Ultra-wideband communication systems and methods
Systems and methods of ultra-wideband communication are provided. In one ultra-wideband communication system, a portion of a plurality of non-overlapping communication sub-channels are assigned to a first ultra-wideband communication device by a base station. Communication interference information is obtained by the first device, and then transmitted to and received by the base station. The base station then reduces the portion of non-overlapping sub-channels assigned to the first ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, which are assigned to a second ultra-wideband communication device. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
This application claims priority under 35 U.S.C. § 120 as a continuation of co-pending U.S. patent application Ser. No. 10/963,026, filed Oct. 12, 2004, entitled “Ultra-Wideband Communication Systems and Methods,” which is a continuation-in-part of co-pending U.S. patent application Ser. No. 10/120,456, filed Apr. 9, 2002, entitled “Systems and Methods for Recovering Bandwidth in a Wireless Communication Network,” which a continuation-in-part of U.S. patent application Ser. No. 10/010,601, filed Dec. 6, 2001, entitled “Systems and Methods for Wireless Communication over a Wide Bandwidth Channel using a Plurality of Sub-Channels,” now U.S. Pat. No. 7,289,494.
This application may be related to the following U.S. patent applications: Ser. No. 10/810,948, filed Mar. 25, 2004; Ser. No. 10/811,223, filed Mar. 26, 2004; Ser. No. 10/810,410, filed Mar. 26, 2004; Ser. No. 10/934,316, filed Sep. 3, 2004; Ser. No. 10/948,099, filed Sep. 23, 2004; Ser. No. 10/948,634, filed Sep. 23, 2004; Ser. No. 10/952,485, filed Sep. 27, 2004; Ser. No. 10/961,592, filed Oct. 8, 2004; Ser. No. 10/961,614, filed Oct. 8, 2004; Ser. No. 10/963,026, filed Oct. 12, 2004; Ser. No. 10/962,935, filed Oct. 12, 2004; Ser. No. 10/964,482, filed Oct. 13, 2004; Ser. No. 10/964,336, filed Oct. 13, 2004; Ser. No. 10/985,977, filed Nov. 9, 2004; Ser. No. 10/985,861, filed Nov. 10, 2004; Ser. No. 10/988,373, filed Nov. 12, 2004; Ser. No. 11/055,525, filed Feb. 9, 2005; Ser. No. 11/332,946, filed Jan. 17, 2006; and Ser. No. 11/890,998, filed Aug. 8, 2007.
BACKGROUND OF THE INVENTION1. Field of the Invention
The invention relates generally to ultra-wideband communications, and more particularly to systems and methods for communication using ultra-wideband technology.
2. Background
Wireless communication systems are proliferating at the Wide Area Network (WAN), Local Area Network (LAN), and Personal Area Network (PAN) levels. These wireless communication systems use a variety of techniques to allow simultaneous access to multiple users. The most common of these techniques are Frequency Division Multiple Access (FDMA), which assigns specific frequencies to each user, Time Division Multiple Access (TDMA), which assigns particular time slots to each user, and Code Division Multiple Access (CDMA), which assigns specific codes to each user. But these wireless communication systems and various modulation techniques are afflicted by a host of problems that limit the capacity and the quality of service provided to the users. The following paragraphs briefly describe a few of these problems for the purpose of illustration.
One problem that can exist in a wireless communication system is multipath interference. Multipath interference, or multipath, occurs because some of the energy in a transmitted wireless signal bounces off of obstacles, such as buildings or mountains, as it travels from source to destination. The obstacles in effect create reflections of the transmitted signal and the more obstacles there are, the more reflections they generate. The reflections then travel along their own transmission paths to the destination (or receiver). The reflections will contain the same information as the original signal; however, because of the differing transmission path lengths, the reflected signals will be out of phase with the original signal. As a result, they will often combine destructively with the original signal in the receiver. This is referred to as fading. To combat fading, current systems typically try to estimate the multipath effects and then compensate for them in the receiver using an equalizer. In practice, however, it is very difficult to achieve effective multipath compensation.
A second problem that can affect the operation of wireless communication systems is interference from adjacent communication cells within the system. In FDMA/TDMA systems, this type of interference is prevent through a frequency reuse plan. Under a frequency reuse plan, available communication frequencies are allocated to communication cells within the communication system such that the same frequency will not be used in adjacent cells. Essentially, the available frequencies are split into groups. The number of groups is termed the reuse factor. Then the communication cells are grouped into clusters, each cluster containing the same number of cells as there are frequency groups. Each frequency group is then assigned to a cell in each cluster. Thus, if a frequency reuse factor of 7 is used, for example, then a particular communication frequency will be used only once in every seven communication cells. Thus, in any group of seven communication cells, each cell can only use 1/7th of the available frequencies, i.e., each cell is only able to use 1/7th of the available bandwidth.
In a CDMA communication system, each cell uses the same wideband communication channel. In order to avoid interference with adjacent cells, each communication cell uses a particular set of spread spectrum codes to differentiate communications within the cell from those originating outside of the cell. Thus, CDMA systems preserve the bandwidth in the sense that they avoid reuse planning. But as will be discussed, there are other issues that limit the bandwidth in CDMA systems as well.
Thus, in overcoming interference, system bandwidth is often sacrificed. Bandwidth is becoming a very valuable commodity as wireless communication systems continue to expand by adding more and more users. Therefore, trading off bandwidth for system performance is a costly, albeit necessary, proposition that is inherent in all wireless communication systems.
The foregoing are just two examples of the types of problems that can affect conventional wireless communication systems. The examples also illustrate that there are many aspects of wireless communication system performance that can be improved through systems and methods that, for example, reduce interference, increase bandwidth, or both.
Not only are conventional wireless communication systems effected by problems, such as those described in the preceding paragraphs, but also different types of systems are effected in different ways and to different degrees. Wireless communication systems can be split into three types: 1) line-of-sight systems, which can include point-to-point or point-to-multipoint systems; 2) indoor non-line of sight systems; and 3) outdoor systems such as wireless WANs. Line-of-sight systems are least affected by the problems described above, while indoor systems are more affected, due for example to signals bouncing off of building walls. Outdoor systems are by far the most affected of the three systems. Because these types of problems are limiting factors in the design of wireless transmitters and receivers, such designs must be tailored to the specific types of system in which it will operate. In practice, each type of system implements unique communication standards that address the issues unique to the particular type of system. Even if an indoor system used the same communication protocols and modulation techniques as an outdoor system, for example, the receiver designs would still be different because multipath and other problems are unique to a given type of system and must be addressed with unique solutions. This would not necessarily be the case if cost efficient and effective methodologies can be developed to combat such problems as described above that build in programmability so that a device can be reconfigured for different types of systems and still maintain superior performance.
SUMMARY OF THE INVENTIONIn order to combat the above problems, systems and methods of ultra-wideband communication are provided. In one embodiment ultra-wideband communication system, a portion of a plurality of non-overlapping communication sub-channels are assigned to a first ultra-wideband communication device by a base station. Communication interference information is obtained by the first device, and then transmitted to and received by the base station. The base station then reduces the portion of non-overlapping sub-channels assigned to the first ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, which are assigned to a second ultra-wideband communication device.
These and other features and advantages of the present invention will be appreciated from review of the following Detailed Description of the Preferred Embodiments, along with the accompanying figures in which like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGSPreferred embodiments of the present inventions taught herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which:
In the following paragraphs, the present invention will be described in detail by way of example with reference to the attached drawings. While this invention is capable of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. That is, throughout this description, the embodiments and examples shown should be considered as exemplars, rather than as limitations on the present invention. As used herein, the “present invention” refers to any one of the embodiments of the invention described herein, and any equivalents. Furthermore, reference to various feature(s) of the “present invention” throughout this document does not mean that all claimed embodiments or methods must include the referenced feature(s).
In order to improve wireless communication system performance and allow a single device to move from one type of system to another, while still maintaining superior performance, the systems and methods described herein provide various communication methodologies that enhance performance of transmitters and receivers with regard to various common problems that afflict such systems and that allow the transmitters and/or receivers to be reconfigured for optimal performance in a variety of systems. Accordingly, the systems and methods described herein define a channel access protocol that uses a common wideband communication channel for all communication cells. The wideband channel, however, is then divided into a plurality of sub-channels. Different sub-channels are then assigned to one or more users within each cell. But the base station, or service access point, within each cell transmits one message that occupies the entire bandwidth of the wideband channel. Each user's communication device receives the entire message, but only decodes those portions of the message that reside in sub-channels assigned to the user. For a point-to-point system, for example, a single user may be assigned all sub-channels and, therefore, has the full wide band channel available to them. In a wireless WAN, on the other hand, the sub-channels may be divided among a plurality of users.
In the descriptions of example embodiments that follow, implementation differences, or unique concerns, relating to different types of systems will be pointed out to the extent possible. But it should be understood that the systems and methods described herein are applicable to any type of communication systems. In addition, terms such as communication cell, base station, service access point, etc. are used interchangeably to refer to the common aspects of networks at these different levels.
To begin illustrating the advantages of the systems and methods described herein, one can start by looking at the multipath effects for a single wideband communication channel 100 of bandwidth B as shown in
T=1/B=1/100 megahertz (MHZ)=10 nanoseconds (ns). (1)
When a receiver receives the communication, demodulates it, and then decodes it, it will recreate a stream 104 of data symbols 106 as illustrated in
A delay spread ds is defined as the delay from reception of data stream 104 to the reception of the last multipath data stream 108 that interferes with the reception of data stream 104. Thus, in the example illustrated in
By segmenting the bandwidth B into a plurality of sub-channels 202, as illustrated in
Before discussing further features and advantages of using a wideband communication channel segmented into a plurality of sub-channels as described, certain aspects of the sub-channels will be explained in more detail. Referring back to
Preferably, sub-channels 202 are non-overlapping as this allows each sub-channel to be processed independently in the receiver. To accomplish this, a roll-off factor is preferably applied to the signals in each sub-channel in a pulse-shaping step. The effect of such a pulse-shaping step is illustrated in
b=(1+r)/T; (2)
-
- Where
- r=the roll-off factor; and
- T=the symbol duration.
- Where
Without the roll-off factor, i.e., b=1/T, the pulse shape would be rectangular in the frequency domain, which corresponds to a (sin x)/x function in the time domain. The time domain signal for a (sin x)/x signal 400 is shown in
As can be seen, main lobe 402 comprises almost all of signal 400. But some of the signal also resides in side lobes 404, which stretch out indefinitely in both directions from main lobe 402. Side lobes 404 make processing signal 400 much more difficult, which increases the complexity of the receiver. Applying a roll-off factor r, as in equation (2), causes signal 400 to decay faster, reducing the number of side lobes 404. Thus, increasing the roll-off factor decreases the length of signal 400, i.e., signal 400 becomes shorter in time. But including the roll-off factor also decreases the available bandwidth in each sub-channel 202. Therefore, r must be selected so as to reduce the number of side lobes 404 to a sufficient number, e.g., 15, while still maximizing the available bandwidth in each sub-channel 202.
Thus, the overall bandwidth B for communication channel 200 is given by the following equation:
B=N(1+r)/T; (3)
or
B=M/T; (4)
Where
M=(1+r)N. (5)
For efficiency purposes related to transmitter design, it is preferable that r is chosen so that M in equation (5) is an integer. Choosing r so that M is an integer allows for more efficient transmitters designs using, for example, Inverse Fast Fourier Transform (IFFT) techniques. Since M=N+N(r), and N is always an integer, this means that r must be chosen so that N(r) is an integer. Generally, it is preferable for r to be between 0.1 and 0.5. Therefore, if N is 16, for example, then 0.5 could be selected for r so that N(r) is an integer. Alternatively, if a value for r is chosen in the above example so that N(r) is not an integer, B can be made slightly wider than M/T to compensate. In this case, it is still preferable that r be chosen so that N(r) is approximately an integer.
2. Example Embodiment of a Wireless Communication System With the above in mind,
Because each cell 602 uses the same communication channel, signals in one cell 602 must be distinguishable from signals in adjacent cells 602. To differentiate signals from one cell 602 to another, adjacent base stations 606 use different synchronization codes according to a code reuse plan. In
Preferably, the synchronization code is periodically inserted into a communication from a base station 606 to a communication device 604 as illustrated in
In
Thus, for example, frequency bins 502 and time slots 506 can be assigned to 4 different communication devices 604 within a cell 602 as shown in
Ensuring that the bins assigned to one user are separated by more than the coherence bandwidth ensures frequency diversity. As discussed above, the coherence bandwidth is approximately equal to 1/ds. For outdoor systems, where ds is typically 1 microsecond, 1/ds=1/1 microsecond=1 megahertz (MHz). Thus, the non-adjacent frequency bands assigned to a user are preferably separated by at least 1 MHz. It is even more preferable, however, if the coherence bandwidth plus some guard band to ensure sufficient frequency diversity separate the non-adjacent bins assigned to each user. For example, it is preferable in certain implementations to ensure that at least 5 times the coherence bandwidth, or 5 MHz in the above example, separates the non-adjacent bins.
Another way to provide frequency diversity is to repeat blocks of data in frequency bins assigned to a particular user that are separated by more than the coherence bandwidth. In other words, if 4 sub-channels 202 are assigned to a user, then data block a can be repeated in the first and third sub-channels 202 and data block b can be repeated in the second and fourth sub-channels 202, provided the sub-channels are sufficiently separated in frequency. In this case, the system can be said to be using a diversity length factor of 2. The system can similarly be configured to implement other diversity lengths, e.g., 3, 4, . . . , l.
It should be noted that spatial diversity can also be included depending on the embodiment. Spatial diversity can comprise transmit spatial diversity, receive spatial diversity, or both. In transmit spatial diversity, the transmitter uses a plurality of separate transmitters and a plurality of separate antennas to transmit each message. In other words, each transmitter transmits the same message in parallel. The messages are then received from the transmitters and combined in the receiver. Because the parallel transmissions travel different paths, if one is affected by fading, the others will likely not be affected. Thus, when they are combined in the receiver, the message should be recoverable even if one or more of the other transmission paths experienced severe fading.
Receive spatial diversity uses a plurality of separate receivers and a plurality of separate antennas to receive a single message. If an adequate distance separates the antennas, then the transmission path for the signals received by the antennas will be different. Again, this difference in the transmission paths will provide imperviousness to fading when the signals from the receivers are combined.
Transmit and receive spatial diversity can also be combined within a system such as system 600 so that two antennas are used to transmit and two antennas are used to receive. Thus, each base station 606 transmitter can include two antennas, for transmit spatial diversity, and each communication device 604 receiver can include two antennas, for receive spatial diversity. If only transmit spatial diversity is implemented in system 600, then it can be implemented in base stations 606 or in communication devices 604. Similarly, if only receive spatial diversity is included in system 600, then it can be implemented in base stations 606 or communication devices 604.
The number of communication devices 604 assigned frequency bins 502 and/or time slots 506 in each cell 602 is preferably programmable in real time. In other words, the resource allocation within a communication cell 602 is preferably programmable in the face of varying external conditions, i.e., multipath or adjacent cell interference, and varying requirements, i.e., bandwidth requirements for various users within the cell. Thus, if user 1 requires the whole bandwidth to download a large video file, for example, then the allocation of bins 502 can be adjust to provide user 1 with more, or even all, of bins 502. Once user 1 no longer requires such large amounts of bandwidth, the allocation of bins 502 can be readjusted among all of users 1-4.
It should also be noted that all of the bins assigned to a particular user can be used for both the forward and reverse link. Alternatively, some bins 502 can be assigned as the forward link and some can be assigned for use on the reverse link, depending on the implementation.
To increase capacity, the entire bandwidth B is preferably reused in each communication cell 602, with each cell 602 being differentiated by a unique synchronization code (see discussion below). Thus, system 600 provides increased immunity to multipath and fading as well as increased band width due to the elimination of frequency reuse requirements.
3. Synchronization
Even though a data stream that comprises SYNC2 will not create any correlation peaks, it can create noise in correlator 800 that can prevent detection of correlation peaks 804 and 806. Several steps can be taken to prevent this from occurring. One way to minimize the noise created in correlator 800 by signals from adjacent cells 602, is to configure system 600 so that each base station 606 transmits at the same time. This way, the synchronization codes can preferably be generated in such a manner that only the synchronization codes 704 of adjacent cell data streams, e.g., streams 708, 710, and 712, as opposed to packets 702 within those streams, will interfere with detection of the correct synchronization code 704, e.g., SYNC1. The synchronization codes can then be further configured to eliminate or reduce the interference.
For example, the noise or interference caused by an incorrect synchronization code is a function of the cross correlation of that synchronization code with respect to the correct code. The better the cross correlation between the two, the lower the noise level. When the cross correlation is ideal, then the noise level will be virtually zero as illustrated in
A. Synchronization Code Generation
Conventional systems use orthogonal codes to achieve cross correlation in correlator 800. In system 600 for example, SYNC1, SYNC2, SYNC3, and SYNC4, corresponding to cells 1-4 (see lightly shaded cells 602 of
Thus, when the results of XORing each bit pair are added, the result is “0”.
But in system 600, for example, each code must have ideal, or zero, cross correlation with each of the other codes used in adjacent cells 602. Therefore, in one example embodiment of a method for generating synchronization codes exhibiting the properties described above, the process begins by selecting a “perfect sequence” to be used as the basis for the codes. A perfect sequence is one that when correlated with itself produces a number equal to the number of bits in the sequence. For example:
But each time a perfect sequence is cyclically shifted by one bit, the new sequence is orthogonal with the original sequence. Thus, for example, if perfect sequence 1 is cyclically shifted by one bit and then correlated with the original, the correlation produces a “0” as in the following example;
If the perfect sequence 1 is again cyclically shifted by one bit, and again correlated with the original, then it will produce a “0”. In general, you can cyclically shift a perfect sequence by any number of bits up to its length and correlate the shifted sequence with the original to obtain a “0”.
Once a perfect sequence of the correct length is selected, the first synchronization code is preferably generated in one embodiment by repeating the sequence 4 times. Thus, if perfect sequence 1 is being used, then a first synchronization code y would be the following:
y=1 1-1 1 1 1-1 1 1 1-1 1 1 1-1 1.
Or in generic form:
y=x(0)x(1)x(2)x(3)x(0)x(1)x(2)x(3)x(0)x(1)x(2)x(3)x(0)x(1)x(2)x(3).
For a sequence of length L:
y=x(0)xl (1) . . . xl (L)x(0)x(1) . . . x(L)x(0)x(1) . . . x(L)x(0)x(1).
Repeating the perfect sequence allows correlator 800 a better opportunity to detect the synchronization code and allows generation of other uncorrelated frequencies as well. Repeating has the effect of sampling in the frequency domain. This effect is illustrated by the graphs in
To generate the subsequent sequences, corresponding to traces 2-4, sequence y must be shifted in frequency. This can be accomplished using the following equation:
zr(m)=y(m)*exp(j*2*π*r*m/(n*L)), (5)
for r=1 to L (# of sequences) and m=0 to 4*L−1 (time); and
where:
-
- zr(m)=each subsequent sequence;
- y(m)=the first sequence; and
- n=the number of times the sequence is repeated.
It will be understood that multiplying by an exp(j2π(r*m/N)) factor, where N is equal to the number of times the sequence is repeated n multiplied by the length of the underlying perfect sequence L, in the time domain results in a shift in the frequency domain. Equation (5) results in the desired shift as illustrated in
It should be noted that synchronization codes can be generated from more than one perfect sequence using the same methodology. For example, a perfect sequence can be generated and repeated for times and then a second perfect sequence can be generated and repeated four times to get a n factor equal to eight. The resulting sequence can then be shifted as described above to create the synchronization codes.
b. Signal Measurements Using Synchronization Codes
Therefore, when a communication device is at the edge of a cell, it will receive signals from multiple base stations and, therefore, will be decoding several synchronization codes at the same time. This can be illustrated with the help of
If communications from base station 1110 comprise synchronization code SYNC1 and communications from base station 1112 and 1114 comprise SYNC2 and SYNC3 respectively, then device 1108 will effectively receive the sum of these three synchronization codes. This is because, as explained above, base stations 1110, 1112, and 1114 are configured to transmit at the same time. Also, the synchronization codes arrive at device 1108 at almost the same time because they are generated in accordance with the description above.
Again as described above, the synchronization codes SYNC1, SYNC2, and SYNC3 exhibit ideal cross correlation. Therefore, when device 1108 correlates the sum x of codes SYNC1, SYNC2, and SYNC3, the latter two will not interfere with proper detection of SYNC1 by device 1108. Importantly, the sum x can also be used to determine important signal characteristics, because the sum x is equal to the sum of the synchronization code signal in accordance with the following equation:
x=SYNC1+SYNC2+SYNC3. (6)
Therefore, when SYNC1 is removed, the sum of SYNC2 and SYNC3 is left, as shown in the following:
x−SYNC1=SYNC2+SYNC3. (7)
The energy computed from the sum (SYNC2+SYNC3) is equal to the noise or interference seen by device 1108. Since the purpose of correlating the synchronization code in device 1106 is to extract the energy in SYNC1, device 1108 also has the energy in the signal from base station 1110, i.e., the energy represented by SYNC1. Therefore, device 1106 can use the energy of SYNC1 and of (SYNC2+SYNC3) to perform a signal-to-interference measurement for the communication channel over which it is communicating with base station 1110. The result of the measurement is preferably a signal-to-interference ratio (SIR). The SIR measurement can then be communicated back to base station 1110 for purposes that will be discussed below.
The ideal cross correlation of the synchronization codes, also allows device 1108 to perform extremely accurate determinations of the Channel Impulse Response (CIR), or channel estimation, from the correlation produced by correlator 800. This allows for highly accurate equalization using low cost, low complexity equalizers, thus overcoming a significant draw back of conventional systems.
4. Sub-Channel Assignments As mentioned, the SIR as determined by device 1108 can be communicated back to base station 1110 for use in the assignment of channels 502. In one embodiment, due to the fact that each sub-channel 502 is processed independently, the SIR for each sub-channel 502 can be measured and communicated back to base station 1110. In such an embodiment, therefore, sub-channels 502 can be divided into groups and a SIR measurement for each group can be sent to base station 1110. This is illustrated in
Sub-channels in the same group are preferably separated by as many sub-channels as possible to ensure diversity. In
SIR reporting will be simultaneously occurring for a plurality of devices within cell 1102. Thus,
The assignment of sub-channels in the frequency domain is equivalent to the assignment of time slots in the time domain. Therefore, as illustrated in
Poor SIR can be caused for a variety of reasons, but frequently it results from a device at the edge of a cell receiving communication signals from adjacent cells. Because each cell is using the same bandwidth B, the adjacent cell signals will eventually raise the noise level and degrade SIR for certain sub-channels. In certain embodiments, therefore, sub-channel assignment can be coordinated between cells, such as cells 1102, 1104, and 1106 in
Thus, if communication device 1108 is near the edge of cell 1102, and device 1118 is near the edge of cell 1106, then the two can interfere with each other. As a result, the SIR measurements that device 1108 and 1118 report back to base stations 1110 and 1114, respectively, will indicate that the interference level is too high. Base station 1110 can then be configured to assign only the odd groups, i.e., G1, G3, G5, etc., to device 1108, while base station 1114 can be configured to assign the even groups to device 1118. The two devices 1108 and 1118 will then not interfere with each other due to the coordinated assignment of sub-channel groups.
Assigning the sub-channels in this manner reduces the overall bandwidth available to devices 1108 and 1118, respectively. In this case the bandwidth is reduced by a factor of two. But it should be remembered that devices operating closer to each base station 1110 and 1114, respectively, will still be able to use all channels if needed. Thus, it is only devices, such as device 1108, that are near the edge of a cell that will have the available bandwidth reduced. Contrast this with a CDMA system, for example, in which the bandwidth for all users is reduced, due to the spreading techniques used in such systems, by approximately a factor of 10 at all times. It can be seen, therefore, that the systems and methods for wireless communication over a wide bandwidth channel using a plurality of sub-channels not only improves the quality of service, but can also increase the available bandwidth significantly.
When there are three devices 1108, 1118, and 1116 near the edge of their respective adjacent cells 1102, 1104, and 1106, the sub-channels can be divided by three. Thus, device 1108, for example, can be assigned groups G1, G4, etc., device 1118 can be assigned groups G2, G5, etc., and device 1116 can be assigned groups G3, G6, etc. In this case the available bandwidth for these devices, i.e., devices near the edges of cells 1102, 1104, and 1106, is reduced by a factor of 3, but this is still better than a CDMA system, for example.
The manner in which such a coordinated assignment of sub-channels can work is illustrated by the flow chart in
If the comparison in step 1404 reveals that the SIR levels are not good, then base station 1110 can be preprogrammed to assign either the odd groups or the even groups only to device 1108, which it will do in step 1408. Device 1108 then reports the SIR measurements for the odd or even groups it is assigned in step 1410, and they are again compared to a SIR threshold in step 1412.
It is assumed that the poor SIR level is due to the fact that device 1108 is operating at the edge of cell 1102 and is therefore being interfered with by a device such as device 1118. But device 1108 will be interfering with device 1118 at the same time. Therefore, the assignment of odd or even groups in step 1408 preferably corresponds with the assignment of the opposite groups to device 1118, by base station 1114. Accordingly, when device 1108 reports the SIR measurements for whichever groups, odd or even, are assigned to it, the comparison in step 1410 should reveal that the SIR levels are now below the threshold level. Thus, base station 1110 makes the assigned groups available to device 1108 in step 1414. Again, device 1108 preferably periodically updates the SIR measurements by returning to step 1402.
It is possible for the comparison of step 1410 to reveal that the SIR levels are still above the threshold, which should indicate that a third device, e.g., device 1116 is still interfering with device 1108. In this case, base station 1110 can be preprogrammed to assign every third group to device 1108 in step 1416. This should correspond with the corresponding assignments of non-interfering channels to devices 1118 and 1116 by base stations 1114 and 1112, respectively. Thus, device 1108 should be able to operate on the sub-channel groups assigned, i.e., G1, G4, etc., without undue interference. Again, device 1108 preferably periodically updates the SIR measurements by returning to step 1402. Optionally, a third comparison step (not shown) can be implemented after step 1416, to ensure that the groups assigned to device 1408 posses an adequate SIR level for proper operation. Moreover, if there are more adjacent cells, i.e., if it is possible for devices in a 4th or even a 5th adjacent cell to interfere with device 1108, then the process of
Even though the process of
Thus, by maintaining the capability to dynamically assign sub-channels and to dynamically change the symbol mapping scheme used for assigned sub-channels, the systems and methods described herein provide the ability to maintain higher available bandwidths with higher performance levels than conventional systems. To fully realize the benefits described, however, the systems and methods described thus far must be capable of implementation in a cost effect and convenient manner. Moreover, the implementation must include reconfigurability so that a single device can move between different types of communication systems and still maintain optimum performance in accordance with the systems and methods described herein. The following descriptions detail example high level embodiments of hardware implementations configured to operate in accordance with the systems and methods described herein in such a manner as to provide the capability just described above.
5. Sample Transmitter Embodiments
With this in mind, it can be seen that transmitter 1500 comprises a serial-to-parallel converter 1504 configured to receive a serial data stream 1502 comprising a data rate R. Serial-to-parallel converter 1504 converts data stream 1502 into N parallel data streams 1504, where N is the number of sub-channels 202. It should be noted that while the discussion that follows assumes that a single serial data stream is used, more than one serial data stream can also be used if required or desired. In any case, the data rate of each parallel data stream 1504 is then R/N. Each data stream 1504 is then sent to a scrambler, encoder, and interleaver block 1506. Scrambling, encoding, and interleaving are common techniques implemented in many wireless communication transmitters and help to provide robust, secure communication. Examples of these techniques will be briefly explained for illustrative purposes.
Scrambling breaks up the data to be transmitted in an effort to smooth out the spectral density of the transmitted data. For example, if the data comprises a long string of “1”s, there will be a spike in the spectral density. This spike can cause greater interference within the wireless communication system. By breaking up the data, the spectral density can be smoothed out to avoid any such peaks. Often, scrambling is achieved by XORing the data with a random sequence.
Encoding, or coding, the parallel bit streams 1504 can, for example, provide Forward Error Correction (FEC). The purpose of FEC is to improve the capacity of a communication channel by adding some carefully designed redundant information to the data being transmitted through the channel. The process of adding this redundant information is known as channel coding. Convolutional coding and block coding are the two major forms of channel coding. Convolutional codes operate on serial data, one or a few bits at a time. Block codes operate on relatively large (typically, up to a couple of hundred bytes) message blocks. There are a variety of useful convolutional and block codes, and a variety of algorithms for decoding the received coded information sequences to recover the original data. For example, convolutional encoding or turbo coding with Viterbi decoding is a FEC technique that is particularly suited to a channel in which the transmitted signal is corrupted mainly by additive white Gaussian noise (AWGN) or even a channel that simply experiences fading.
Convolutional codes are usually described using two parameters: the code rate and the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits into the convolutional encoder (k) to the number of channel symbols (n) output by the convolutional encoder in a given encoder cycle. A common code rate is ½, which means that 2 symbols are produced for every 1-bit input into the coder. The constraint length parameter, K, denotes the “length” of the convolutional encoder, i.e. how many k-bit stages are available to feed the combinatorial logic that produces the output symbols. Closely related to K is the parameter m, which indicates how many encoder cycles an input bit is retained and used for encoding after it first appears at the input to the convolutional encoder. The m parameter can be thought of as the memory length of the encoder.
Interleaving is used to reduce the effects of fading. Interleaving mixes up the order of the data so that if a fade interferes with a portion of the transmitted signal, the overall message will not be effected. This is because once the message is de-interleaved and decoded in the receiver, the data lost will comprise non-contiguous portions of the overall message. In other words, the fade will interfere with a contiguous portion of the interleaved message, but when the message is de-interleaved, the interfered with portion is spread throughout the overall message. Using techniques such as FEC, the missing information can then be filled in, or the impact of the lost data may just be negligible.
After blocks 1506, each parallel data stream 1504 is sent to symbol mappers 1508. Symbol mappers 1508 apply the requisite symbol mapping, e.g., BPSK, QPSK, etc., to each parallel data stream 1504. Symbol mappers 1508 are preferably programmable so that the modulation applied to parallel data streams can be changed, for example, in response to the SIR reported for each sub-channel 202. It is also preferable, that each symbol mapper 1508 be separately programmable so that the optimum symbol mapping scheme for each sub-channel can be selected and applied to each parallel data stream 1504.
After symbol mappers 1508, parallel data streams 1504 are sent to modulators 1510. Important aspects and features of example embodiments of modulators 1510 are described below. After modulators 1510, parallel data streams 1504 are sent to summer 1512, which is configured to sum the parallel data streams and thereby generate a single serial data stream 1518 comprising each of the individually processed parallel data streams 1504. Serial data stream 1518 is then sent to radio module 1512, where it is modulated with an RF carrier, amplified, and transmitted via antenna 1516 according to known techniques.
The transmitted signal occupies the entire bandwidth B of communication channel 100 and comprises each of the discrete parallel data streams 1504 encoded onto their respective sub-channels 102 within bandwidth B. Encoding parallel data streams 1504 onto the appropriate sub-channels 102 requires that each parallel data stream 1504 be shifted in frequency by an appropriate offset. This is achieved in modulator 1510.
It should be noted that the data rate can be reduced by more than half, e.g., by four or more. Alternatively, the data rate can also be reduced by an amount other than half. For example if information from n data stream is encoded onto m sub-channels, where m>n. Thus, to decrease the rate by ⅔, information from one data stream can be encoded on a first sub-channel, information from a second data stream can be encoded on a second data channel, and the sum or difference of the two data streams can be encoded on a third channel. In which case, proper scaling will need to be applied to the power in the third channel. Otherwise, for example, the power in the third channel can be twice the power in the first two.
Preferably, rate controller 1700 is programmable so that the data rate can be changed responsive to certain operational factors. For example, if the SIR reported for sub-channels 1702 is low, then rate controller 1700 can be programmed to provide more robust transmission via repetition to ensure that no data is lost due to interference. Additionally, different types of wireless communication system, e.g., indoor, outdoor, line-of-sight, may require varying degrees of robustness. Thus, rate controller 1700 can be adjusted to provide the minimum required robustness for the particular type of communication system. This type of programmability not only ensures robust communication, it can also be used to allow a single device to move between communication systems and maintain superior performance.
Thus, rate controller 1604 is preferably programmable so that the data rate can be increased, as in rate controller 1800, or decreased, as in rate controller 1700, as required by a particular type of wireless communication system, or as required by the communication channel conditions or sub-channel conditions. In the event that the data rate is increased, filters 1612 are also preferably programmable so that they can be configured to apply pulse shaping to data streams a(0) to a(31), for example, and then sum the appropriate streams to generate the appropriate number of parallel data streams to send to frequency shifter 1614.
The advantage of increasing the data rate in the manner illustrated in
The draw back to increasing the data rate as illustrated in
Essentially, the relationship between data stream d(0) to d(15) and a(0) to a(15) is a matrix relationship. Thus, if the receiver knows the correct matrix to apply, it can recover the sums and differences of d(0) to d(15) from a(0) to a(15). Preferably, frequency encoder 1900 is programmable, so that it can be enabled and disabled in order to provided robustness when required. Preferable, adders 1902 and 1904 are programmable also so that different matrices can be applied to d(0) to d(15).
After frequency encoding, if it is included, data streams 1602 are sent to TDM/FDM blocks 1608. TDM/FDM blocks 1608 perform TDM or FDM on the data streams as required by the particular embodiment.
Sub-block repeater 2002 is configured to receive a sub-block of data, such as block 2012 comprising bits a(0) to a(3) for example. Sub-block repeater is then configured to repeat block 2012 to provide repetition, which in turn leads to more robust communication. Thus, sub-block repeater 2002 generates block 2014, which comprises 2 blocks 2012. Sub-block scrambler 2004 is then configured to receive block 2014 and to scramble it, thus generating block 2016. One method of scrambling can be to invert half of block 2014 as illustrated in block 2016. But other scrambling methods can also be implemented depending on the embodiment.
Sub-block terminator 2006 takes block 2016 generated by sub-block scrambler 2004 and adds a termination block 2034 to the front of block 2016 to form block 2018. Termination block 2034 ensures that each block can be processed independently in the receiver. Without termination block 2034, some blocks may be delayed due to multipath, for example, and they would therefore overlap part of the next block of data. But by including termination block 2034, the delayed block can be prevented from overlapping any of the actual data in the next block.
Termination block 2034 can be a cyclic prefix termination 2036. A cyclic prefix termination 2036 simply repeats the last few symbols of block 2018. Thus, for example, if cyclic prefix termination 2036 is three symbols long, then it would simply repeat the last three symbols of block 2018. Alternatively, termination block 2034 can comprise a sequence of symbols that are known to both the transmitter and receiver. The selection of what type of block termination 2034 to use can impact what type of equalizer is used in the receiver. Therefore, receiver complexity and choice of equalizers must be considered when determining what type of termination block 2034 to use in TDM/FDM block 2000.
After sub-block terminator 2006, TDM/FDM block 2000 can include a sub-block repeater 2008 configured to perform a second block repetition step in which block 2018 is repeated to form block 2020. In certain embodiments, sub-block repeater can be configured to perform a second block scrambling step as well. After sub-block repeater 2008, if included, TDM/FDM block 2000 comprises a sync inserter 210 configured to periodically insert an appropriate synchronization code 2032 after a predetermined number of blocks 2020 and/or to insert known symbols into each block. The purpose of synchronization code 2032 is discussed in section 3.
TDM/FDM block 2100 is provided to illustrate the logical components that can be included in a TDM/FDM block configured to perform FDM on a data stream. Depending on the actual implementation, some of the logical components may or may not be included. Moreover, TDM/FDM block 2000 and 2100 are preferably programmable so that the appropriate logical components can be included as required by a particular implementation. This allows a device that incorporates one of blocks 2000 or 2100 to move between different systems with different requirements. Further, it is preferable that TDM/FDM block 1608 in
After TDM/FDM blocks 1608, in
After Interpolators 1610, the parallel data streams are passed to filters 1612, which apply the pulse shaping described in conjunction with the roll-off factor of equation (2) in section 1. Then the parallel data streams are sent to frequency shifter 1614, which is configured to shift each parallel data stream by the frequency offset associated with the sub-channel to which the particular parallel data stream is associated.
After the parallel data streams are shifted, they are summed, e.g., in summer 1512 of
After the message is received by antenna 2300, it is sent to radio receiver 2304, which is configured to remove the carrier associated with the wide band communication channel and extract a baseband signal comprising the data stream transmitted by the transmitter. The baseband signal is then sent to correlator 2306 and demodulator 2308. Correlator 2306 is configured to correlated with a synchronization code inserted in the data stream as described in section 3. It is also preferably configured to perform SIR and multipath estimations as described in section 3(b). Demodulator 2308 is configured to extract the parallel data streams from each sub-channel assigned to the device comprising receiver 2300 and to generate a single data stream there from.
Next, receiver 2400 preferably includes decimators 2406 configured to decimate the data rate of the parallel bit streams. Sampling at higher rates helps to ensure accurate recreation of the data. But the higher the data rate, the larger and more complex equalizer 2408 becomes. Thus, the sampling rate, and therefore the number of samples, can be reduced by decimators 2406 to an adequate level that allows for a smaller and less costly equalizer 2408.
Equalizer 2408 is configured to reduce the effects of multipath in receiver 2300. Its operation will be discussed more fully below. After equalizer 2408, the parallel data streams are sent to de-scrambler, decoder, and de-interleaver 2410, which perform the opposite operations of scrambler, encoder, and interleaver 1506 so as to reproduce the original data generated in the transmitter. The parallel data streams are then sent to parallel to serial converter 2412, which generates a single serial data stream from the parallel data streams.
Equalizer 2408 uses the multipath estimates provided by correlator 2306 to equalize the effects of multipath in receiver 2300. In one embodiment, equalizer 2408 comprises Single-In Single-Out (SISO) equalizers operating on each parallel data stream in demodulator 2400. In this case, each SISO equalizer comprising equalizer 2408 receives a single input and generates a single equalized output. Alternatively, each equalizer can be a Multiple-In Multiple-Out (MIMO) or a Multiple-In Single-Out (MISO) equalizer. Multiple inputs can be required for example, when a frequency encoder or rate controller, such as frequency encoder 1900, is included in the transmitter. Because frequency encoder 1900 encodes information from more than one parallel data stream onto each sub-channel, each equalizers comprising equalizer 2408 need to equalize more than one sub-channel. Thus, for example, if a parallel data stream in demodulator 2400 comprises d(1)+d(8), then equalizer 2408 will need to equalize both d(1) and d(8) together. Equalizer 2408 can then generate a single output corresponding to d(1) or d(8) (MISO) or it can generate both d(1) and d(8) (MIMO).
Equalizer 2408 can also be a time domain equalizer (TDE) or a frequency domain equalizer (FDE) depending on the embodiment. Generally, equalizer 2408 is a TDE if the modulator in the transmitter performs TDM on the parallel data streams, and a FDE if the modulator performs FDM. But equalizer 2408 can be an FDE even if TDM is used in the transmitter. Therefore, the preferred equalizer type should be taken into consideration when deciding what type of block termination to use in the transmitter. Because of power requirements, it is often preferable to use FDM on the forward link and TDM on the reverse link in a wireless communication system.
As with transmitter 1500, the various components comprising demodulator 2400 are preferably programmable, so that a single device can operate in a plurality of different systems and still maintain superior performance, which is a primary advantage of the systems and methods described herein. Accordingly, the above discussion provides systems and methods for implementing a channel access protocol that allows the transmitter and receiver hardware to be reprogrammed slightly depending on the communication system.
Thus, when a device moves from one system to another, it preferably reconfigures the hardware, i.e. transmitter and receiver, as required and switches to a protocol stack corresponding to the new system. An important part of reconfiguring the receiver is reconfiguring, or programming, the equalizer because multipath is a main problem for each type of system. The multipath, however, varies depending on the type of system, which previously has meant that a different equalizer is required for different types of communication systems. The channel access protocol described in the preceding sections, however, allows for equalizers to be used that need only be reconfigured slightly for operation in various systems.
a. Sample Equalizer Embodiment
If there is one equalizer 2506 per channel, the CIR is preferably provided directly to equalizers 2506 from the correlator (not shown). If such a correlator configuration is used, then equalizers 2506 can be run at a slow rate, but the overall equalization process is relatively fast. For systems with a relatively small number of channels, such a configuration is therefore preferable. The problem, however, is that there is large variances in the number of channels used in different types of communication systems. For example, an outdoor system can have has many as 256 channels. This would require 256 equalizers 2506, which would make the receiver design too complex and costly. Thus, for systems with a lot of channels, the configuration illustrated in
Memory 2502 is preferably divided into sub-sections 2504, which are each configured to store information for a particular subset of channels. Information for each channel in each subset is then alternately sent to the appropriate equalizer 2506, which equalizes the information based on the CIR provided for that channel. In this case, each equalizer must run much faster than it would if there was simply one equalizer per channel. For example, equalizers 2506 would need to run 4 or more times as fast in order to effectively equalize 4 channels as opposed to 1. In addition, extra memory 2502 is required to buffer the channel information. But overall, the complexity of receiver 2500 is reduced, because there are fewer equalizers. This should also lower the overall cost to implement receiver 2500.
Preferably, memory 2502 and the number of channels that are sent to a particular equalizer is programmable. In this way, receiver 2500 can be reconfigured for the most optimum operation for a given system. Thus, if receiver 2500 were moved from an outdoor system to an indoor system with fewer channels, then receiver 2500 can preferably be reconfigured so that there are fewer, even as few as 1, channel per equalizer. The rate at which equalizers 2506 are run is also preferably programmable such that equalizers 2506 can be run at the optimum rate for the number of channels being equalized.
In addition, if each equalizer 2506 is equalizing multiple channels, then the CIR for those multiple paths must alternately be provided to each equalizer 2506. Preferably, therefore, a memory (not shown) is also included to buffer the CIR information for each channel. The appropriate CIR information is then sent to each equalizer from the CIR memory (not shown) when the corresponding channel information is being equalized. The CIR memory (not shown) is also preferably programmable to ensure optimum operation regardless of what type of system receiver 2500 is operating in.
Returning to the issue of path diversity, the number of paths used by equalizers 2506 must account for the delay spread ds in the system. For example, if the system is an outdoor system operating in the 5 gigahertz (GHz) range, the communication channel can comprise a bandwidth of 125 megahertz (MHz), e.g., the channel can extend from 5.725 GHz to 5.85 GHz. If the channel is divided into 512 sub-channels with a roll-off factor r of 0.125, then each sub-channel will have a bandwidth of approximately 215 kilohertz (KHz), which provides approximately a 4.6 microsecond symbol duration. Since the worst case delay spread ds is 20 microseconds, the number of paths used by equalizers 2504 can be set to a maximum of 5. Thus, there would be a first path P1 at zero microseconds, a second path P2 at 4.6 microseconds, a third path P3 at 9.2 microseconds, a fourth path P4 at 13.8 microseconds, and fifth path P5 at 18.4 microseconds, which is close to the delay spread ds. In another embodiment, a sixth path can be included so as to completely cover the delay spread ds; however, 20 microseconds is the worst case. In fact, a delay spread ds of 3 microseconds is a more typical value. In most instances, therefore, the delay spread ds will actually be shorter and an extra path is not needed. Alternatively, fewer sub-channels can be used, thus providing a larger symbol duration, instead of using an extra path. But again, this would typically not be needed.
As explained above, equalizers 2506 are preferably configurable so that they can be reconfigured for various communication systems. Thus, for example, the number of paths used must be sufficient regardless of the type of communication system. But this is also dependent on the number of sub-channels used. If, for example, receiver 2500 went from operating in the above described outdoor system to an indoor system, where the delay spread ds is on the order of 1 microsecond, then receiver 2500 can preferably be reconfigured for 32 sub-channels and 5 paths. Assuming the same overall bandwidth of 125 MHz, the bandwidth of each sub-channel is approximately 4 MHz and the symbol duration is approximately 250 nanoseconds.
Therefore, there will be a first path P1 at zero microseconds and subsequent paths P2 to P5 at 250 ns, 500 ns, 750 ns, and 1 microsecond, respectively. Thus, the delay spread ds should be covered for the indoor environment. Again, the 1 microsecond delay spread ds is worst case so the 1 microsecond delay spread ds provided in the above example will often be more than is actually required. This is preferable, however, for indoor systems, because it can allow operation to extend outside of the inside environment, e.g., just outside the building in which the inside environment operates. For campus style environments, where a user is likely to be traveling between buildings, this can be advantageous.
7. Sample Embodiment of a Wireless Communication Device
Transmitter 2606 is a configurable transmitter configured to implement the channel access protocol described above. Thus, transmitter 2606 is capable of transmitting and encoding a wideband communication signal comprising a plurality of sub-channels. Moreover, transmitter 2606 is configured such that the various sub-components that comprise transmitter 2606 can be reconfigured, or programmed, as described in section 5. Similarly, receiver 2608 is configured to implement the channel access protocol described above and is, therefore, also configured such that the various sub-components comprising receiver 2608 can be reconfigured, or reprogrammed, as described in section 6.
Transmitter 2606 and receiver 2608 are interfaced with processor 2610, which can comprise various processing, controller, and/or Digital Signal Processing (DSP) circuits. Processor 2610 controls the operation of device 2600 including encoding signals to be transmitted by transmitter 2606 and decoding signals received by receiver 2608. Device 2610 can also include memory 2612, which can be configured to store operating instructions, e.g., firmware/software, used by processor 2610 to control the operation of device 2600.
Processor 2610 is also preferably configured to reprogram transmitter 2606 and receiver 2608 via control interfaces 2614 and 2616, respectively, as required by the wireless communication system in which device 2600 is operating. Thus, for example, device 2600 can be configured to periodically ascertain the availability is a preferred communication system. If the system is detected, then processor 2610 can be configured to load the corresponding operating instruction from memory 2612 and reconfigure transmitter 2606 and receiver 2608 for operation in the preferred system.
For example, it may preferable for device 2600 to switch to an indoor wireless LAN if it is available. So device 2600 may be operating in a wireless WAN where no wireless LAN is available, while periodically searching for the availability of an appropriate wireless LAN. Once the wireless LAN is detected, processor 2610 will load the operating instructions, e.g., the appropriate protocol stack, for the wireless LAN environment and will reprogram transmitter 2606 and receiver 2608 accordingly. In this manner, device 2600 can move from one type of communication system to another, while maintaining superior performance.
It should be noted that a base station configured in accordance with the systems and methods herein will operate in a similar manner as device 2600; however, because the base station does not move from one type of system to another, there is generally no need to configure processor 2610 to reconfigure transmitter 2606 and receiver 2608 for operation in accordance with the operating instruction for a different type of system. But processor 2610 can still be configured to reconfigure, or reprogram the sub-components of transmitter 2606 and/or receiver 2608 as required by the operating conditions within the system as reported by communication devices in communication with the base station. Moreover, such a base station can be configured in accordance with the systems and methods described herein to implement more than one mode of operation. In which case, controller 2610 can be configured to reprogram transmitter 2606 and receiver 2608 to implement the appropriate mode of operation.
8. Bandwidth Recovery As described above in relation to
In this manner, base station 1112 and 1114 perform complementary reductions in the channels assigned to devices 1116 and 1118 in order to prevent interference and improve performance of devices 1116 and 1118. The reduction in assigned channels reduces the overall bandwidth available to devices 1116 and 1118. But as described above, a system implementing such a complementary reduction of sub-channels will still maintain a higher bandwidth than conventional systems. Still, it is preferable to recover the unused sub-channels, or unused bandwidth, created by the reduction of sub-channels in response to a low reported SIR.
One method for recovering the unused bandwidth is illustrated in the flow chart of
At this point, each base station has unused bandwidth with respect to devices 1116 and 1118. To recover this bandwidth, base station 1114 can, in step 2708, assign the unused odd sub-channels to device 1116 in adjacent cell 1104. It should be noted that even though cells 1102, 1104, and 1106 are illustrated as geometrically shaped, non-overlapping coverage areas, the actual coverage areas do not resemble these shapes. The shapes are essentially fictions used to plan and describe a wireless communication system 1100. Therefore, base station 1114 can in fact communicate with device 1116, even though it is in adjacent cell 1104.
Once base station 1114 has assigned the odd sub-channels to device 1116, in step 2708, base station 1112 and 1114 communicate with device 1116 simultaneously over the odd sub-channels in step 2710. Preferably, base station 1112 also assigns the unused even sub-channels to device 1118 in order to recover the unused bandwidth in cell 1104 as well.
In essence, spatial diversity is achieved by having both base station 1114 and 1112 communicate with device 1116 (and 1118) over the same sub-channels. Spatial diversity occurs when the same message is transmitted simultaneously over statistically independent communication paths to the same receiver. The independence of the two paths improves the overall immunity of the system to fading. This is because the two paths will experience different fading effects. Therefore, if the receiver cannot receive the signal over one path due to fading, then it will probably still be able to receive the signal over the other path, because the fading that effected the first path will not effect the second. As a result, spatial diversity improves overall system performance by improving the Bit Error Rate (BER) in the receiver, which effectively increases the deliverable data rate to the receiver, i.e., increase the bandwidth.
For effective spatial diversity, base stations 1112 and 1114 ideally transmit the same information at the same time over the same sub-channels. As mentioned above, each base station in system 1100 is configured to transmit simultaneously, i.e., system 1100 is a TDM system with synchronized base stations. Base stations 1112 and 1114 also assigned the same sub-channels to device 1116 in step 2708. Therefore, all that is left is to ensure that base stations 1112 and 1114 send the same information. Accordingly, the information communicated to device 1116 by base stations 1112 and 1114 is preferably coordinated so that the same information is transmitted at the same time. The mechanism for enabling this coordination is discussed more fully below. Such coordination, however, also allows encoding that can provide further performance enhancements within system 1100 and allow a greater percentage of the unused bandwidth to be recovered.
One example coordinated encoding scheme that can be implemented between base stations 1112 and 1114 with respect to communications with device 1116 is Space-Time-Coding (STC) diversity. STC is illustrated by system 2800 in
First, channel 2808 can be denoted hn and channel 2810 can be denoted gn, where:
hn=αhejθh and (1)
gn=αhejθh (2)
Second, we can look at two blocks of data 2812a and 2812b to be transmitted by transmitter 2802 as illustrated in
When blocks 2812a, 2812b, 2814a, and 2814b are received in receiver 2806, they are combined and decoded in the following manner: First, the blocks will be combined in the receiver to form the following blocks, after discarding the cyclical prefix:
Block1=a(0:N−1)hn−b*(N−1:0)gn; and (3)
Block2=b(0:N−1)hn+a*(N−1:0)gn. (4)
Where the symbol represents a cyclic convolution.
Second, by taking an IFFT of the blocks, the blocks can be described as:
Block1=An*Hn−Bn**Gn; and (5)
Block2=Bn*Hn+An**Gn. (6)
Where n=0 to N−1.
In equations (5) and (6) Hn and Gn will be known, or can be estimated. But to solve the two equations and determine An and Bn, it is preferable to turn equations (5) and (6) into two equations with two unknowns. This can be achieved using estimated signals Xn and Yn as follows:
Xn=An*Hn−Bn**Gn; and (7)
Yn=Bn*Hn+An**Gn. (8)
To generate two equations and two unknowns, the conjugate of Yn can be used to generate the following two equations:
Xn=An*Hn−Bn**Gn; and (9)
Yn*=Bn**Hn*+An*Gn*. (10)
Thus, the two unknowns are An and Bn* and equations (9) and (10) define a matrix relationship in terms of these two unknowns as follows:
Signals An and Bn can be determined using equation (12). It should be noted, that the process just described is not the only way to implement STC. Other methods can also be implemented in accordance with the systems and methods described herein. Importantly, however, by adding time diversity, such as described in the preceding equations, to the space diversity already achieved by using base stations 1112 and 1114 to communicate with device 1116 simultaneously, the BER can be reduced even further to recover even more bandwidth.
An example transmitter 2900 configured to communicate using STC in accordance with the systems and methods described herein is illustrated in
Serial-to-parallel converter 2904 generates parallel bit streams from the bits of blocks an and bn. Encoder 2906 then encodes the bit streams as required, e.g., encoder 2906 can generate −bn* and an* (see blocks 2814a and 2814b in
Transmitter 2900 preferably uses TDM to transmit messages to receiver 2806. An alternative transmitter 3000 embodiment that uses FDM is illustrated in
Thus, for example, transmitter 3102 can transmit block 3104 comprising symbols a0, a1, a2, and a3. In which case, transmitter 3106 will transmit a block 3108 comprising symbols −an*, a0*, −a3*, and a2*. As can be seen, this is the same encoding scheme used by transmitters 2802 and 2804, but implemented at the symbol level instead of the block level. As such, there is no need to delay one block before transmitting. An IFFT of each block 3104 and 3108 can then be taken and transmitted using FDM. An IFFT 3110 of block 3104 is shown in
Channels 3112 and 3114 can be described by Hn and Gn, respectively. Thus, in receiver 3116 the following symbols will be formed:
(A0*H0)−(A1**G0)
(A1*H1)+(A0**G1)
(A2*H2)−(A3**G2)
(A3*H3)+(A2**G3).
In time, each symbol an (n=0 to 3) occupies a slightly different time location. In frequency, each symbol An (n=0 to 3) occupies a slightly different frequency. Thus, each symbol An is transmitted over a slightly different channel, i.e., Hn (n=0 to 3) or Gn (n=0 to 3), which results in the combinations above.
As can be seen, the symbol combinations formed in the receiver are of the same form as equations (5) and (6) and, therefore, can be solved in the same manner, but without the one block delay.
In order to implement STC or Space Frequency Coding (SFC) diversity as described above, bases stations 1112 and 1114 must be able to coordinate encoding of the symbols that are simultaneously sent to a particular device, such as device 1116 or 1118. Fortunately, base stations 1112 and 1114 are preferably interfaced with a common network interface server. For example, in a LAN, base stations 1112 and 1114 (which would actually be service access points in the case of a LAN) are interfaced with a common network interface server that connects the LAN to a larger network such as a Public Switched Telephone Network (PSTN). Similarly, in a wireless WAN, base stations 1112 and 1114 are typically interfaced with a common base station control center or mobile switching center. Thus, coordination of the encoding can be enabled via the common connection with the network interface server. Bases station 1112 and 1114 can then be configured to share information through this common connection related to communications with devices at the edge of cells 1104 and 1106. The sharing of information, in turn, allows time or frequency diversity coding as described above.
It should be noted that other forms of diversity, such as polarization diversity or delay diversity, can also be combined with the spatial diversity in a communication system designed in accordance with the systems and methods described herein. The goal being to combine alternative forms of diversity with the spatial diversity in order to recover larger amounts of bandwidth. It should also be noted, that the systems and methods described can be applied regardless of the number of base stations, devices, and communication cells involved.
Briefly, delay diversity can preferably be achieved in accordance with the systems and methods described herein by cyclical shifting the transmitted blocks. For example, one transmitter can transmit a block comprising A0, A1, A2, and A3 in that order, while the other transmitter transmits the symbols in the following order A3, A0, A1, and A2. Therefore, it can be seen that the second transmitter transmit a cyclically shifted version of the block transmitted buy the first transmitter. Further, the shifted block can be cyclically shifted by more then one symbol of required by a particular implementation.
With reference to
In contrast, the embodiments described above in connection with
Another example of sinusoidal carrier wave communication technology is illustrated in
In contrast, an ultra-wideband (UWB) pulse may have a 2.0 GHz center frequency, with a frequency spread of approximately 4 GHz, as shown in
Also, because the UWB pulses are spread across an extremely wide frequency range, the power sampled in, for example, a one megahertz bandwidth, is very low. For example, UWB pulses of one nano-second duration and one milliwatt average power (0 dBm) spreads the power over the entire one gigahertz frequency band occupied by the pulse. The resulting power density is thus 1 milliwatt divided by the 1,000 MHz pulse bandwidth, or 0.001 milliwatt per megahertz (−30 dBm/MHz).
Generally, in the case of wireless communications, a multiplicity of UWB pulses may be transmitted at relatively low power density (milliwatts per megahertz). However, an alternative UWB communication system may transmit at a higher power density. For example, UWB pulses may be transmitted between 30 dBm to −50 dBm.
Several different methods of ultra-wideband (UWB) communications have been proposed. For wireless UWB communications in the United States, all of these methods must meet the constraints recently established by the Federal Communications Commission (FCC) in their Report and Order issued Apr. 22, 2002 (ET Docket 98-153). Currently, the FCC is allowing limited UWB communications, but as UWB systems are deployed, and additional experience with this new technology is gained, the FCC may expand the use of UWB communication technology. It will be appreciated that the present invention may be applied to current forms of UWB communications, as well as to future variations and/or varieties of UWB communication technology.
For example, the April 22 Report and Order requires that UWB pulses, or signals occupy greater than 20% fractional bandwidth or 500 megahertz, whichever is smaller. Fractional bandwidth is defined as 2 times the difference between the high and low 10 dB cutoff frequencies divided by the sum of the high and low 10 dB cutoff frequencies. However, these requirements for wireless UWB communications in the United States may change in the future.
Communication standards committees associated with the International Institute of Electrical and Electronics Engineers (IEEE) are considering a number of ultra-wideband (UWB) wireless communication methods that meet the current constraints established by the FCC. One UWB communication method may transmit UWB pulses that occupy 500 MHz bands within the 7.5 GHz FCC allocation (from 3.1 GHz to 10.6 GHz). In one embodiment of this communication method, UWB pulses have about a 2-nanosecond duration, which corresponds to about a 500 MHz bandwidth. The center frequency of the UWB pulses can be varied to place them wherever desired within the 7.5 GHz allocation. In another embodiment of this communication method, an Inverse Fast Fourier Transform (IFFT) is performed on parallel data to produce 122 carriers, each approximately 4.125 MHz wide. In this embodiment, also known as Orthogonal Frequency Division Multiplexing (OFDM), the resultant UWB pulse, or signal is approximately 506 MHz wide, and has a 242 nanosecond duration. It meets the FCC rules for UWB communications because it is an aggregation of many relatively narrow band carriers rather than because of the duration of each pulse.
Another UWB communication method being evaluated by the IEEE standards committees comprises transmitting discrete UWB pulses that occupy greater than 500 MHz of frequency spectrum. For example, in one embodiment of this communication method, UWB pulse durations may vary from 2 nanoseconds, which occupies about 500 MHz, to about 133 picoseconds, which occupies about 7.5 GHz of bandwidth. That is, a single UWB pulse may occupy substantially all of the entire allocation for communications (from 3.1 GHz to 10.6 GHz).
Yet another UWB communication method being evaluated by the IEEE standards committees comprises transmitting a sequence of pulses that may be approximately 0.7 nanoseconds or less in duration, and at a chipping rate of approximately 1.4 giga pulses per second. The pulses are modulated using a Direct-Sequence modulation technique, and is called DS-UWB. Operation in two bands is contemplated, with one band is centered near 4 GHz with a 1.4 GHz wide signal, while the second band is centered near 8 GHz, with a 2.8 GHz wide UWB signal. Operation may occur at either or both of the UWB bands. Data rates between about 28 Megabits/second to as much as 1,320 Megabits/second are contemplated.
Thus, described above are three different methods of wireless ultra-wideband (UWB) communication. It will be appreciated that the present invention may be employed using any one of the above-described methods, variants of the above methods, or other UWB communication methods yet to be developed.
Certain features of the present invention may be employed by an ultra-wideband (UWB) communication system. For example, in one embodiment UWB communication system, a portion of a plurality of non-overlapping communication sub-channels are assigned to a first UWB communication device by a base station. Communication interference information is obtained by the first device, and then transmitted to and received by the base station. The base station then reduces the portion of non-overlapping sub-channels assigned to the first UWB communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, which are assigned to a second UWB communication device.
Another embodiment of the present invention comprises a UWB communication system that establishes an UWB communication channel comprising a radio frequency band segmented into a plurality of non-overlapping sub-channels. As discussed above, the radio frequency band in an UWB system may occupy several gigahertz of spectrum, with sub-channels occupying anywhere from 100 megahertz to a gigahertz of spectrum. The system also includes a first communication cell including a first base station, with the first base station configured to communicate with a first UWB communication device in the first communication cell over the UWB communication channel. A second communication cell that is adjacent to the first communication cell includes a second base station, with the second base station configured to also communicate with the first UWB communication device over the UWB communication channel. A group of the plurality of non-overlapping sub-channels is assigned to the second UWB communication device in the second communication cell. Channel interference is determined by the second UWB device and communicated to at least one of the base stations. Either of the base stations may then reduce the number of non-overlapping sub-channels assigned to the second UWB communication device in the second communication cell in response to the channel interference indication, thereby creating a group of available non-overlapping sub-channels. The available non-overlapping sub-channels are then assigned to the first UWB communication device in the first communication cell.
The UWB devices and base stations in the above-described embodiments communicate with each other by transmitting and receiving a plurality of discrete electromagnetic pulses, as opposed to a substantially continuous carrier wave. Each pulse may have a duration that can range between about 10 picoseconds to about 1 microsecond, and a power that may range between about +30 dBm to about −60 dBm, as measured at a single frequency.
The present invention may be employed in any type of network, be it wireless, wire, or a mix of wire media and wireless components. That is, a network may use both wire media, such as coaxial cable, and wireless devices, such as satellites, or cellular antennas. As defined herein, a network is a group of points or nodes connected by communication paths. The communication paths may use wires or they may be wireless. A network as defined herein can interconnect with other networks and contain sub-networks. A network as defined herein can be characterized in terms of a spatial distance, for example, such as a local area network (LAN), a personal area network (PAN), a metropolitan area network (MAN), a wide area network (WAN), and a wireless personal area network (WPAN), among others. A network as defined herein can also be characterized by the type of data transmission technology used by the network, such as, for example, a Transmission Control Protocol/Internet Protocol (TCP/IP) network, a Systems Network Architecture network, among others. A network as defined herein can also be characterized by whether it carries voice, data, or both kinds of signals. A network as defined herein may also be characterized by users of the network, such as, for example, users of a public switched telephone network (PSTN) or other type of public network, and private networks (such as within a single room or home), among others. A network as defined herein can also be characterized by the usual nature of its connections, for example, a dial-up network, a switched network, a dedicated network, and a non-switched network, among others. A network as defined herein can also be characterized by the types of physical links that it employs, for example, optical fiber, coaxial cable, a mix of both, unshielded twisted pair, and shielded twisted pair, among others.
The present invention may be employed in any type of wireless network, such as a wireless PAN, LAN, MAN, or WAN. In addition, the present invention may be employed in wire media, as the present invention dramatically increases the bandwidth of conventional networks that employ wire media, such as hybrid fiber-coax cable networks, or CATV networks, yet it can be inexpensively deployed without extensive modification to the existing wire media network.
As discussed above, one embodiment of the present invention may comprise a method of ultra-wideband communication, the method comprising the steps of assigning a portion of a plurality of non-overlapping sub-channels to a first ultra-wideband communication device, receiving interference information from the first ultra-wideband communication device, reducing the portion of non-overlapping sub-channels assigned to the ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, and assigning the group of available non-overlapping sub-channels to a second ultra-wideband communication device. The first ultra-wideband communication device may communicate with a first base station, and the second ultra-wideband communication device may communicate with a second base station.
In addition, the method may include the step of encoding data for the second ultra-wideband communication device, wherein the encoding provides a spatial diversity and at least one of: a time diversity, a frequency diversity, a delay diversity and a polarization diversity. Also, the group of available non-overlapping sub-channels may be used by at least one of a plurality of other ultra-wideband communication devices located in a plurality of adjacent communication cells.
Furthermore, the interference information may comprise a signal-to-interference ratio, and the ultra-wideband communication device may transmit a plurality of discrete electromagnetic pulses over at least one of the non-overlapping sub-channels, with each pulse having a duration that can range between about 10 picoseconds to about 1 microsecond, and each of the plurality of non-overlapping sub-channels may occupy a discrete portion of a radio frequency band.
Another embodiment of the present invention may include another method of ultra-wideband communication, the method comprising the steps of, providing an ultra-wideband communication device, receiving a first communication signal from a first base station over at least two of a plurality of non-overlapping sub-channels, receiving a second communication signal from a second base station over at least two of a plurality of non-overlapping sub-channels, and decoding the first and second communication signals. The method may also include the step of receiving the first and second communication signals over the same plurality of non-overlapping sub-channels, and the step of receiving a plurality of communication signals from a plurality of base stations over the plurality of non-overlapping sub-channels.
Another embodiment of the present invention may comprise an ultra-wideband communication system, comprising an ultra-wideband communication channel comprising a radio frequency band segmented into a plurality of non-overlapping sub-channels, a first communication cell including a first base station, the first base station configured to communicate with a first ultra-wideband communication device in the first communication cell over the ultra-wideband communication channel, and a second communication cell that is adjacent to the first communication cell and includes a second base station, the second base station configured to also communicate with the first ultra-wideband communication device over the ultra-wideband communication channel.
In this embodiment, the second base station is further configured to communicate with a second ultra-wideband communication device in the second communication cell over the ultra-wideband communication channel, assign a group of the plurality of non-overlapping sub-channels to the second ultra-wideband communication device in the second communication cell, receive a channel interference indication from the second ultra-wideband communication device in the second communication cell, reduce the number of non-overlapping sub-channels assigned to the second ultra-wideband communication device in the second communication cell in response to the channel interference indication, thereby creating a group of available non-overlapping sub-channels, and assign the available non-overlapping sub-channels to the first ultra-wideband communication device in the first communication cell.
In addition, the second base station may be further configured to communicate with the first ultra-wideband communication device in the first communication cell over the assigned available non-overlapping sub-channels, and may also communicate with the first ultra-wideband communication device in the first communication cell over the assigned available non-overlapping sub-channels. Also, the first and second base stations may be configured to encode data so that the encoded data provides a spatial diversity and at least one of: a time diversity, a frequency diversity, and a polarization diversity.
In this embodiment the channel interference indication may comprise a signal-to-interference ratio, and the first ultra-wideband communication device and the first and second base stations may each transmit a plurality of discrete electromagnetic pulses over at least one of the non-overlapping sub-channels, with each pulse having a duration that can range between about 10 picoseconds to about 1 microsecond.
Thus, it is seen that systems and methods of ultra-wideband communications are provided. One skilled in the art will appreciate that the present invention can be practiced by other than the above-described embodiments, which are presented in this description for purposes of illustration and not of limitation. The specification and drawings are not intended to limit the exclusionary scope of this patent document. It is noted that various equivalents for the particular embodiments discussed in this description may practice the invention as well. That is, while the present invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those of ordinary skill in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims. The fact that a product, process or method exhibits differences from one or more of the above-described exemplary embodiments does not mean that the product or process is outside the scope (literal scope and/or other legally-recognized scope) of the following claims.
Claims
1. A method of ultra-wideband communication, the method comprising the steps of:
- assigning a portion of a plurality of non-overlapping sub-channels to a first ultra-wideband communication device;
- receiving interference information from the first ultra-wideband communication device;
- reducing the portion of non-overlapping sub-channels assigned to the ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels; and
- assigning the group of available non-overlapping sub-channels to a second ultra-wideband communication device.
2. The method of claim 1, wherein the first ultra-wideband communication device communicates with a first base station, and the second ultra-wideband communication device communicates with a second base station.
3. The method of claim 2, further comprising the step of:
- encoding data for the second ultra-wideband communication device, wherein the encoding provides a spatial diversity and at least one of: a time diversity, a frequency diversity, a delay diversity and a polarization diversity.
4. The method of claim 1, wherein the group of available non-overlapping sub-channels is used by at least one of a plurality of other ultra-wideband communication devices located in a plurality of adjacent communication cells.
5. The method of claim 1, wherein the interference information comprises a signal-to-interference ratio.
6. The method of claim 1, wherein the ultra-wideband communication device transmits a plurality of discrete electromagnetic pulses over at least one of the non-overlapping sub-channels, with each pulse having a duration that can range between about 10 picoseconds to about 1 microsecond.
7. The method of claim 6, wherein each of the discrete electromagnetic pulses has a power that can range between about +30 dBm to about −60 dBm, as measured at a single frequency.
8. The method of claim 1, wherein each of the plurality of non-overlapping sub-channels occupies a discrete portion of a radio frequency band.
9. A method of ultra-wideband communication, the method comprising the steps of:
- providing an ultra-wideband communication device;
- receiving a first communication signal from a first base station over at least two of a plurality of non-overlapping sub-channels;
- receiving a second communication signal from a second base station over at least two of a plurality of non-overlapping sub-channels; and
- decoding the first and second communication signals.
10. The method of claim 9, further comprising the step of receiving the first and second communication signals over the same plurality of non-overlapping sub-channels.
11. The method of claim 9, further comprising the step of receiving a plurality of communication signals from a plurality of base stations over the plurality of non-overlapping sub-channels.
12. An ultra-wideband communication system, comprising:
- an ultra-wideband communication channel comprising a radio frequency band segmented into a plurality of non-overlapping sub-channels;
- a first communication cell including a first base station, the first base station configured to communicate with a first ultra-wideband communication device in the first communication cell over the ultra-wideband communication channel; and
- a second communication cell that is adjacent to the first communication cell and includes a second base station, the second base station configured to also communicate with the first ultra-wideband communication device over the ultra-wideband communication channel.
13. The system of claim 12, wherein the second base station is further configured to:
- communicate with a second ultra-wideband communication device in the second communication cell over the ultra-wideband communication channel;
- assign a group of the plurality of non-overlapping sub-channels to the second ultra-wideband communication device in the second communication cell;
- receive a channel interference indication from the second ultra-wideband communication device in the second communication cell;
- reduce the number of non-overlapping sub-channels assigned to the second ultra-wideband communication device in the second communication cell in response to the channel interference indication, thereby creating a group of available non-overlapping sub-channels; and
- assign the available non-overlapping sub-channels to the first ultra-wideband communication device in the first communication cell.
14. The system of claim 13, wherein the second base station is further configured to communicate with the first ultra-wideband communication device in the first communication cell over the assigned available non-overlapping sub-channels.
15. The system of claim 14, wherein the first base station also communicates with the first ultra-wideband communication device in the first communication cell over the assigned available non-overlapping sub-channels.
16. The system of claim 12, wherein the first and second base stations are configured to encode data so that the encoded data provides a spatial diversity and at least one of: a time diversity, a frequency diversity, and a polarization diversity.
17. The system of claim 13, wherein the channel interference indication comprises a signal-to-interference ratio.
18. The system of claim 12, wherein the first ultra-wideband communication device and the first and second base stations each transmit a plurality of discrete electromagnetic pulses over at least one of the non-overlapping sub-channels, with each pulse having a duration that can range between about 10 picoseconds to about 1 microsecond.
Type: Application
Filed: Oct 26, 2007
Publication Date: Mar 6, 2008
Inventor: Ismail Lakkis (San Diego, CA)
Application Number: 11/977,825
International Classification: H04B 1/69 (20060101);