Method And Apparatus For Converting And Optimizing Editing Files
A method and apparatus for generating a converted edit file based on an original editing file, by correlating the various entries of the original edit file and calculating new editing data to be used in the converted edit file. The method further optimizes the HDTV-TL by systematically merging adjacent film segments thus minimizing the cost/time to telecine those merged film segments.
This application claims priority as a continuation patent application to U.S. patent application Ser. No. 10/231,776 entitled Method And Apparatus For Converting And Optimizing Editing Files, which was filed on Aug. 28, 2002. That application is incorporated herein by reference.
II. FIELD OF THE INVENTIONThe present invention relates to data processing that appertains to the motion picture arts. In particular, the present invention relates to a method of processing data representing an edit decision list and a telecine log.
III. BACKGROUND OF THE INVENTIONIn an effort to open up overly congested airways and deliver high quality television images, several countries are currently exploring converting from an analog signal infrastructure to a digital signal infrastructure. Converting to digital signals frees up bandwidth so that all devices, such as cellular phones and police and air traffic control systems, can operate more safely and efficiently. In addition, converting to digital signals allows television broadcasters to deliver a signal that generates a picture quality that can be up to 94% of the resolution of 35 mm print film. The quality of this picture is so amazing that many video and film engineers cannot even distinguish it from a picture generated from an actual 35 mm print.
The United States is among the countries exploring digital signal infrastructure. In particular, the United States Congress has mandated that most television broadcasters convert from analog signals using the National Television Standards Committee (NTSC) standard to digital signals using the Advanced Television Systems Committee (ATSC) standard (conventionally known as the High Definition Television (HDTV) standard) by 2006. As part of that mandate, on Aug. 8, 2002 the United States Federal Communications Commission voted to require television manufacturers to add digital tuners to all television sets with screens of 36 inches and larger by July 2005, while the requirement for smaller sets would be phased in over the following two years. (MM Docket No. 00-39, Adopted Aug. 8, 2002).
Unfortunately, television broadcasters have been slow to fulfill the potential of this new digital format. Though some new television programs are being recorded in HDTV, there is not enough digital subject matter to meet viewer demand. To alleviate this problem, a number of broadcasters have attempted to convert older television shows to the HDTV standard and have found that the cost for post-production facilities to perform the conversions using standard editing methods is simply too high.
Most television shows are shot on 16 mm or 35 mm film. Prior to the late 1990s, depending on budgets at the time, studios edited shows for broadcast using one of two methods. Both methods create a high-end NTSC videocassette, an edited master, of the assembled show for NTSC broadcast. The first method, known as the negative cutting process, required that an editor identify the final negative segments, cut out final negative segments from the original negatives, and bind those cut negative segments into an assembly reel. This assembly would then be printed as one piece of film, a composite, in a film lab before being transferred to NTSC video, through the telecine process, for broadcast. This was one of the most commonly used high quality methods available in the early 1980s.
With the rise of video editing and the birth of digital video editing, a generally less expensive second method, known as on-line editing, became possible. This method required that all the original negative segments be transferred to NTSC video and assembled in an electronic editing bay for broadcast. To better understand the on-line editing,
The original film rolls 1-3 are fed into a NTSC telecine bay 4 that transfers the film images into NTSC source tapes 5-7. While
The NTSC telecine bay 4 keeps track of each of the telecine decisions 8 in the form of a NTSC telecine log (NTSC-TL) 10. This log 10 is often called a Flex File. Other common proprietary formats for the log 10 include Key Log, Evertz, Avid Log Exchange, Aaton, Key Scope and Log Producer. Notwithstanding the proprietary format, the log 10 usually has several entries, with each entry containing general information that may include the following:
-
- film roll number (i.e., 1, 2 or 3) describing the actual film roll from which the entry's segment was taken;
- source tape number (i.e., 5, 6, or 7) describing the NTSC source tape to which the entry's segment was transferred;
- scene number describing the scene number for the entry's segment;
- take number describing the scene take number for the entry's segment;
- flash timecode IN describing the timecode in HH:MM:SS:FF (Hours:Minutes:Seconds:Frames) format for the source tape start position for the entry's segment;
- flash timecode OUT describing the timecode in HH:MM:SS:FF format for the source tape end position for the entry's segment;
- flash keycode IN describing the unique keycode for the start film frame for the entry's segment;
- flash keycode OUT describing the unique keycode for the end film frame for the entry's segment;
- gauge of the film describing the size of the film; and
- other miscellaneous information such as sound timecodes, project title, production company, the name of the telecine operator, the machines used in telecine, date of the telecine transfer, and date when the segment was taken.
After the telecine operator transfers the original film rolls 1-3 to NTSC source tapes 5-7, those source tapes are fed into an off-line editing bay 9 where an editor makes edit decisions 11 regarding which segments should be included in the edited NTSC master 12. In addition to selecting the appropriate segments, the editor must order those segments. As with the telecine decisions 8, the director may play a significant role in selecting the final segments and their appropriate ordering. Others may also play a role in final segment selection including content providers, producers, editors and visual effects supervisors. All of the edit decisions 11 at the off-line editing bay 9 are recorded in an NTSC edit decision list (NTSC-EDL) 13. This list 13 usually has several entries, with each entry containing general information that may include the following:
-
- project title;
- assembly number describing the relative ordering of the entry's segment;
- source tape number describing the NTSC source tape (i.e., 5, 6, or 7) where the entry's segment is located;
- source timecode IN describing the timecode in HH:MM:SS:FF format for the start location on the source tape for the entry's segment;
- source timecode OUT describing the timecode in HH:MM:SS:FF format for the end location on the source tape for the entry's segment.
- destination timecode IN describing the timecode in HH:MM:SS:FF format for the start location on the destination tape for the entry's segment;
- destination timecode OUT describing the timecode in HH:MM:SS:FF format for the stop location on the destination tape for the entry's segment; and
- scene and clip name for the entry's segment.
The NTSC-EDL 13 is then fed into an on-line editing bay 14 that automatically assembles the edited NTSC master 12, by transferring the appropriate video footage described in the NTSC-EDL 13 from the NTSC source tapes (5, 6, or 7).
A director may prefer the alternative illustrated in
In order for these television shows now to be upgraded from NTSC video to higher picture quality of HDTV, it is necessary to use a source with image clarity, or resolution, that is the same as or higher than HDTV. Film negatives, composite prints, and their intermediaries have greater resolution than a HDTV video signal; therefore, for those shows that underwent the negative cutting process, one simply transfers the already assembled film to high definition in a HDTV telecine bay. The resulting cassettes are used for HDTV without noticeable quality loss.
For shows that underwent the on-line editing process described with reference to
Against the backdrop of these problems, only two options are available for converting the online edited NTSC program to HDTV, however both are risky, costly and time consuming. The first option is to undergo the negative cutting process described above. This requires the labor of a film conformist, a negative cutter, and other editorial aides and equipment to completely reassemble the show. After the negatives are assembled, the assembly is then telecined to HDTV. Unfortunately, every time film technicians handle a film negative, they risk damaging the negative with dirt, hair, scratches or worse. Further, negative cutting is a very precise and rather risky process that when not performed correctly can cause irreparable damage to the original film stock. Cutting negative also eliminates the ability to re-cut a show or use the film stock for future projects.
The second option is to telecine all the negatives to HDTV and then conform the show through HD on-line editing using high-end HDTV editing bays. Because negatives are not cut, this process avoids the risk of causing damage to the original film. However, because a professional editor must spend a significant amount of time sorting through the show's many segments to find each used segment of the show, this process is rather expensive and is still subject to human error. Also, telecining all the negatives to HDTV is very expensive, further driving up the costs.
Therefore, a need exists for a conversion method that increases the efficiency, speed and accuracy of the HD on-line editing process, reducing labor costs and freeing up valuable edit bay time.
IV. SUMMARY OF THE INVENTIONGenerally, the invention provides a method for generating a converted edit file based on an original editing file, by correlating the various entries of the original edit file and calculating new editing data to be used in the converted edit file. The newly converted edit file may then be used to re-create the program in a different format. For example, the original editing files may have been for an NTSC program assembly and the method may convert those files to be used in an HDTV program assembly.
In a first aspect of the invention, a flash-to-flash telecine log (FFTL) and a converted edit decision list (CEDL) are constructed from the original editing file, by calculating new source timecode data, new flash timecode data and new source tape numbers. The new source time code data may be calculated from the flash timecode data and source timecode data of the original editing file and at least three of the following lengths: the leader handle, the tailing handle and the segment duration. From the newly calculated data, the proper segments may be transferred from the original film rolls to assemble a new source tape and edited master. Alternatively, the newly calculated data may be used to print the proper negatives and construct a final motion picture.
In a second aspect of the invention, an optimized pull list (OPT-PL) and a optimized edit decision list (OPT-EDL) are constructed from an original editing files, by calculating exact keycode data, new flash timecode data and new source tape numbers. The exact keycodes time code data may be calculated from the flash keycode data and the source timecode data of the original editing file and at least three of the following lengths: the leader handle, the tailing handle and the segment duration. Once the exact keycodes are calculated, segments are merged in various combinations for transfer from the original film roll, and a cost for each combination is examined to achieve a lowest cost. Once the lowest cost is achieved, then a new flash timecode, a new source tape number and a new source timecode data can be calculated. From the newly calculated data, the proper segments may be transferred from the original film rolls to assemble a new source tape and edited master. Alternatively, the newly calculated data may be used to print the proper negatives and construct a final motion picture.
V. BRIEF DESCRIPTION OF THE DRAWINGS
The present invention solves the problems described above by providing a method and apparatus for converting NTSC editing files into HDTV editing files.
Specifically in the method 16, the NTSC-TL 10 and NTSC-EDL 13 are fed into an HDTV conversion module 19 constructed according to the present invention and described in greater detail with respect to
Once the source timecodes and destination timecodes have been converted, it is preferable to check if those timecodes synchronize with the each other. This is important because the destination timecodes are synchronized with the audio, thus any drift in synchronization between the source timecodes and the destination timecodes would cause the audio to fall out of synchronization with the images. For example, assume that a particular EDL entry has an unconverted 30FPS-based source timecode with an IN position that ends in frame 01 and an OUT position that ends in frame 07. The IN and OUT position for this entry's source timecode would be converted in 24 FPS to 01 and 06, respectively. Also assume that the entry has unconverted 30FPS-based destination timecode with an IN position that ends in frame 02 and an OUT position that ends in frame 08. The IN and OUT position for this entry's destination timecode would be converted in 24 FPS to 02 and 06, respectively. Thus, the 24 FPS conversion results in an extra frame for the source timecode, thus a frame must be subtracted from the source timecode to synchronize with the destination timecode. It is preferable to subtract the frame from the source timecode OUT because it allows the image to lead the audio for one frame, which is less detectable to a viewer than having the image follow the audio as in the case of subtracting the frame from the source timecode IN. It is also possible that the converted destination timecode could result in a longer segment than the converted source timecode, in which case a frame would be added to the source timecode OUT. The third possibility is that the converted source timecode and converted destination timecodes result in segments of the same size, in which case no adjustment is necessary. Continue this synchronization process until all the SSL entries have been processed.
At step 200, the NTSC-TL 10 is also copied to protect the original information, and the copy is simplified to form a simplified telecine log (STL) by parsing out only the relevant information needed for the conversion, namely the film roll number, the flash timecode IN, the flash timecode OUT, the source tape number, the flash keycode IN, the flash keycode OUT and the gauge of the film. The timecodes of the STL are also converted from 30 FPS to 24 FPS to as described with reference to step 100. It should be apparent to one skilled in the art that while the method is described with particular reference to a 30FPS to 24FPS conversion, the method is equally applicable to conversions among different frame rates (i.e., FPS).
At step 300, illustrated in
Once all the SSL entries are correlated to the appropriate STL entries to the form the MSL, the MSL is sorted by film roll number and then by flash keycode IN at step 400. This sorted MSL is used to create a transfer shot list (TSL) in step 500 that includes a new flash timecode IN/OUT, and new source tape number. With reference to
A FF-HDTV-TL 20 is created at step 600 by parsing out the relevant data from the TSL, including the film roll number, flash keycode IN/OUT, new source tape number and the new flash timecode IN/OUT, with duplicative entries discarded.
The TSL from step 500 is also used in step 700 to create a sorted assembly list (SAL) that includes new source timecode IN/OUT and, optionally, the exact keycode IN and exact keycode OUT (i.e., the labels imprinted, plus offsets, on the start frame and stop frame, respectively) for each film segment actually used in the NTSC edited master 12.
The exact keycode IN and exact keycode OUT may also be calculated at this point. While exact keycodes are not necessary for the FF-HDTV-TL 20 constructed in step 600, they are helpful in constructing the OPT-HDTV-TL 21 described below with reference to steps 900, 1000 and 1100 and
A HDTV-EDL 22 is created at step 800 by correlating the NTSC-EDL 13 entries with the SAL entries created in step 700 using the unique assembly number. For each correlated entry, replace the NTSC-EDL 13 source timecode IN/OUT with the SAL new source timecode IN/OUT, replace the NTSC-EDL 13 destination timecode IN/OUT with the SAL converted destination timecode IN/OUT, and replace the NTSC-EDL 13 source tape number with the new source tape number. Replacing this information in the existing NTSC-EDL 13, results in a new HDTV-EDL 22 that contains all the information needed to match to the FF-HDTV-TL 20 created in step 600.
The foregoing method described with respect to
From the exact start frame and stop frame of the final segments can be calculated as described above in steps 500 and 700, the optimized conversion method described below can now construct an optimized TL that strives to telecine only those segments that are actually used.
Because the telecine costs are driven primarily by the telecine operator's time, it is necessary to reduce telecine time to optimize costs. Telecine time is affected by several factors, including the most obvious contributor—the amount of footage to be telecined. Other factors also play a role, including the number times the telecine operator must start and stop the telecine bay and the relative position of the final segments. The former is important because each start and stop requires that the telecine operator re-cue the start position for the next segment, often taking several minutes. The latter factor becomes important when two segments are located on the same film roll, but at opposite ends of the film roll; this requires the telecine bay operator to transfer the first segment and then fast forward through the entire film roll to the second segment before transferring that segment. Given that starting/stopping and fast forwarding cost time, it may be more efficient to merge segments that are close to each other and telecine those segments as one segment—thus reducing telecine time and lowering costs.
A preferred embodiment creates an OPT-HDTV-TL 21 by checking various merging combinations and calculating costs for each of those combinations. Specifically, the preferred embodiment sorts the OTSL by film roll number and then by exact keycode IN. Now for each film roll, calculate the gap length between the segments needed for the HDTV edited master 28.
(4segments*10minutes/segment)+(00:38:45.00gaptime*0.25)+(00:05:15.00totalsegmenttime)+(40secondtotalhandletime) (1)
Where the first term accounts for the telecine start/stop delays, the second term accounts for the time needed to fast forward to relevant segments, the third term accounts for the time needed to perform real-time telecine and the fourth term accounts for the handles that are also telecined.
Equation (1) results in a telecine time of 00:55:36:00. Now merge the closest two segments (i.e., 904 and 906) to form a new segment 916 that envelopes gap length 912, resulting in a new segment length of length 00:04:30:00. Recalculate the time for telecining this film roll 1 as three separate segments using equation (1), with modified input variables:
(3segments*10minutes/segment)+(00:38:00.00gaptime*0.25)+(00:06:00.00totalsegmenttime)+(30secondtotalhandletime) (2)
yielding a telecine time of 00:46:00:00. Now merge the next two closest segments 916 and 902 to form segment 918, yielding a telecine time of 00:38:05:00. Finally, merge the last two remaining segments 918 and 908 to form segment 920, yielding a telecine time of 00:54:10:00. While the cost equations (1) and (2) have four components, these equations may be simplified to account for one a few terms, or may be expanded to account for other factors that may include the cost associated with the potential damaging of the negatives and the efficiency (or inefficiency) of the telecine operator.
From this iterative process it is clear that treating the four original segments (902, 904, 906 and 908) as two segments (918 and 908) results in the shortest telecine time of 00:38:05:00. This method should be repeated for each film roll. While it is preferable to continue the merging segments until only one segment remains (i.e., the forth pass in
While it is preferable to check the various combinations to reduce time and costs, this optimization is not necessary. It is possible to assign any arbitrary leader handle or tailing handle, or no handles at all to the exact keycodes as calculated for the various segments as shown above.
In either the optimization method or the arbitrary handle method, you must construct a TL that corresponds to the segments, whether merged or not. For each segment, merged or not, calculate the new flash keycode IN by subtracting the leading handle length (converted to frames) from the lowest exact keycode IN associated with the segment, and calculate the flash keycode out by adding the tailing handle (converted to frames) to the largest keycode OUT associated with the segment. Continue this process for each segment in each film roll. Then calculate the new source tape numbers and new flash timecode IN/OUT as described with reference to step 500 above. For each entry in the OTSL (i.e., entries that represent segments actually used the edited master), correlate the exact keycode IN/OUT to the new flash keycode IN/OUT, and append the corresponding new flash keycode IN/OUT, new flash timecode IN/OUT and new source tape number to the OTSL.
In step 1000, the relevant information, such as the film roll number, the new flash timecode IN/OUT, the new source tape number, and the new flash keycode IN/OUT, are parsed out from the OTSL from step 900, with duplicative entries discarded, to form the converted OPT-HDTV-TL 21.
Finally, in step 1100 the OTSL from step 900 is used to form a SAL that contains the new source timecode IN/OUT.
The SAL resulting from step 1100 is passed to step 800, already discussed, to create the converted HDTV-EDL 22.
The optimized HDTV-TL method described with reference to step 900 and
Instead of using the exact frames to optimize telecine time/cost, they can be used to optimize film print time/costs. In film post-production, the original negative must be converted to a positive film image and then assembled into a final motion picture. This process is known as printing the negative. Printing, however, is very expensive which is why directors often use telecine as an intermediate method to narrow down the negative segments that truly need to be printed. Much of the expense in negative printing, as in telecine, stems from the time the operator must spend cueing the proper film segments and monitoring the printing process. Not only do cueing and other movement of the film cause time and expense, it places the film in peril of scratching or other destruction. Thus, just as in telecine, it is often advantageous to merge film segments together to minimize printing time, and consequently minimizing printing costs. By checking various merging combinations and calculating costs for those combinations, as described above with respect to telecine, the method finds the lowest cost and creates an optimized print pull list (OPT-PPL), which is another variant of the OPT-PL. The OPT-PPL can then be given to a print operator that will print the precise film segments, from the appropriate film rolls. Those prints, along with the exact frame segments and assembly numbers generated by the method, are then given to a conformist that assembles the final motion picture accordingly.
The methods described above could be implemented using a computer or other computing device. In this case, the NTSC-EDL 13 and the NTSC-TL 10 could be inputted into the computer programmed according to the method, and the computer would generate the converted HDTV-EDL 22 and the FF-HDTV-TL 20 or the OPT-HDTV-TL 21. Similarly, the properly programmed computer could also generate the OPT-PPL.
The embodiments described above have been directed at conversion from NTSC to HDTV from 35 mm film. The method, however, is not limited to these formats. Rather the method can be used to convert any motion picture format, including but not limited to 70 mm, 65 mm, 35 mm, 16 mm and 8 mm of any perforation span. With the new gauge, along with the perforations per frame, or alternatively the frames per keyfoot, and the frame rate (i.e., FPS), the method above may be adjusted to convert the editing files associated with the new film gauge.
While the description above refers to particular embodiments of the present invention, it should be readily apparent to people of ordinary skill in the art that a number of modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true spirit and scope of the invention. The presently disclosed embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description. All changes that come within the meaning of and range of equivalency of the claims are intended to be embraced therein. Moreover, the applicants expressly do not intend that the following claims “and the embodiments in the specification to be strictly coextensive.” Phillips v. AHW Corp., 415 F.3d 1303, 1323 (Fed. Cir. 2005) (en banc).
Claims
1. A recording, comprising a plurality of motion picture segments, wherein the plurality of motion picture segments is selected based on a converted telecine log (CTL), wherein the CTL is constructed from an editing file that contains an edit decision list (EDL) and a telecine log (TL), wherein the EDL contains a plurality of EDL entries and the TL contains a plurality of TL entries, wherein CTL is constructed by:
- (a) correlating the EDL to the TL based on the plurality of EDL entries and the plurality of TL entries;
- (b) determining the location of a desired motion picture segment based on the correlation between the EDL and TL; and
- (c) constructing the CTL that contains a new flash data that points to the location of a desired motion picture segment.
2. The recording of claim 1, wherein the selection of the plurality of motion picture segments is also based on a converted edit decision list (CEDL), wherein the CEDL is based on: (1) a new source data, wherein the new source data points to the location of a copy of the desired motion picture segment; and (2) the EDL.
3. A recording, comprising a plurality of motion picture segments, wherein the plurality of motion picture segments is selected based on an optimized pull list (OPT-PL), wherein the OPT-PL is constructed by:
- (a) identifying the location for each of a plurality of film segments;
- (b) merging two of the plurality of film segments, resulting in a merged film segment and a remaining plurality of non-merged film segments;
- (c) calculating a cost to transfer the merged film segment and the remaining plurality of non-merged film segments, recording the cost in a plurality of recorded costs;
- (d) repeating steps (b) and (c) until a portion of the plurality of film segments has been merged into the merged film segment; and
- (e) constructing the OPT-PL based on the plurality of recorded costs.
4. The recording of claim 4, wherein the recording is selected from a group consisting of:
- a printed negative, an edited master, and a video tape.
Type: Application
Filed: Nov 12, 2007
Publication Date: Mar 13, 2008
Inventors: Damon Fecht (Tarzana, CA), Ryan Bates (Los Angeles, CA), Christopher Duxler (Rancho Cordova, CA), Manuel de la Cerra (Carlsbad, CA)
Application Number: 11/938,350
International Classification: H04N 5/93 (20060101);