External Nasal Dilator and Methods of Manufacture
The present invention relates to external devices for dilating nasal passageways and to the manufacture thereof. More specifically, the external nasal dilator of the present invention usually comprises a resilient sheet, an adhesive layer, and an adhesive-protecting sheet. In some embodiments of the external nasal dilator, the resilient sheet defines a groove for reducing the peel force that results from bending the dilator over the bridge of the nose. In addition to the groove or in lieu thereof, some embodiments of the external nasal dilator comprise a nasal passage region having a reduced width to reduce the peel force. Finally, the dilator can comprise a sheet of adhesive tape, which in some embodiments can provide an instant tack surface to facilitate application of the dilator.
Latest WEBTEC Converting, LLC. Patents:
This application claims the benefit of U.S. Provisional Application No. 60/862,548 filed Oct. 23, 2006.
STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENTNot Applicable
BACKGROUND OF THE INVENTION1. Field of Invention
The invention relates to external devices for dilating nasal passageways and to the manufacture thereof.
BRIEF SUMMARY OF THE INVENTIONThe external nasal dilator of the present invention generally comprises a resilient sheet, an adhesive layer, and an adhesive-protecting sheet. Some embodiments also include a sheet of adhesive tape. The resilient sheet is superposed on the adhesive layer, and the adhesive layer is superposed on the adhesive-protecting sheet, which is removably adhered to the adhesive layer. In those embodiments that comprise the sheet of adhesive tape, it is superposed and adhered to the resilient sheet.
The resilient sheet comprises a resilient thermoplastic material (e.g., PET, boPET, PETG, HDPE, and polyester). Generally, (1) the adhesive layer comprises a hydrocolloid and (2) the adhesive-protecting sheet comprises polypropylene, a similar thermoplastic resin, or a paper-based material. In at least some embodiments, the resilient sheet defines at least one groove for reducing the peel force that results from bending the dilator (namely, the resilient sheet) over the bridge of the nose. Either or both major surfaces of the resilient sheet can define a groove. In addition to the groove or in lieu thereof, some embodiments of the external nasal dilator comprise a nasal passage region having a reduced width. This serves to reduce the peel force, including any peel force that originates from the bridge region of the external nasal dilator. Finally, in some of the embodiments of the dilator that include the sheet of adhesive tape, the resilient sheet and the adhesive layer each have a lesser area than the sheet of adhesive tape. Thus, when the sheet of adhesive tape is superposed on (and adhered to) the resilient sheet, which in turn is superposed on the adhesive layer, some of the adhesive surface of the adhesive tape still is available to adhere to the nose upon application (which follows removal of the adhesive-protecting sheet). Generally, the adhesive tape comprises an acrylic adhesive, which is fast-acting. Thus, these available adhesive surfaces function as an “instant tack surfaces,” thereby facilitating application of the dilator.
The present invention also includes various methods of making the external nasal dilator. At least some of the embodiments of the external nasal dilator disclosed herein are amenable to continuous and automated manufacture. For example, in one embodiment of the method, a roll of a three-layered material is used as the starting material, the three layers consisting substantially and respectively of (1) a resilient sheet, (2) an adhesive-protecting sheet, and (3) an adhesive layer between the resilient sheet and the adhesive-protecting sheet. A series of dies are used to cut the three-layered material into the appropriate shape and (when necessary) to impress grooves in the resilient sheet.
The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
The present invention, i.e., the external nasal dilator and methods of manufacture, is described more fully hereinafter. From the outset, it is worth noting that this invention may be embodied in many different forms and should not be construed as limited to the specific embodiments described herein. Rather, the embodiments described herein are provided to ensure that this description is thorough and complete, and to ensure that the scope of the invention is communicated effectively to those skilled in the art. It is also worth noting that the Figures are provided merely as a guide to assist those skilled in the art in understanding and appreciating the scope of the invention. Finally, the disclosure provided in U.S. Provisional Application No. 60/862,548, filed Oct. 23, 2006, is incorporated by reference.
Definitions
“Adhesive tape” means tape coated on one side with an adhesive substance.
“Border” means the line or relatively narrow space that marks the outer limit of something.
“Etch” means to produce (as a pattern or design) on a hard material by eating into the material's surface (as by acid or laser beam).
“Nonwoven” means made of fibers held together by interlocking or bonding (as by chemical or thermal means); not woven, knitted, or felted.
“Paper” means a felted or matted sheet of cellulose fibers formed on a fine-wire screen from a dilute water suspension, and bonded together as the water is removed and the sheet is dried.
“Peeling” means to pull a layer of material away from another layer, especially by breaking approximately one row of bonds at a time.
“Peel force” is the force required to separate by peeling two layers of pliable material that have been adhered together. The peel force measured is not merely an inherent property of the adhesive, but depends on many variables, such as the test method, temperature, peel rate, degree of contact, adhesive chemistry and thickness, aging, adhesive backing, and the substrate. Common peel tests include the T-peel test, the 180° peel test, and the 90° peel test.
“Polyethylene terephthalate” is a thermoplastic polyester resin made from ethylene glycol and terephthalic acid. Abbreviated PETG.
“Resilience” is the capability of a strained body to recover its size and shape following deformation.
“Resilient” means characterized or marked by resilience; implies the ability to recover shape quickly when the deforming force or pressure is removed.
“Shearing stress” is a stress in which the material on one side of a surface pushes on the material on the other side of the surface with a force that is parallel to the surface. Also known as shear stress; tangential stress.
“Thermoplastic resin” is a material with a linear macromolecular structure that will repeatedly soften when heated and harden when cooled; for example, styrene, acrylics, cellulosics, polyethylenes, vinyls, nylons, and fluorocarbons.
Other words and terms are defined as necessary in the detailed description that follows.
External Nasal Dilator and Methods of Manufacture
External nasal dilators, which generally are secured to the skin of the nose by an adhesive, lift the outer wall tissues of the nostrils, thereby dilating the nasal passages. Such dilators reduce the resistance to airflow during breathing, especially inhalation.
Still other embodiments of the present invention have grooves in the other major surface (“fourth major surface”) of the resilient sheet (i.e., the surface of the resilient sheet that is contacting the adhesive layer 44) either instead of, or in addition to, the grooves 18 on the third major surface 54 of the resilient sheet 40. Thus, the resilient sheet 40 can define grooves on either or both major surfaces, although it is preferable to have grooves on just one major surface. The grooves, themselves, may be straight or curved (e.g., arcuate), and they may be continuous or discontinuous. Indeed, many groove configurations are possible that are consistent with the scope of the present invention.
Still other embodiments of the present invention include an additional (fourth) layer, specifically, a sheet of an adhesive tape.
At least some of the embodiments of the nasal dilator disclosed herein are amenable to continuous and automated manufacture. In one embodiment of the method of making the present invention, a roll of a three-layered material is provided. The three layers of the three-layered material consist respectively of (1) a resilient sheet, (2) an adhesive-protecting sheet, and (3) an adhesive layer (hydrocolloid in this instance) between the resilient sheet and the adhesive-protecting material. The three-layered material is drawn into a first set of rollers, one of which is a die that impresses the first surface of the resilient sheet (i.e., the surface opposite the adhesive layer) to form grooves in that first surface. (“Die” as used herein is intended to have a broad meaning that includes, but is not limited to, the following: rotary die, laser die, flatbed die, and stamping die.) The three-layered material, after exiting the first set of rollers, is drawn into a second set of rollers, one of which is a die that sections, from the three-layered material, pieces having the perimeter (overall) shape of the dilator of the present invention, thereby essentially yielding the dilator of the present invention (e.g., embodiments 10 and 90). Simultaneously, the roller opposite the die “kiss cuts” the adhesive-protecting sheet such that it is divided equally along its latitudinal axis to facilitate its removal immediately prior to application to the nose. Finally, any extraneous three-layered material is drawn into a third roller (“waste” roller) to facilitate disposal.
Another embodiment of the method of making the present invention (e.g., embodiments 10 and 90) also uses the roll of three-layered material described in the previous paragraph. In this embodiment, the three-layered material is drawn into the first set of rollers, one of which is a die impresses grooves into the second surface of the resilient sheet (i.e., the surface that is contacting the adhesive layer) by penetrating both the adhesive-protecting sheet and the adhesive layer. Thereafter, the three-layered material is drawn into a second set of rollers, where the now-perforated adhesive-protecting sheet is removed and stored on a roller for later disposal. Next, the remaining material, which now consists of two layers, is drawn into a third set of rollers, where a new adhesive-protecting sheet is added. This three-layered material, after exiting the third set of rollers, is drawn into a fourth set of rollers, one of which is a die that sections, from the three-layered material, pieces having the perimeter (overall) shape of the external nasal dilator, thereby essentially yielding the dilator of the present invention. Simultaneously, the roller opposite the die “kiss cuts” the adhesive-protecting sheet such that it is divided equally along its latitudinal axis to facilitate its removal immediately prior to application to the nose. Finally, any extraneous three-layered material is drawn into a third roller (“waste” roller) to facilitate disposal.
The third embodiment of the method of making the present invention uses a different starting material. The hallmark of this embodiment is that (1) a roll of resilient material (e.g., PETG) is provided in an unlaminated state, i.e., neither of its surfaces is coated with a substance (e.g., an adhesive) and (2) grooves are impressed (e.g., kiss-cut) upon the second surface of the resilient material prior to the application of an adhesive (e.g., hydrocolloid) to that second surface. The resilient material (or resilient sheet) is drawn into a first set of rollers, one of which is a die that impresses the second surface of the resilient sheet, yielding grooves in that second surface. Next, the resilient sheet is drawn into a second set of rollers, where it is merged with a two-layered material consisting of an adhesive layer (hydrocolloid in this instance) and an adhesive-protecting sheet. Thereafter, this three-layered material is drawn into a third set of rollers, where it is heated to encourage bonding between the resilient sheet and the adhesive layer. The three-layered material, after exiting the third set of rollers, is drawn into a fourth set of rollers, one of which is a die that sections, from the three-layered material, pieces having the perimeter (overall) shape of the dilator of the present invention, thereby essentially yielding the dilator of the present invention. Simultaneously, the roller opposite the die “kiss cuts” the adhesive-protecting sheet such it is divided equally along its latitudinal axis to facilitate removal of the liner immediately prior to application of the dilator to the nose. Finally, any extraneous three-layered material is drawn onto a roller to facilitate disposal.
The methods of making disclosed herein pertain to nasal dilators having three layers (e.g., embodiments 10 and 90). It will now be apparent to those skilled in that art that these methods can be modified to produce a nasal dilator having four layers (e.g., embodiments 120, 150, and 180). More generally, it will also be apparent to those skilled in the art that the grooves can be etched (instead of impressed) into the resilient sheet and that etching may be advantageous in some circumstances.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.
Claims
1. An external nasal dilator comprising:
- an adhesive layer, said adhesive layer defining a first major surface and a second major surface;
- a resilient sheet, said resilient sheet consisting substantially of a resilient material, said resilient sheet defining a third major surface and a fourth major surface, said resilient sheet superposed on said adhesive layer such that said fourth major surface contacts said first major surface; and
- an adhesive-protecting sheet, said adhesive-protecting sheet consisting substantially of a first material suitable for protecting said adhesive layer and for being removably adhered to said adhesive layer, said adhesive-protecting sheet defining a fifth major surface and a sixth major surface, said adhesive-protecting sheet superposed on said adhesive layer such that said fifth major surface contacts said second major surface.
2. The external nasal dilator of claim 1 wherein said third major surface defines at least one groove, said at least one groove for reducing a peel force exerted by said resilient sheet following application of said external nasal dilator to a nose.
3. The external nasal dilator of claim 1 wherein said fourth major surface defines at least one groove, said at least one groove for reducing a peel force exerted by said resilient sheet following application of said external nasal dilator to a nose.
4. The external nasal dilator of claim 1 wherein said adhesive layer consists substantially of a hydrocolloid.
5. The external nasal dilator of claim 1 wherein said resilient material is selected from the group consisting of PET, boPET, PETG, HDPE, and polyester.
6. The external nasal dilator of claim 1 wherein said first material is selected from the group consisting of polypropylene, a similar thermoplastic resin, and a paper-based material.
7. An external nasal dilator comprising:
- a bridge region for primarily contacting a bridge of a nose;
- a first nasal passage region adjacent to said bridge region, said first nasal passage region for primarily contacting a first side of the nose;
- a second nasal passage region adjacent to said bridge region and distal to said first nasal passage region, said second nasal passage region for primarily contacting a second side of the nose;
- a first end region adjacent to said first nasal passage region and distal to said bridge region; and
- a second end region adjacent to said second nasal passage region and distal to said bridge region.
8. The external nasal dilator of claim 7 wherein said first nasal passage region has a relatively short average width that is substantially less than the average width of said bridge region, said relatively short average width for reducing a peel force caused by application of said external nasal dilator to the nose.
9. The external nasal dilator of claim 7 wherein said second nasal passage region has a relatively short average width that is substantially less than the average width of said bridge region, said relatively short average width for reducing a peel force caused by application of said external nasal dilator to the nose.
10. The external nasal dilator of claim 7 wherein said first nasal passage region has a relatively short average width that is substantially less than the average width of said first end region, said relatively short average width for reducing a peel force caused by application of said external nasal dilator to the nose.
11. The external nasal dilator of claim 7 wherein said second nasal passage region has a relatively short average width that is substantially less than the average width of said second end region, said relatively short average width for reducing a peel force caused by application of said external nasal dilator to the nose.
12. An external nasal dilator comprising:
- an adhesive layer, said adhesive layer defining a first major surface and a second major surface;
- a resilient sheet, said resilient sheet consisting substantially of a resilient material, said resilient sheet defining a third major surface and a fourth major surface, said resilient sheet superposed on said adhesive layer such that said fourth major surface contacts said first major surface;
- an adhesive-protecting sheet, said adhesive-protecting sheet consisting substantially of a first material suitable for protecting said adhesive layer and for being removably adhered to said adhesive layer, said adhesive-protecting sheet defining a fifth major surface and a sixth major surface, said adhesive-protecting sheet superposed on said first adhesive layer such that said fifth major surface contacts said second major surface; and
- a sheet of adhesive tape, said sheet of adhesive tape superposed on said resilient sheet such that said sheet of adhesive tape adheres to said third major surface.
13. The external nasal dilator of claim 12 wherein said third major surface defines at least one groove, said at least one groove for reducing a peel force exerted by said resilient sheet following application of said external nasal dilator to a nose.
14. The external nasal dilator of claim 12 wherein said fourth major surface defines at least one groove, said at least one groove for reducing a peel force exerted by said resilient sheet following application of said external nasal dilator to a nose.
15. The external nasal dilator of claim 12 wherein said adhesive layer comprises a hydrocolloid.
16. The external nasal dilator of claim 12 wherein said resilient material is selected from the group consisting of PET, boPET, PETG, HDPE, and polyester.
17. The external nasal dilator of claim 12 wherein said first material is selected from the group consisting of polypropylene, a similar thermoplastic resin, or a paper-based material.
18. The external nasal dilator of claim 12 wherein said sheet of adhesive tape comprises an acrylic adhesive.
19. The external nasal dilator of claim 12 wherein said sheet of adhesive tape has a greater area than said resilient sheet, and said sheet of adhesive tape has a greater area than said adhesive layer, thereby defining an instant tack surface on said sheet of adhesive tape, said instant tack surface for facilitating application of said external nasal dilator to a nose.
20. The external nasal dilator of claim 12 wherein said resilient sheet is discontinuous.
21. The external nasal dilator of claim 12 wherein said adhesive layer is discontinuous.
22. A method of making an external nasal dilator, said method comprising the steps of:
- providing a roll of a three-layered material, said three-layered material having a first layer, a second layer, and a third layer, said first layer consisting substantially of a resilient material, said second layer consisting substantially of an adhesive substance, and said third layer consisting substantially of an adhesive-protecting material;
- drawing said three-layered material into a first set of rollers;
- impressing at least one groove into said first layer, using said first set of rollers, thereby yielding a grooved three-layered material;
- drawing said grooved three-layered material into a second set of rollers; and
- cutting said grooved three-layered material, using said second set of rollers, into pieces having the perimeter shape of said external nasal dilator.
23. The method of claim 22 further including the step of kiss-cutting said third layer of said grooved three-layered material, using said second set of rollers.
24. A method of making an external nasal dilator, said method comprising the steps of:
- providing a roll of a three-layered material, said three-layered material having a first layer, a second layer, and a third layer, said first layer consisting substantially of a resilient material, said second layer consisting substantially of an adhesive substance, and said third layer consisting substantially of an adhesive-protecting material;
- drawing said three-layered material into a first set of rollers;
- impressing at least one groove into said first layer, using said first set of rollers, by way of penetration through said second layer and said third layer, thereby yielding a first grooved three-layered material, said first grooved three-layered material comprising a perforated third layer;
- drawing said first grooved three-layered material into a second set of rollers;
- removing said perforated third layer using said second set of rollers, thereby yielding a grooved two-layered material;
- drawing said grooved two-layered material into a third set of rollers;
- adding an unperforated layer of an adhesive-protecting material to said grooved two-layered material using said third set of rollers, thereby yielding a second grooved three-layered material;
- drawing said second grooved three-layered material into a fourth set of rollers; and
- cutting said second grooved three-layered material, using said fourth set of rollers, into pieces having the perimeter shape of said external nasal dilator.
25. The method of claim 24 further including the step of kiss-cutting said unperforated layer of said second grooved three-layered material, using said fourth set of rollers.
26. A method of making an external nasal dilator, said method comprising the steps of:
- providing a roll of a resilient material, said resilient material defining a first surface and a second surface;
- drawing said resilient material into a first set of rollers;
- impressing at least one groove into said second surface using said first set of rollers, yielding a grooved resilient material;
- drawing said grooved resilient material into a second set of rollers;
- providing a roll of a two-layered material, said two-layered material having a first layer and a second layer, said first layer consisting substantially of an adhesive substance, and said second layer consisting substantially of an adhesive-protecting material;
- drawing said two-layered material into said second set of rollers;
- merging said grooved resilient material and said two-layered material using said second set of rollers, thereby yielding a three-layered material wherein said adhesive substance is adhered to said grooved resilient material and to said adhesive-protecting material and wherein said second surface of said grooved resilient material is contacting said adhesive substance;
- drawing said three-layered material into a third set of rollers;
- heating said three-layered material using said third set of rollers to encourage bonding between said adhesive substance and said second surface of said grooved resilient material, thereby yielding a bonded three-layered material;
- drawing said bonded three-layered material into a fourth set of rollers; and
- cutting said bonded three-layered material, using said fourth set of rollers, into pieces having the perimeter shape of said external nasal dilator.
27. The method of claim 26 further including the step of kiss-cutting said adhesive-protecting material of said bonded three-layered material, using said fourth set of rollers.
Type: Application
Filed: Jan 8, 2007
Publication Date: Apr 24, 2008
Applicant: WEBTEC Converting, LLC. (Knoxville, TN)
Inventors: Randel B. Holmes (Knoxville, TN), Dennis White (Clinton, TN)
Application Number: 11/620,892