DYNAMIC STAIN GLASS WINDOW
A dynamic stain glass window utilizing a plurality of moving traditional stain glass windows to create a changing lighted image to the viewer combined with a motorized drive system to provide the rotational movement of the windows.
1. Field of the Invention
The present invention generally relates to a dynamic stain glass window, i.e. a stain glass window that provides a moving and changing light pattern to the viewer. More particularly the present invention relates to a multi-pane stain glass window suitable to produce a moving and changing stain glass window design which may be lighted in the traditional manner of natural daylight and/or by the more modern method of artificial back lighting i.e., spotlights, strobes, and lasers.
2. Description of the Related Art
Stain glass windows have been produced using a traditional methodology for centuries. Such a stain glass window would typically be made by cutting pieces of colored glass and skillfully fitting them together according to a pattern by using lead came, i.e. and H-shaped metal channel. Each individual piece of glass is cut by hand and meticulously fit to the pattern. The lead came is then soldered together at the joints to form an integral stain glass window. Such an assembled stain glass window may then be glazed; that is, a glaze compound developed for the purpose would be applied to the assembled window and brushed into the crevices between the cut pieces of glass and the lead came. The excess glaze would then be removed from the window surface. When the glaze hardened, it would cause the stain glass window to be substantially air and watertight.
The modern methodology of producing a traditional stain glass window remains basically the same as it has for centuries. Such modern stain glass windows are generally made by drawing the design for the window on paper. A light table is used to trace this original design onto a second sheet of paper. Then using a pair of scissors having three blades where the second blade moves between the first and third blade thereby cutting a strip of paper that is just as wide as the middle part of the H shaped lead came which will fit between the glass pieces the second sheet is cut into individual pattern pieces. These individual pattern pieces are then put on the desired stain glass and using a glasscutter, each separate piece of stain glass for the design is cut to match the pattern piece. Once all of the pattern pieces are cut they are laid out on the original paper pattern to confirm they have been accurately cut to shape. To assemble the stain glass window the original paper design sheet is mounted on a wooden work board and horseshoe nails are driven into the wooden board along the outside border, such that when the lead came is pushed against the nails it will align with the outer edge of the original design. Glass is fitted into the lead came, then held in place with more horseshoe nails. More lead came is cut and formed along all sides of the glass pieces, then more stain glass is fitted into the window using the paper pattern as a guide. As the work progresses, the horseshoe nails are pulled out and moved to hold the edge of the growing window. This process continues until the window is fully assembled. Next all of the joints where the lead came meets are soldered. The horseshoe nails are removed and the window is put between two wood boards and flipped over so the second side can be soldered. Once the joints are soldered on both sides, the pieces of glass and lead came form a single window. This window is then glazed with a scrub brush, which pushes glazing compound between the stain glass and the lead came. Once the glazing compound is applied, a chemical powder is sprinkled over the window. Using a clean scrub brush, the window is vigorously buffed, which removes excess glazing compound and polishes the stain glass to a brilliant shine. The window is now finished and is basically air and watertight. If desired, steel reinforcement can be soldered to the backside of the window at a 90-degree angle to the window surface, along the lead came lines of the window to strengthen the window so it will not bow out over time from the weight of the lead cam and stain glass.
This type of traditional stain glass window is based on the effect of light passing through a colored glass thus creating a beautiful glowing image. The image is static, i.e. it never changes or moves and any change in the effect of the light passing through the glass is dependent on the movement of the light source, for example the course of the sun. For stain glass windows that are artificially lit, there usually is not even this light source movement to provide any visual change in the stain glass image.
More recently there have been stain glass windows that incorporate masks to provide less time consuming and expensive images. For example, U.S. Pat. No. 6,640,510 teaches a decorative stain glass window comprising stain glass and decorative metal within an insulated glass sandwich-like unit. This produces yet another form of static stain glass window.
U.S. Pat. No. 6,962,737 teaches a method of using electroluminescent materials in place of pieces of stain glass to create the effect of a backlit stain glass window panel. However, once again the window produced is a static stain glass effect design window.
However, there remains the static nature of traditional stain glass windows as well as modern simulations of stain glass. Furthermore, none of the simulations can provide the glowing beauty of real stain glass.
DISCLOSURE OF THE INVENTIONThe present invention provides advantages and alternatives over the prior art by providing a dynamic stain glass window assembly utilizing traditional stain glass pieces in a manner that provides for a moving light pattern, i.e., kaleidoscopic effect, to be displayed instead of a single image using natural daylight, artificial light, or both.
According to a further aspect of the present invention, there is provided a dynamic stain glass window assembly that may be mounted either vertically as is historically the manner static stain glass windows are mounted or horizontally for use as, for example, a sky light or tabletop surface.
According to yet another aspect of the present invention there is provided a dynamic stain glass window assembly having one fixed stain glass window and one moveably mounted stain glass window providing a moving light pattern to be displayed beyond the surface of the window in a predetermined pattern. The predetermined patterns can also be used as visual alert or alarm function similar to the audible signals on a traditional clock for example.
According to a yet further aspect of the present invention there is provided a dynamic stain glass window assembly having one fixed stain glass window and at least two moveably mounted stain glass windows providing a moving light pattern display.
According to still another aspect of the present invention there is provided a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a bogie wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said bogie wheel for driving said bogie wheel and rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
According to still yet another aspect of the present invention there is provided a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a bogie wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said bogie wheels for driving said drive wheel and rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.
As used herein the terms “stain glass” and “stain-glass” carries the usually understood meaning in the art, that is, hand poured glass that has a metallic oxide added to create a color change in the glass. However, it is to be understood that hand poured clear glass is also considered a “stain glass” or “stain-glass” even though no color is added. The distinction of being “stain glass” and “stain-glass” being hand pouring vs. glass created by machine. There are many different styles of clear stain glass including for example rippled, frosted, wavy, and beveled.
As used throughout the terms bogie wheel, drive wheel, and bogie/drive wheel are used interchangeably to identify the wheel that makes the stain glass windows rotate.
The present invention thus advantageously provides the beauty, artistry, and glowing image of a traditional stain glass window using real stain glass pieces with the ability to provide a changing and moving light pattern.
Reference will now be made to the drawings, wherein to the extent possible like reference numerals are utilized to designate like components throughout the various views. Referring to
Referring now to
As further shown in
As also shown in
Finally, also shown in cooperative combination are associated connecting wiring 5, motor 12 (
Turning to
Finally, turning to
In practice the mounting of the beveled drive gear 9 between the pair of parallel mounted beveled drive wheel gears 10 results in stain glass windows 22 and 23 rotating in opposite directions to one another. However, it is to be understood that the gears may be configured to make both stain glass windows 22 and 23 rotate in the same direction. The movement of the stain glass windows 22 and 23 and the preferred beveled stain glass composition of the first stain glass window 21 provided for a dynamic and changing light pattern, kaleidoscopic effect, to the viewer of the window.
The presently preferred stain glass windows are designed and constructed using common well known materials and techniques. The windows do require a support outer metal frame 24 and structural frame support members 25 mounted across the diameter of the windows to provide the necessary window stability such that the stain glass section and the lead came are not damaged or loosened. The presently preferred window outer frame 24 and structural frame support members 25 comprise steel flat bar stock.
It is to be appreciated that the present invention may be lighted from the back through the light transparent back 102 by natural sunlight it may also or alternatively be lighted by artificial light form any of many known artificial light sources. The transparent back 102 may be composed of any suitable and well known material such as, for example, glass, acrylic, and the like. The presently preferred material is clear acrylic sheet. It is also to be appreciated that the use of artificial light sources to light the window of the present invention is contemplated either in the alternative, or in addition to, natural light.
Suitable motors to drive the claimed invention are well known in the art as are the bogie wheels and idler pulleys, as well as beveled drive gears and beveled drive wheel gears. A presently preferred drive motor with an integral gear reduction unit is model GPP7458 supplied by Baldor Electric Company. Presently preferred bogie wheels are available as model 480-0019 and the presently preferred Idler Pulleys are available as model 416-0017 both being supplied by Capital Stamping Company. Presently preferred bevel gears are model L149Y-G for mounting on the bogie wheels and model L149Y-P for the bevel gear attached to the motor drive shaft both supplied by the Boston Gear Company. These devices are also well known in the art and suitable alternatives will be easily obtainable by those skilled in the art. It is to be understood that a similar AC motor would also be suitable, but a DC motor is preferred. The advantage of a DC motor is that coupled with a rheostat it allows for easy and efficient changing of the motor speed and therefore the speed of rotation of the stain glass windows. This in turn allows for the light patterns to change in effect from a gentle rhythmic low speed oscillation to a higher speed pulsating type oscillation of the light patterns. Another advantage of the DC motor is that the direction of rotation of the windows can be reversed by simply using a polarity switch in the electrical circuit as is illustrated in the preferred embodiment. The use of a polarity switch to change the direction of rotation and of a rheostat to change the speed of rotation provides for a plurality of lighting effects.
One particularly preferred embodiment of the present invention provides for a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a drive wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said drive wheel for driving said drive wheel and thereby rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
Another particularly preferred embodiment of the present invention provides for a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a drive wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said drive wheels for driving said drive wheel and thereby rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.
Although the preferred embodiments of the present invention has been disclosed, various changes and modifications may be made without departing from the scope of the invention as set forth in the appended claims.
Claims
1. A dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: thereby creating a dynamically changing stain glass window image.
- a) a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing;
- b) a first stain glass window fixedly attached in said front of said display unit;
- c) a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window;
- d) a plurality of idler pulleys for said moveably mounted second stain glass window;
- e) a bogie wheel for said moveably mounted second stain glass window; and
- f) a drive motor cooperatively connected to said bogie wheel for driving said bogie wheel and rotating said moveably mounted second stain glass window;
2. A dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: thereby creating a dynamically changing stain glass window image.
- a) a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing;
- b) a first stain glass window fixedly attached in said front of said display unit;
- c) a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window;
- d) a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows;
- e) a bogie wheel for each of said plurality of moveably mounted second stain glass windows; and
- f) a drive motor cooperatively connected to each of said bogie wheels for driving said drive wheel and rotating said plurality of moveably mounted second stain glass windows;
3. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of moveably mounted second stain glass windows comprise two stain glass windows.
4. The dynamic stain glass window assembly as claimed in claim 1 wherein, said first stain glass window comprises a clear beveled glass patterned window and said second stain glass window comprises a stain glass patterned window.
5. The dynamic stain glass window assembly as claimed in claim 2 wherein, said first stain glass window comprises a clear beveled glass patterned window, and said plurality of second stain glass windows comprise patterned stain glass windows.
6. The dynamic stain glass window assembly as claimed in claim 5 wherein, said plurality of second stain glass patterned windows all have the same pattern.
7. The dynamic stain glass window assembly as claimed in claim 5 wherein, said plurality of second stain glass patterned windows all have different patterns.
8. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows rotate in opposite directions to each other.
9. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows rotate in the same direction to each other.
10. The dynamic stain glass window assembly as claimed in claim 1 wherein, said second stain glass window has a variable speed of rotation.
11. The dynamic stain glass window assembly as claimed in claim 10 wherein, said variable speed of rotation is controlled by a rheostat.
12. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows has a variable speed of rotation.
13. The dynamic stain glass window assembly as claimed in claim 12 wherein, said variable speed of rotation is controlled by a rheostat.
Type: Application
Filed: Sep 7, 2006
Publication Date: Mar 13, 2008
Inventor: Donald M Ferris (Woodland, WA)
Application Number: 11/470,878
International Classification: E04D 13/18 (20060101);