Injection molded thermoplastic insert
A plastic insert for concrete structures includes a barrel for receiving a threaded fastener. According to one embodiment, the insert includes a housing at a distal end receiving an internally threaded member for engaging the threaded fastener. The insert includes bar-engaging members at the distal end for contacting concrete-reinforcing bars of the concrete structure. The insert also includes a bar-engaging member at the proximal end including a retainer defining a substantially semi-circular channel for receipt of a U-shaped portion of a bar. According to another embodiment, the insert includes a base at the distal end extending outwardly from the barrel to define an anchoring surface oriented perpendicular to the barrel axis. Longitudinal ribs on the barrel include segments arranged in series. Each segment of the rib extends radially to a distance that decreases with each succeeding segment such that each segment defines a bearing surface.
This application claims priority from U.S. patent Ser. No. 10/753,630, filed Jan. 8, 2004, which claimed priority from U.S. Provisional Patent Application No. 60/439,013, filed Jan. 9, 2003. The entire disclosures of both applications are hereby incorporated by reference.
FIELD OF THE INVENTION Field of the InventionThe present invention relates to pre-formed inserts, and the like, used with concrete structures.
BACKGROUNDPre-formed inserts for use with concrete structures are known. The inserts are typically incorporated into the structure during concrete pouring to facilitate attachment of threaded fasteners, such as bolts and the like.
Prior art inserts include internally threaded barrels which are tensioned axially by an attached bolt. The prior art insert also include a base at a distal end of the barrel. The base extends outwardly from the barrel to embed the insert within a concrete structure and increase the force necessary to pull the insert out of the concrete structure. The prior art insert further includes tapering ribs connected to the base and to an outer surface of the barrel to strengthen the base.
Prior art inserts, initially made of metal, have also been made from injection molded thermoplastic (acetal) materials. The inserts are made in a variety of sizes for receiving bolts of various diameters, such as ¼″, ⅜″, ½″, ⅝″, ¾″, 1″, 1½″, for example. The metal and plastic inserts of the prior art are similar in construction. The plastic prior art inserts, however, stretch to a greater extent than the corresponding metal inserts because of increased elongation properties of plastic compared to steel. As the barrel of the plastic insert stretches, the reinforcing ribs become wedged against the concrete. Resulting failure of the plastic inserts short of the base creates a smaller shear cone compared to that created by a comparably sized metal insert, which undesirably equates to a lower pull out force for the prior art plastic insert.
SUMMARY OF THE INVENTIONAccording to the present invention there is provided an insert adapted for receiving a threaded fastener for attachment of the fastener to a concrete structure. Preferably, the insert is made from a plastic material. The insert includes an elongated barrel having opposite proximal and distal ends and defining an interior for receiving a shaft of the threaded fastener.
According to one embodiment of the invention, the insert includes a housing connected to the barrel adjacent the distal end of the barrel. The housing defines an interior adapted to receive an internally threaded member for engagement with a threaded portion of the fastener shaft. The insert further includes at least one bar-engaging member connected to the housing adjacent an outer peripheral edge of the housing and extending outwardly therefrom for contact with a concrete-reinforcing bar of the concrete structure to anchor the insert within the concrete structure.
The insert may also include a bar-engaging member located adjacent the proximal end of the barrel adapted for contact with a concrete-reinforcing bar of the concrete structure. Preferably, the proximal bar-engaging member includes a retainer defining a substantially semi-circular channel adapted for receipt of a U-shaped portion of the concrete-reinforcing bar. Preferably, the retainer is connected to a base defining a substantially cylindrical interior removably receiving the barrel to facilitate receipt of the U-shaped portion of the concrete-reinforcing bar in the channel defined by the retainer.
The insert may also include a cover adapted for removable attachment to the housing such that the interior defined by the housing is enclosed. Preferably the cover includes at least one ring adapted to engage a post connected to the housing. Preferably, the cover is connected to the housing by an elongated flexible connector.
According to another embodiment of the invention, the insert includes a base connected to the barrel adjacent the distal end of the barrel. The base extends outwardly beyond an outer surface of the barrel to define a surface that is oriented substantially perpendicular to a central axis of the barrel for anchoring the insert within the concrete structure.
The insert also includes a plurality of elongated ribs each connected to the base and to the barrel. Each of the ribs includes a plurality of segments arranged in series along the length of the rib and including a first segment located adjacent the base. Each segment of the rib extends radially from an outer surface of the barrel to a distance that decreases with each succeeding segment from the first segment such that each segment defines a surface that is oriented substantially perpendicular to the central axis of the barrel. Preferably, the ribs are spaced substantially equally about a circumference of the barrel. The barrel of the insert preferably includes threads formed on an inner surface of the barrel for threadedly engaging a threaded portion of the fastener shaft.
Preferably, the elongated ribs include ribs of varying lengths and are arranged such that a last segment of each rib remote from the base is offset axially with respect to the barrel from the last segment of adjacent ribs.
BRIEF DESCRIPTION OF THE DRAWINGSFor the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Referring to the drawings, where like numerals identify like elements, there are illustrated inserts according to the present invention adapted for receiving a threaded fastener, such as a bolt for example. As described in more detail below, the inserts are intended for use in concrete construction to facilitate attachment of a bolt to a poured concrete structure.
Referring to
The insert 10 includes an elongated, substantially cylindrical, barrel 16 defining a hollow interior 18 for receiving the shaft of a bolt. The insert 10 also includes a housing 20 located at a distal end of the insert 10 with respect to a threaded bolt that is received by the insert 10 through an opposite proximal end. The barrel 16 and the housing 20 are preferably integrally formed from an injection molded thermoplastic material. As shown in
The nut member 22 is preferably made from a metal suitable for forming internal threads that are capable of withstanding loads applied by a metal bolt to be inserted into the insert 10 and tensioned axially. Because the nut member 22 provides for threaded engagement with an inserted bolt, the insert 10 does not need to include threads formed in the barrel 16. This contrasts with prior art plastic inserts that include internal threads formed along the inner surface of the barrel. Also, the location of the metal nut member 22 at the distal end portion of the insert 10 allows for attachment of a bolt having threads formed only at a terminal end portion of the shaft.
The insert 10 also includes a cover 24 including a substantially hexagonally shaped base portion 26 for enclosing the nut member 22 within the interior defined by the housing 20. As shown in
The enclosed location of the nut member 22 within the housing 20 ensures that the nut member will remain properly positioned with respect to the insert 10 for threaded engagement with a bolt received by the insert. The enclosure provided by the cover 24 also serves to protect the nut member 22 from contamination when concrete is placed around the insert thereby ensuring that the threads of the nut member 22 will threadedly engage a subsequently attached bolt.
The cover 24 includes substantially ring shaped snap-attachment members 30 located at opposite sides of the base portion 26. The insert 10 also includes posts 32 projecting from the housing 20 at opposite sides thereof, as shown in
Referring to
The insert 10 also includes angles 38 connected to the housing 20 at opposite sides thereof. Each of the angles 38 is adapted for receiving one of the rebars 12 such that the rebar is located between the angle 38 and barrel 16 as shown in
The insert 10 also includes a gusset 40 connected to each angle 38. The gusset 40 reinforces the associated angle 38 to strengthen the angle 38 against loads transferred from contact with one of the rebars 12. For ease of illustration, the rebars 12, 14 have been illustrated in
Referring again to
The rebar receiver 42 also includes a retainer 48 connected to the body portion 44 adjacent one end of the body portion, as shown in
Referring to
Referring to
The insert 54 also includes a base 62 connected to the barrel 56 at a distal end of the insert 54 with respect to a bolt inserted into the insert 54. The base 62 extends outwardly beyond an outer surface of the barrel 56 in a radial direction with respect to the barrel 56 to define a surface that is oriented substantially perpendicular to the axis of the barrel 56. When a concrete structure, such as a wall for example, has been formed around the insert 54, the outwardly extending surface of the base 62 serves to anchor the insert 54 within the surrounding concrete.
The insert 54 also includes a plurality of ribs 64 at spaced locations about the circumference of the barrel 56. Each of the ribs 64 includes sides connected to the barrel 56 and to the base 62 to reinforce the connection therebetween against shear load applied to the base 62 from an axially loaded barrel 56. The ribs 64 also create with the base 62 a shear cone in the surrounding concrete increasing the pull out force for the insert 54.
As shown, the ribs 64 are not tapered along their lengths and, instead, include a series of stepped segments 66 each extending radially from the barrel to a distance that diminishes with each succeeding segment from a first segment that is located adjacent the base 62. As shown in
The ribs 64 are not uniform in length. As shown, the ribs 64 that are shortest in length have a last stepped segment 66 remote from base 62 having a terminal end 67 that is located longitudinally along the barrel 56 adjacent to an end of the internal threads 60 formed on the barrel 56. As shown, the ribs 64 that are shortest in length include every other rib and therefore comprise approximately one-half of the ribs 64. Extension of the ribs 64 beyond this point along the unthreaded end portion of the barrel 56 would not significantly increase pull out force for the insert 54 because the end portion of the barrel 56 will not be stretched by a tensioned bolt. Terminating ribs 64 to the shortened length adjacent the end of the threads, therefore, desirably eliminates unnecessary material from the insert 54. Some of the ribs 64, however, include a last segment that extends along the unthreaded portion of the barrel 56, as shown. These ribs provide projecting surfaces on the outer surface of the unthreaded portion of the barrel to facilitate removal of the insert 54 from the mold during manufacture. To optimize material reduction, however, only a portion of these ribs include a last segment that extends substantially to the proximal end of the barrel 56.
As shown in
Referring to
The load distribution provided by the stepped configuration of inserts 54, 70 desirably increases shear cone size created in the surrounding concrete over prior plastic inserts to that approaching the shear cone sizes created by corresponding sized metal inserts. Increased shear cone size results in increase in pull out force. It was found that thermoplastic inserts incorporating the stepped rib construction of the present invention provided an increase of 10 to 30 percent over similarly sized plastic inserts of the prior art having tapering ribs. Using injection molded plastic material, the stepped configuration of inserts 54, 70 can also be accomplished without increasing mold cycle time and without complicating the moldability of the insert. In fact, it was found that the stepped rib construction of the present invention actually resulted in reduction in material and a corresponding reduction in mold cycle time because of reduced time required for curing. The reduction in material and mold cycle time was found to provide a reduction in production costs of approximately 30 percent.
The foregoing describes the invention in terms of embodiments foreseen by the inventor for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto.
Claims
1. An insert for incorporation into a concrete structure to facilitate attachment of a threaded fastener to the concrete structure, the insert comprising:
- an elongated barrel defining an interior for receiving a shaft of a threaded fastener, the barrel having opposite proximal and distal ends;
- a housing connected to the barrel adjacent the distal end of the barrel, the housing defining an interior adapted for receipt of an internally threaded member for engagement with a threaded portion of the fastener shaft; and
- at least one bar-engaging member connected to the housing adjacent an outer peripheral edge of the housing and extending outwardly therefrom for contact with a concrete-reinforcing bar of the concrete structure to anchor the insert within the concrete structure.
2. The insert according to claim 1, wherein the interior defined by the housing is substantially hexagonal in shape for receiving a hex-head nut member.
3. The insert according to claim 1, wherein the at least one bar-engaging member comprises an angle connected to the housing at each of opposite sides of the housing, each angle arranged for receipt of a concrete-reinforcing bar between the angle and the barrel.
4. The insert according to claim 1 further comprising a bar-engaging member located adjacent the proximal end of the barrel adapted for contact with a concrete-reinforcing bar of the concrete structure.
5. The insert according to claim 4, wherein the bar-engaging member at the proximal end of the barrel includes a retainer defining a substantially semi-circular channel adapted for receipt of a U-shaped portion of the concrete-reinforcing bar.
6. The insert according to claim 5, wherein the retainer of the proximal bar-engaging member is connected to a base defining a substantially cylindrical interior, and wherein the proximal end of the barrel is removably received within the interior of the base to facilitate receipt of the U-shaped portion of the concrete-reinforcing bar in the channel defined by the retainer.
7. The insert according to claim 1 further comprising a cover adapted for removable attachment to the housing such that the interior defined by the housing is enclosed.
8. The insert according to claim 7, wherein the cover includes at least one snap-attachment member adapted to engage a post connected to the housing.
9. The insert according to claim 7 further comprising an elongated flexible connector connected at opposite ends to the housing and the cover.
10. The insert according to claim 1, wherein the barrel, the housing and the at least one bar-engaging member are made from a plastic material.
Type: Application
Filed: Nov 9, 2007
Publication Date: Mar 20, 2008
Inventor: James Sack (Elverson, PA)
Application Number: 11/983,638
International Classification: E04B 1/41 (20060101);