Pinch grip for hot-fillable container
The present disclosure provides a one-piece plastic container having a body defining a generally rectangular horizontal cross section. The container includes a first pair of opposing sidewalls and a second pair of opposing sidewalls. The body includes an upper portion, a sidewall portion and a base. The sidewall portion is integrally formed with and extends from the upper portion to the base. The base closes off an end of the container. The sidewall portion defines a grip portion having a pair of first walls that converge with a pair of second walls. The pair of first walls extend inboard from the first pair of opposing sidewalls. The pair of second walls extend inboard from the second pair of opposing sidewalls.
This disclosure generally relates to plastic containers for retaining a commodity, such as a solid or liquid commodity. More specifically, this disclosure relates to a one-piece blown container having an integrally formed pinch grip portion.
BACKGROUNDAs a result of environmental and other concerns, plastic containers, more specifically polyester and even more specifically polyethylene terephthalate (PET) containers are now being used more than ever to package numerous commodities previously supplied in glass containers. Manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable and manufacturable in large quantities.
Blow-molded plastic containers have become commonplace in packaging numerous commodities. PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to maintain its material integrity relates to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container. The following equation defines the percentage of crystallinity as a volume fraction:
where ρ is the density of the PET material; ρa is the density of pure amorphous PET material (1.333 g/cc); and ρc is the density of pure crystalline material (1.455 g/cc).
Container manufacturers use mechanical processing and thermal processing to increase the PET polymer crystallinity of a container. Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching an injection molded PET preform along a longitudinal axis and expanding the PET preform along a transverse or radial axis to form a PET container. The combination promotes what manufacturers define as biaxial orientation of the molecular structure in the container. Manufacturers of PET containers currently use mechanical processing to produce PET containers having approximately 20% crystallinity in the container's sidewall.
Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. On amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque, and thus, generally undesirable. Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity for those portions of the container having biaxial molecular orientation. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of approximately 250° F.-350° F. (approximately 121° C.-177° C.), and holding the blown container against the heated mold for approximately two (2) to five (5) seconds. Manufacturers of PET juice bottles, which must be hot-filled at approximately 185° F. (85° C.), currently use heat setting to produce PET bottles having an overall crystallinity in the range of approximately 25%-35%.
In some instances, it may be desirable to provide a user a grasping area on the container at which a user may engage and firmly hold the container. In one example, a container may define a handle near an upper shoulder of the container whereby a user can pass fingers or a thumb through an adjacent passage formed through the container to grasp the container. Such a configuration may be provided on a milk container for example. In other examples, it may be desirable to define a gripping portion integral with the body of the container. Furthermore, it is desirable to provide a gripping portion that contributes to the overall structural integrity of the container.
SUMMARYAccordingly, the present disclosure provides a one-piece plastic container having a body defining a generally rectangular horizontal cross section. The container includes a first pair of opposing sidewalls and a second pair of opposing sidewalls. The body includes an upper portion, a sidewall portion and a base. The sidewall portion is integrally formed with and extends from the upper portion to the base. The base closes off an end of the container. The sidewall portion defines a grip portion having a pair of first walls that converge with a pair of second walls. The pair of first walls extend inboard from the first pair of opposing sidewalls. The pair of second walls extend inboard from the second pair of opposing sidewalls.
According to other features, the grip portion is further defined by two pairs of third walls. Each third wall converges with one wall of the pair of first walls and one wall of the pair of second walls. In one example, each of the pair of third walls defines an angle substantially between 15 and 35 degrees relative to the base. The pair of first walls converge with the pair of second walls at an angle substantially between 115 and 120 degrees.
According to still other features, the pair of first walls define an acute angle of convergence and the pair of second walls define an obtuse angle of convergence. In one example, the pair of first walls define an angle of convergence of about 16 degrees and the pair of second walls define an angle of convergence of about 110 degrees. Both the first and second pair of third walls define an angle of convergence of about 130 degrees.
Additional benefits and advantages of the present disclosure will become apparent to those skilled in the art to which the present disclosure relates from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings.
The following description is merely exemplary in nature, and is in no way intended to limit the disclosure or its application or uses.
As shown in
With specific reference now to
Grip portion 30 also may include horizontal ribs 46 (
With particular reference now to
Turning now to
The grip portion 30 has been configured to define a geometry convenient for a consumer to grasp and hold the container 10. In one exemplary method of grasping the container 10, a consumer may wrap a hand around the first pair of opposing sidewalls 12 at the grip portion 30 such that a thumb engages a detent 88 formed on one of the first walls 60 and the remaining fingers engage another detent 88 formed on the other of the first walls 60. Because the first walls 60 have been slanted inboard at the angle α1, a consumer is offered improved leverage during gripping for better control of the container 10. In one example, a span S1 defined at the innermost location of the first walls 60 is about 72.28 mm (2.85 inches). A span S2 defined between the innermost raised ribs 70 of the first walls 60 is about 80.59 mm (3.17 inches). A span S3 defined at the outermost location of the first walls 60 is about 83.13 mm (3.27 inches). A depth D1 defined at the grip portion 30 from the first pair of opposing sidewalls 12 to the interface wall 72 is about 53.34 mm (2.10 inches). A depth D2 defined at the grip portion 30 from the first pair of opposing sidewalls 12 to land 48 is about 76.20 mm (3.0 inches). It is appreciated that the cross-sectional illustration of
With particular reference now to
The resultant geometrical configuration of the respective first, second, and third walls 60, 62, 64 and 66 of the grip portion 30 provides improved localized strength at the grip portion 30 as well as creates a geometrically rigid structure. The resulting localized strength increases the resistance to creasing, buckling, denting, bowing and sagging of the sidewall portion 24 and the container 10 as a whole during filling, packaging and shipping operations. Specifically, the resultant localized strength aids in preventing deformation during hot fill. As such, fillers are able to fill the container 10 quicker since it is able to withstand the additional pressures associated with faster filling speeds. Through testing, it has been shown that a container formed by current commercially available processes may be filled at a fill speed of 90 bottles per minute (bpm). In contrast, the container 10 may be filled at a fill speed of 110 bpm. As is shown, about an 18% improvement in fill rate is realized with the container 10 having the grip portion 30 versus current commercially available containers.
Additionally, this resultant localized strength prevents the grip portion 30 from popping out or deforming when the container is dropped during packaging and shipping. Through testing, it has been shown that a container formed by current commercially available processes can withstand a drop test up to 2.3 feet before the grip portion experiences deformation or pop out. In contrast, the container 10 having grip portion 30 can withstand a drop test up to 2.9 feet before the grip portion experiences pop out. As is shown, about a 20% improvement is realized with the container 10 having the grip portion 30 versus current commercially available containers.
As explained above, the plastic container 10 has been designed to retain a commodity. The commodity may be in any form such as a solid or liquid product. In one example, a liquid commodity may be introduced into the container during a thermal process, typically a hot-fill process. For hot-fill bottling applications, bottlers generally fill the container 10 with a liquid or product at an elevated temperature between approximately 155° F. to 205° F. (approximately 68° C. to 96° C.) and seal the container 10 with a closure (not illustrated) before cooling. In addition, the plastic container 10 may be suitable for other high-temperature pasteurization or retort filling processes or other thermal processes as well. In another example, the commodity may be introduced into the container under ambient temperatures.
The plastic container 10 of the present invention is a blow molded, biaxially oriented container with a unitary construction from a single or multi-layer material. A well-known stretch-molding, heat-setting process for making the one-piece plastic container 10 generally involves the manufacture of the preform P (
Turning now to
In one example, a machine (not illustrated) places the preform P heated to a temperature between approximately 190° F. to 250° F. (approximately 88° C. to 121° C.) into the mold cavity 90. The mold cavity 90 may be heated to a temperature between approximately 250° F. to 350° F. (approximately 121° C. to 177° C.). A stretch rod apparatus (not illustrated) stretches or extends the heated preform P within the mold cavity 90 to a length approximately that of the end container 10 thereby molecularly orienting the polyester material in an axial direction generally corresponding with the central longitudinal axis 76 of the container 10. While the stretch rod extends the preform P, air having a pressure between 300 PSI to 600 PSI (2.07 MPa to 4.14 MPa) assists in extending the preform P in the axial direction and in expanding the preform P in a circumferential or hoop direction thereby substantially conforming the polyester material to the shape of the mold cavity 90 and further molecularly orienting the polyester material in a direction generally perpendicular to the axial direction, thus establishing the biaxial molecular orientation of the polyester material in the container 10. The pressurized air holds the mostly biaxial molecularly oriented polyester material against the mold cavity 90 for a period of approximately two (2) to five (5) seconds before removal of the container 10 from the mold cavity 90.
Alternatively, other manufacturing methods using other conventional materials including, for example, polyethylene naphthalate (PEN), a PET/PEN blend or copolymer, and various multilayer structures may be suitable for the manufacture of plastic container 10. Those having ordinary skill in the art will readily know and understand plastic container manufacturing method alternatives.
While the above description constitutes the present disclosure, it will be appreciated that the disclosure is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.
Claims
1. A one-piece plastic container comprising:
- a body defining a generally rectangular horizontal cross section including a first pair of opposing sidewalls and a second pair of opposing sidewalls, said body having an upper portion, a sidewall portion and a base, said sidewall portion integrally formed with and extending from said upper portion to said base, said base closing off an end of said container, said sidewall portion defining a grip portion having a pair of first walls that converge with a pair of second walls, said pair of first walls extending inboard from said first pair of opposing sidewalls, respectively and said pair of second walls extending inboard from said second pair of opposing sidewalls, respectively.
2. The one-piece plastic container of claim 1 wherein said grip portion is further defined by two pairs of third walls, wherein each third wall converges with one wall of said pair of first walls and one wall of said pair of second walls, respectively.
3. The one-piece plastic container of claim 2 wherein each of said pair of third walls defines an angle substantially between 15 and 35 degrees relative to said base.
4. The one-piece plastic container of claim 3 wherein each of said pair of third walls defines an angle substantially equal to 25 degrees relative to said base.
5. The one-piece plastic container of claim 1 wherein said pair of first walls converge with said pair of second walls at an angle substantially between 115 and 120 degrees.
6. The one-piece plastic container of claim 5 wherein said pair of first walls converge with said pair of second walls at an angle substantially equal to 117 degrees.
7. The one-piece plastic container of claim 5 wherein said pair of first walls define an angle of convergence of about 16 degrees.
8. The one-piece plastic container of claim 5 wherein said pair of second walls define an angle of convergence of about 110 degrees.
9. The one-piece plastic container of claim 5 wherein said first pair of opposing sidewalls are shorter than said second pair of opposing sidewalls.
10. A grip portion of a one-piece plastic container having a generally rectangular horizontal cross section including a first pair of opposing sidewalls and a second pair of opposing sidewalls, said grip portion comprising:
- a pair of first walls that converge with a pair of second walls, said pair of first walls extending inboard from said first pair of opposing sidewalls, respectively and said pair of second walls extending inboard from said second pair of opposing sidewalls, respectively, said pair of first walls defining an acute angle of convergence and said pair of second walls defining an obtuse angle of convergence.
11. The grip portion of claim 10 wherein said pair of first walls define an angle of convergence of about 16 degrees.
12. The grip portion of claim 10 wherein said pair of second walls define an angle of convergence of about 110 degrees.
13. The grip portion of claim 10 wherein said grip portion is further defined by two pairs of third walls wherein both the first pair and the second pair of third walls define an angle of convergence of about 130 degrees.
14. A grip portion of a one-piece plastic container having a generally rectangular horizontal cross section including a first pair of opposing sidewalls and a second pair of opposing sidewalls, and a base, said grip portion comprising:
- a pair of first walls that converge with a pair of second walls, said pair of first walls extending inboard from said first pair of opposing sidewalls and said pair of second walls extending inboard from said second pair of opposing sidewalls, and two pair of third walls, each third wall formed on one of said second pair of opposing sidewalls and extending to both of said first and second walls, said first, second and third walls collectively configured at relative geometrical relationships to provide structural strength in said grip portion and the container as a whole.
15. The grip portion of claim 14 wherein one pair of said third walls extends to an interface wall formed with each of said pairs of first and second walls.
16. The grip portion of claim 15 wherein the other pair of said third walls extends to an interface wall formed with each of said pairs of first and second walls.
17. The grip portion of claim 16 wherein said pair of first walls extend inboard from said first pair of opposing sidewalls at a first angle less than 20 degrees relative to said second pair of opposing sidewalls, respectively.
18. The grip portion of claim 17 wherein said pair of second walls extend inboard from said second pair of opposing sidewalls at a second angle between 25 and 45 degrees relative to said first pair of opposing sidewalls, respectively.
19. The grip portion of claim 18 wherein said two pair of third walls all define a third angle between 15 and 35 degrees relative to said base.
20. The grip portion of claim 19 wherein said first angle is substantially 8 degrees, said second angle is substantially 35 degrees, and said third angle is substantially 25 degrees.
Type: Application
Filed: Oct 6, 2006
Publication Date: Apr 10, 2008
Inventor: John A. Nievierowski (Ann Arbor, MI)
Application Number: 11/545,031
International Classification: B65D 90/02 (20060101);