear polarization axis PBX that is positioned either forward or rearward said transparent supportive panel; and
- a display front surface through which light from said backlight module exits,
- wherein said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device and at least one of said display front surface, said protection panel rear surface, and said module front surface comprises an anti-reflection treatment.
7. The display integral of claim 6, wherein said transparent supportive panel comprises a linear polarizer forward said liquid crystal cell.
8. The display integral of claim 6, wherein said protection panel further comprising a retarder layer RB having a front surface, a rear surface, and a slow axis RBX with a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm, said retarder RB being positioned at the rear side of said linear polarizer PB such that said linear polarization axis PBX forms an angle θ2 of about +/−45° to said slow axis RBX and said transparent supportive panel being in one of the following positions: forward said linear polarizer PB, rearward said retarder layer RB, or between said linear polarizer PB and retarder layer RB.
9. The display integral of claim 8, further comprising a reflective functional part rearward said retarder layer RB, said reflective functional part having a rear surface and comprising at least one of an EMI shield, an infrared filter, and an LCD heater which is formed by conductive film coating on the rear surface of said retarder RB or by conductive film coating on a separate substrate.
10. The display integral of claim 8 further comprising a retarder layer RA rearward said protection panel and forward said display module, said retarder layer RA having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a slow axis RAX, which forms an angle θ1 to said linear polarization axis PAX, where n is an integer and λ is between about 400 nm to 700 nm.
11. The display integral of claim 10, where in said θ1 is between about +25° to about +65° and θ2 is about +45°, or θ1 is between about −25° to about −65° and θ2 is about −45° when (m+n) is zero or an even integer.
12. The display of claim 10, wherein θ1 is between about +25° to about +65° and θ2 is about −45°, or θ1 is between about −25° to about −65° and θ2 is about +45° when (m+n) is an odd integer.
13. The display integral of claim 10, further comprising a reflective functional part rearward the retarder layer RB, said reflective functional part having a front surface and a rear surface and comprising at least one of an EMI shield, an infrared filter, and an LCD heater which comprises a conductive film coating on said retarder RB rear surface or said retarder RA front surface or a conductive film coating on a separate substrate.
14. The display integral of claim 10, wherein at least one of said display front surface, said protection panel rear surface, said RA retarder layer front and rear surfaces, and said module front surface comprises an anti-reflection treatment.
15. A polarizing protection panel transflective liquid crystal display integral comprising:
- a transflective liquid crystal display module having a module front surface that selectively outputs linearly polarized light oriented along a linear polarization axis PAX, said transflective liquid crystal display module comprising a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a partial reflector comprising a reflective electrode or reflective sheet member, and a backlight module;
- a retarder layer RA forward said transflective liquid crystal display module, said retarder layer RA having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said linear polarization axis PAX, where n is an integer and λ is between about 400 nm to 700 nm;
- a polarizing protection panel forward said liquid crystal display module, said protection panel having a protection panel rear surface and a protection panel front surface and comprising a transparent supportive panel, a retarder layer RB having a slow axis RBX with a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm, and a linear polarizer PB having a linear polarization axis PBX, which forms an angle θ2 to said slow axis RBX; and
- a display front surface through which light from said backlight module exits,
- wherein said linear polarizer PB of said protection panel is disposed at the front side of said retarder layer RB of said protection panel and said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a touch input device and is positioned forward said linear polarizer PB, rearward said retarder layer RB, or between said linear polarizer PB and said retarder layer RB.
16. The display integral of claim 15, wherein said partial reflector comprises a reflective polarizer and a diffusing element, said diffusing element being a layer of adhesive or a corrugated diffusing surface.
17. The display integral of claim 15, further comprising a reflective functional part rearward said retarder layer RB, said reflective functional part having a rear surface and comprising at least one of an EMI shield, an infrared filter, and an LCD heater which is formed by a conductive film coated on the rear surface of said retarder RB or by a conductive film coated on a separate substrate.
18. The display integral of claim 15, wherein at least one of said display front surface, said protection panel front and rear surfaces, said RA retarder layer front and rear surfaces, and said module front surface comprises an anti-reflection treatment.
19. The display integral of claim 17, wherein at least one of said display front surface, said protection panel front and rear surfaces, said RA retarder layer front and rear surfaces, and said module front surface comprises an anti-reflection treatment.
20. A polarizing protection panel transflective liquid crystal display integral comprising:
- a transflective liquid crystal display module having a module front surface, said transflective liquid crystal display module comprising, from front to rear, a linear polarizer PA having a linear polarization axis PAX, a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a partial reflector comprising reflective electrode or reflective sheet members, and a backlight module;
- a retarder layer RA forward said transflective liquid crystal display module, said retarder layer RA having a front surface, a rear surface, a retardance of about (2n+1)λ/4, and a first slow axis, which forms an angle θ1 to said linear polarization axis PAX, where n is an integer and λ is between about 400 nm to 700 nm;
- a polarizing protection panel forward said liquid crystal display module, said protection panel having a protection panel rear surface and a protection panel front surface and comprising a transparent supportive panel, a retarder layer RB having a slow axis RBX with a retardance of about (2m+1)λ/4, where m is an integer and λ is between about 400 nm to 700 nm, and a linear polarizer PB having a linear polarization axis PBX, which forms an angle θ2 to said slow axis RBX; and
- a display front surface through which light from said backlight module exits,
- wherein said linear polarizer PB of said protection panel is at the front side of said retarder layer RB of said protection panel and said transparent supportive panel of said protection panel comprises a sheet of glass substrate, a sheet of plastic substrate, or a type of touch input device and is positioned forward said linear polarizer PB, rearward said retarder layer RB, or between said linear polarizer PB and said retarder layer RB.
21. The display integral of claim 20, wherein said partial reflector comprises a reflective polarizer and a diffusing element, said diffusing element being a layer of adhesive or a corrugated diffusing surface.
22. The display integral of claim 20, further comprising a reflective functional part rearward said retarder layer RB, said reflective functional part having a rear surface and comprising at least one of an EMI shield, an infrared filter, and an LCD heater which is formed by a conductive film coating on the rear surface of said retarder RB or by conductive film coating on a separate substrate.
23. The display integral of claim 20, wherein at least one of said display front surface, said protection panel front and rear surfaces, said RA retarder layer front and rear surfaces, and said module front surface comprises an anti-reflection treatment.
24. The display integral of claim 22, wherein at least one of said display front surface, said protection panel front and rear surfaces, said RA retarder layer front and rear surfaces, and said module front surface comprises an anti-reflection treatment.
Type: Application
Filed: Aug 20, 2007
Publication Date: Dec 6, 2007
Inventors: Ran-Hong Wang (Irvine, CA), Min-Shinc Wang (Irvine, CA)
Application Number: 11/842,017
International Classification: G02F 1/1335 (20060101);