FUNCTIONAL ELEMENT FOR THE ATTACHMENT TO A SHEET METAL PART, COMPONENT ASSEMBLY MANUFACTURED FROM THESE AND ALSO A METHOD FOR THE ATTACHMENT OF THE FUNCTIONAL ELEMENT TO A SHEET METAL PART
A functional element (10), for fixing to a piece of sheet metal (40), such as for example, a nut element or a bolt element with a body section or head section, comprising an annular flange (14) which transforms into a cylindrical rivet section, is characterized in that the transformation from annular flange into the rivet section is formed by an at least essentially conical surface, forming a contact surface for a corresponding conical region of a piece of sheet metal, which, on fixing the functional element to a piece of sheet metal, is clamped between the side of the annular flange facing the rivet section and an annular bead (50) formed from the rivet section. An assembled component and a method for the fixing of a functional element are also disclosed.
Latest Profil Verbindungstechnik GMBH & Co. KG Patents:
- Setting device
- Apparatus for fastening a functional element to a section of a workpiece
- Self-punching functional element, component assembly and method of manufacturing a component assembly
- Self-punching functional element, component assembly, and method of manufacturing a component assembly
- Functional unit with fastening element and fixing element
This application is a divisional application of U.S. patent application Ser. No. 10/475,444 filed on Mar. 23, 2004 which claims priority to PCT/EP02/04365 filed on Apr. 19, 2002 and to German Patent Application No. 101 19 505.2 filed Apr. 20, 2001.
FIELD OF THE INVENTIONThe present invention relates to a functional element for the attachment to a sheet metal part, such as for example a nut element or bolt element with a body portion or head portion which has a ring flange and also a component assembly manufactured from the functional element and a sheet metal part and a method of attachment of the functional element to a sheet metal part.
A functional element of the initially named kind is offered by Profil Verbindungstechnik GmbH & Co. KG, Friedrichsdorf, Germany under the designation EMF in the form of a nut element. This element permits a component to be attached to the side of the sheet metal part remote from the ring flange and indeed by means of a threaded bolt which engages into the thread of the nut element and clamps the component and the sheet metal part against one another. The element is attached to a sheet metal part by means of the method which is described in EP-A-O 713 982 in conjunction with its
In contrast, with the SBF bolt, a rounded recess is produced in the sheet metal part and this leads to a relatively stiff connection of the bolt element to the sheet metal part.
The object of the present invention is to provide a functional element which ensures a particularly stiff attachment of the sheet metal part, so that not only tension and compression forces can be transmitted via the element of the sheet metal part but rather also transverse and shear forces, with the attachment also being intended to have a long working life even with alternating loading and not to have a tendency to the formation of the fatigue cracks. Furthermore, the invention intends to provide a component assembly comprising the functional element and the sheet metal part which has corresponding characteristics and to make available a method for the attachment of the functional element which ensures a high quality attachment of the functional element to the sheet metal part, without being particularly complicated in its realization.
In this application the designation “functional element” has its normal meaning, the examples for such functional elements are fastener elements such as nut elements or bolt elements which enable the attachment of a further component to a sheet metal part. The designation however also includes all types of hollow elements which serve for example for the reception of inserted parts or as a rotatable mounting for a shaft, as well as all elements which are provided with a shaft part, for example for reception of a clip or for the rotatable mounting of a hollow part.
In order to satisfy the object a functional element of the initially named kind is provided in accordance with the invention which is characterized in that the transition from the ring flange into the rivet section is formed by an at least substantially conical surface, which forms a contact surface for a corresponding conical region of a sheet metal part, which on attachment of the functional element to a sheet metal part is trapped between the side of the ring flange adjacent the rivet section and a ring bead formed from the rivet section.
A corresponding component assembly is characterized in that the transition from the ring flange into the rivet section is formed by an at least substantially conical surface which forms a contact surface for the sheet metal part, in that the sheet metal part has a conical region which contacts the conical contact surface of the functional element, with the conical region of the sheet metal part being clamped between the side of the ring flange adjacent the rivet section and a ring bead formed from the rivet section.
This embodiment of the functional element or of the component assembly formed with the functional element thus leads to a construction in which the conical region of the sheet metal part is clamped between the side of the ring flange adjacent the rivet section and a ring bead formed out of the rivet section. This construction provides a particularly stiff and firm attachment of the functional element to the sheet metal part and thus satisfies the above recited statement of the underlying object.
It is particularly favourable when the conical region of the sheet metal part moreover contacts the conical contact surface of the functional element since this contact and the clamped reception of the conical region of the sheet metal part between the ring flange and the ring bead leads to the element so to say supporting the sheet metal part over its full area, so that relative movements between the sheet metal part and the element are extensively precluded. This also increases the stiffness of the connection and helps to avoid the formation of fatigue cracks.
It is particularly favourable when features providing security against rotation are provided in the region of the conical surface, since the sheet metal material can be brought into engagement with these features providing security against rotation, whereby the security against rotation is achieved without reducing the stiffness of the connection. Moreover, in the region of the features providing security against rotation no fatigue cracks of the sheet metal part need be feared because the sheet metal material which is clampingly received by the contact surface of the functional element and the ring bead stands under a compressive pressure and is thus particularly protected against fatigue cracks. Even with alternating loadings the compressive stress in the sheet metal part is sufficient to suppress the formation of fatigue cracks. The features providing security against rotation can, for example, advantageously have the form of noses and/or recesses.
The axial length of the conical surface should preferably correspond at least approximately to the sheet metal thickness. A dimension of this kind ensures that the conical region is sufficiently long to achieve the desired stiffness.
The enclosed cone angle of the conical surface preferably lies in the range between 80° and 120° and amounts in particular to 90°.
It is particularly favourable when the conical surface merges via a cylindrical throat part into the rivet section. This throat part is essentially not deformed during the reforming of the material of the functional element in the region of the rivet section and forms a part of the clamping recess for the sheet material in the region of the rim of the hole provided in it. The throat part can with advantage have an axial length which corresponds approximately to the sheet metal thickness and is preferably somewhat larger than this.
The axial thickness of the ring flange can be made smaller than the thickness of the sheet metal part to which the element is to be secured. This is for example favourable with relatively thick sheet metal parts because the ring flange can be so pressed into the sheet metal material during the attachment to the sheet metal part that the side of the ring flange remote from the sheet metal part is flush with the plane of the sheet metal part or slightly recessed relatively to the latter.
The possibility however also exists of making the axial thickness of the ring flange substantially larger than the thickness of the sheet metal part to which the element is to be secured. In this case the side of the ring flange remote from the sheet metal part stands considerably in front of the corresponding side of the sheet metal part and can for example be exploited to realize a spacer function. In both cases the ring flange can be made with a relatively large diameter so that in total a large support surface is present between the functional element and the sheet metal part, whereby a favourable surface pressure is achieved and the transmission of forces into the sheet metal part via the functional element can be favoured. Particularly preferred embodiments of the functional elements and also of the component assembly can be found in the subordinate claims.
A particularly preferred embodiment of the method for the attachment of the functional element to a component assembly can be found in claim 38 and further variants of the method can be found in the further claims 39 to 40. As an alternative, the attachment can take place with a method which is essentially known per se from the German patent 34 47 006, with the shape of the die being adapted to the special shape of the sheet metal part and of the functional element respectively.
The invention will now be explained in more detail in the following with reference to the embodiments and to the drawings which show:
The conical surface 16 extends specifically between a ring-like underside 34 of the ring flange 14 which belongs to the support surface of the functional element up to the boundary 36 to the throat part 18 and has a cone angle α in this example of 90°. Features providing security against rotation, which here have the shape of noses, are uniformly distributed around the conical surface and extend respectively in axial planes of the element. Here eight such noses 38 providing security against rotation are provided, there could however be more or fewer of them. The noses providing security against rotation could also have the form of recesses.
The sheet metal preparation normally takes place in a press or in a station of progressive tooling. In a further press, or in the same press, or in a further station of progressive tooling the functional element 10 is then introduced into the sheet metal part 40 using a setting head and attached to the sheet metal part, with the resulting component assembly being shown in
The component assembly situation in accordance with
During the displacement of the material out of the region of the rivet section towards the ring flange a pressure is exerted from above in the arrow direction 47 onto the end face 39 of the functional element 10. As relatively much material is present in the body portion 12 of the functional element between the end face 39 and the rivet section, this region of the functional element is not deformed, so that a deformation of the thread cylinder 28 is not to be feared. The cylindrical extension 30 of the rivet section is also not deformed during the attachment of the functional element but rather is simply guided in a bore of the (not shown) die.
The component assembly in accordance with
The possibility however also exists of attaching a component to the lower side of the sheet metal part 40 in
The FIGS. 4 to 7 show a further example of a functional element in accordance with the invention, here in the form of a bolt element.
For the following description the same reference numerals will be used for parts which have the same form or function as in the nut element of FIGS. 1 to 3, but are increased by the basic number 100. It can be assumed that the previous description also applies for the correspondingly characterized parts of the embodiment of FIGS. 4 to 7, unless something is stated to the contrary.
The bolt element 110 has a head part 112 which corresponds at least substantially to the body portion 12 of the nut element of
In this example the ring Range 114 merges via a ring-like support surface 134 into a conical contact surface 116 which merges directly into a rivet section 120, which is here equipped with piercing and riveting features at its lower end 121, which are in principle identical to the piercing and riveting features in a customary SBF bolt. I.e. one can image the bolt element of FIGS. 4 to 7 in such a way that now no throat part is provided, which is basically also possible in the design of the functional element in accordance with FIGS. 1 to 3. On the other hand, the upper region 118 of the piercing and riveting section 120 is here at least substantially not deformed, as can be seen from
In similar manner to the embodiment of FIGS. 1 to 3 features 138 providing security against rotation are provided here which here have the shape of noses. In distinction to the design of the nut element of FIGS. 1 to 3 the noses 138 extend over the entire axial length of the conical surface 116 and run out into the lower side 134 of the ring flange 114 and also into the throat region 118. A corresponding design of the noses 38 providing security against rotation in the embodiment of FIGS. 1 to 3 would also be possible. It would also be possible to replace the noses 138 providing security against rotation in accordance with FIGS. 4 to 7 with recesses providing security against rotation which should then be correspondingly designed, as in the embodiment of FIGS. 1 to 3. One notes in this example that the axial thickness of the ring flange 114 is here made substantially smaller than in the embodiment of FIGS. 1 to 3 and that, after the attachment of the bolt element to the sheet metal part 140 in accordance with
The ring bead 150 of
Although the design of the rivet section 120 of the bolt element of the FIGS. 1 to 7 was designed in accordance with the rivet section of the customary SBF bolt this is not essential. One could for example make the design of this region in accordance with the design of the rivet section 20 of the functional element of FIGS. 1 to 3 and attach the bolt element of FIGS. 1 to 4 to the sheet metal part 40 with the same method which was described in connection with FIGS. 1 to 3. The possibility likewise exists of providing the functional element of FIGS. 1 to 3 with a cylindrical rivet section corresponding to the rivet section 120 of the bolt element of FIGS. 1 to 4 and of attaching the nut element into the sheet metal part either in a self-piercing manner or using a leading hole punch in manner known per se.
In the embodiment of FIGS. 1 to 7 a situation is also achieved here in which the sheet material is set under compressive stress in the conical region 142 so that, on the one hand, a formation of fatigue cracks may not be feared and, on the other hand, a very stiff high quality attachment of the functional element to the sheet metal part is ensured.
The FIGS. 8 to 11 show a further embodiment of a functional element in accordance with the invention and also the assembly situation with the sheet metal part and have a strong similarity to the embodiment of FIGS. 1 to 3. For this reason the same reference numerals are used in the FIGS. 8 to 11 as in the embodiment of FIGS. 1 to 3 and the description of the embodiment of FIGS. 1 to 3 applies equally for the embodiment of FIGS. 8 to 11 unless something is stated in the contrary. In other words the description of the FIGS. 1 to 3 in connection with the reference numerals used there applies in precisely the same way for the embodiment of FIGS. 8 to 11.
As a first difference it is evident that the functional element 10 of FIGS. 8 to 11 has no ring flange but rather the conical surface 16 merges directly into the head part of the element.
Furthermore it is evident from the Figures that the noses 38 providing security against rotation do not extend over the full length of the conical surface 16 in axial planes but rather extend further over the upper half (in
In this embodiment the cylindrical section 20 is not provided with a throat part 18, although this would be possible if the functional element were not made self-piercing as is the case here.
In the embodiment of FIGS. 8 to 11 the free end face 41 is formed as a piercing section and enables the sheet metal part 40 to be pierced with the element itself. For this purpose the sheet metal part is supported above a die with a central bore which slidingly receives the cylindrical section 20 of the functional element 10, with this central passage merging via a ring shoulder extending perpendicular to the longitudinal axis 24 into a conical recess which corresponds to the shape of the outer surface of the conical formation of the conical collar of the sheet metal part. This conical recess of the die then merges into an end face of the die which in turn stands perpendicular to the longitudinal axis 24 of the die.
On piercing of the sheet metal part the sheet metal part is first conically dented by the end face 41 of the functional element and then a piercing slug is cut out of the base region of the conical dent and pressed by the free end face 41 of the cylindrical section 20 of the functional element 10 through the central passage of the die up to and into a free space from which the piercing slug can be removed.
During this further movement of the functional element into the die the ring shoulder which extends perpendicular to the longitudinal axis of the die serves to so deform the material of the noses 38 providing security against rotation in the region of the cylinder section 20 that this material is reformed into radial projections at the positions of the previous noses providing security against rotation, with these material projections coming to lie over the rim region of the opening of the conical formation of the sheet metal part as indicated at 50′ in
One notes that the connection between the sheet metal part and the functional element is essentially present, as in the further embodiments, only in the region of the conical surface of the functional element.
Through the radial projections 50′ one succeeds in achieving a very high pull-out or press-out resistance, i.e. against forces which act in the direction F of
The cylinder section 20 could also serve as a bearing spigot for a component which is to be rotatably secured to the element 10, wherein a component of this kind which is rotatably mounted is secured in the axial direction by the screw which is screwed axially into the thread 28.
The rounded ends 38′ of the noses 38 providing security against rotation ensure that the sheet metal part is not impermissibly torn during the piercing process so that fatigue cracks are not to be feared in the sheet metal part of the positions of the noses providing security against rotation, i.e. at the positions of the radial projections 50′.
Although the functional element 10 of the FIGS. 8 to 11 is introduced into a self-piercing manner, the element can equally be inserted into a pre-holed component if this is desired.
An advantage of the functional element of the invention lies in the fact that with one element a wide range of sheet metal part thicknesses can be covered so that, for example, the functional element of FIGS. 8 to 11 can be used with sheet metal parts with thicknesses in the range 0.6 mm to 4 mm. These thickness particulars are not to be understood restrictively and are also not restricted to the embodiment of FIGS. 8 to 11.
The functional elements described here can for example be manufactured of all materials which reach the strength class 5.6 or higher. Such metal materials are normally carbon steels with 0.15 to 0.55% carbon content.
In all embodiments all materials can be named as an example for the material of functional elements which reach the strength values of class 8 in accordance with the Iso standard in the context of cold deformation, for example a 35B2 alloy in accordance with DIN 1654. The so-formed fastener elements are suitable, amongst other things, for all commercial steel materials for drawing quality sheet metal parts and also for aluminium or its alloys. Also aluminium alloys, in particularly those with higher strength can be used for the functional elements, for example AlMg5. Functional elements of higher strength magnesium alloys such, for example, AM50 can also be considered.
Claims
1. Method for the attachment of a functional element in accordance with claim 1 to a sheet metal part for the manufacture of a component assembly, characterized in that a conical recess (42) is manufactured in a sheet metal part (40), with the cone angle (a) of the conical recess corresponding at least substantially to the cone angle (a) of the conical surface (16) of the functional element (10), with a hole (44) being provided in and concentric to the conical recess (42), with the diameter of the hole corresponding at least substantially to the diameter of the rivet section (20) of the functional element or being somewhat larger than this; in that the rivet section (20) of the functional element (10) is passed through the hole (44) of the conical recess (42) of the sheet metal part so that the conical region of the conical recess (42) enters approximately into contact with the conical surface (16) of the functional element the ring flange (14) enters into engagement with the sheet metal part (40) and in that a ring bead (50) is formed from material of section (20) which clampingly receives the conical region of metal part between itself and the ring flange (14).
2. Method in accordance with claim 1, characterized in that the formation of the ring bead (50) takes place by displacement of a region of the rivet section (20) of a functional element (10) and in that the sheet material of the sheet metal part (40) is supported during this displacement in a die which brings the sheet metal material in the conical region into engagement with features of the functional element providing security against rotation.
3. Method in accordance with claim 1, characterized in that the ring bead (150) is formed by turning over the rivet section (120) and in that during or after the turning over the sheet metal is supported in a die which brings the sheet material and the conical region (140) into engagement with features of the functional element providing security against rotation.
4. Method in accordance with claim 1, characterized in that for the formation of the conical recess in the sheet metal part the sheet metal part which is supported on a die is pierced by the free end of the cylindrical section (20) of the element and formed into the conical recess in a correspondingly shaped recess of the die.
5. Method in accordance with claim 4, characterized in that the piercing slug which arises during piercing of the sheet metal part is pressed by the cylinder section of the functional element into a passage of the die and is disposed off via this passage, i.e. in that the functional element itself forms a hole punch.
6. Method in accordance with claim 4, characterized in that instead of forming a ring bead from the material of the rivet section the material from raised noses providing security against rotation and provided in raised form on the cylinder section of the functional element leads, by displacement of the material in the axial direction of the cylinder section towards the body portion of the functional element, which is brought about by the die that is used, to radial projections which are present at the positions of the noses providing security against rotation, which contact the rim zone of the opening of the conical formation of the sheet metal part and which preferably engage in form-locked manner into this conical formation.
Type: Application
Filed: Nov 21, 2007
Publication Date: Mar 20, 2008
Applicant: Profil Verbindungstechnik GMBH & Co. KG (Friedrichsdorf)
Inventors: Jiri Babej (Lich), Wolfgang Hoessrich (Kronberg)
Application Number: 11/943,769
International Classification: B23P 11/00 (20060101); F16B 37/04 (20060101);