Propulsion system
A propulsion system for a jet- or rocket-propelled vehicle in which the resulting jet exhaust nozzle profile is a 3D spiral. The propulsion system can be applied to any jet- or rocket-propelled vehicle, including aircraft and watercraft. The propulsion system also contemplates a vehicle including the modified 3D spiral nozzle exhaust profile
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/421,791, filed Oct. 29, 2002.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a jet propulsion system. More specifically, the invention relates to a jet propulsion system having a jet or nozzle modified to produce a jet exhaust formation having a 3D spiral formation by using a slit to produce spiral exhaust for improving performance and handling, as well as reducing drag (i.e., jet and rocket engines), thereby increasing speed. The slit preferably has a generally S-shaped configuration.
2. Description of Related Art
Jet propulsion is well known in both the fields of aircraft and marine vehicles. The exhaust of these vehicles is produced by rotating power plants, such as compressors and turbines, producing thrust. The resulting exhaust leaves the nozzles of these vehicles in a generally cylindrical plume. None of the prior art, however, teaches the conversion of the exhaust from a cylindrical plume into a 3D spiral formed by a twisting ribbon. Conventional propulsion system and proposed modifications thereto are exemplified in the following publications.
U.S. Patent Publication No. 2002/0049010, published Apr. 25, 2002, teaches a steerable watercraft including a jet propelled power plant. U.S. Pat. No. 2,420,323, issued to Meyer et al. on May 13, 1947, teaches a steering system in which a jet propelled vehicle is steered in response to a set of flaps located on the nozzle exhaust. U.S. Pat. No. 2,928,238, issued to Hawkings, Jr. on Mar. 15, 1960, teaches a jet aircraft having a controllable deflector and orifice control.
U.S. Pat. No. 3,087,303, issued to Heinze et al. on Apr. 30, 1963, teaches a jet propelled aircraft with a jet deflecting means. U.S. Pat. No. 3,285,262, issued to Ernst et al. on Nov. 15, 1966, teaches an aerodynamic servo-valve for use in guidance and stabilization of rockets. U.S. Pat. No. 3,350,886, issued to Feraud et al. on Nov. 7, 1967, teaches a rocket having a stabilizing and guiding means.
U.S. Pat. No. 3,581,995, issued to Fischer on Jun. 1, 1971, teaches a device for modifying the hot exhaust gases emanated from a jet aircraft. U.S. Pat. No. 3,610,556, issued to Charlton, Jr. on Oct. 5, 1971, teaches a directional control mechanism for reaction propelled aircraft. U.S. Pat. No. 3,635,404, issued to Hopkins et al. on Jan. 18, 1972, teaches a pin stabilizing rocket nozzle.
U.S. Pat. No. 3,640,469, issued to Hayes et al. on Feb. 8, 1972, teaches a modification of a jet nozzle in which the vector of the jet is deflected about a single axis. U.S. Pat. No. 3,802,376, issued to Smith on Apr. 9, 1974, teaches a jet-propelled boat steering system. U.S. Pat. No. 4,034,696, issued to Kureth on Jul. 12, 1977, teaches a boat stabilizer.
U.S. Pat. No. 4,063,685, issued to Jacobs on Dec. 20, 1977, teaches a rocket thrust stabilizer nozzle. U.S. Pat. No. 4,432,736, issued to Parramore on Feb. 21, 1984, teaches a water-jet steering mechanism. U.S. Pat. No. 4,643,374, issued to Friederich on Feb. 17, 1987, teaches a jet propulsion steering apparatus. U.S. Pat. No. 5,170,964, issued to Enderle et al. on Dec. 15, 1992, teaches a jet-propelled nozzle thrust control.
U.S. Pat. No. 5,735,115, issued to Maghon on Apr. 7, 1998, teaches a gas turbine combustor with means for removing swirl in order to avoid turbulence. U.S. Pat. No. 6,159,059, issued to Bernier et al. on Dec. 12, 2000, teaches a thrust-controlled system for watercraft. U.S. Pat. No. 6,279,499, issued to Griffin, Sr. et al. on Aug. 28, 2001, teaches a rotational get-drive bow thruster for a marine propulsion system.
U.S. Pat. No. 6,299,494, issued to Bowers et al. on Oct. 9, 2001, teaches an articulated nozzle assembly for water jet apparatus. U.S. Pat. No. 6,332,816, issued to Tsuchiya et al. on Dec. 25, 2001, teaches a jet-propelled boat including steering control. U.S. Pat. No. 6,371,407, issued to Renshaw on Apr. 16, 2002, teaches a mechanism for vectoring jet exhaust flow. U.S. Pat. No. 6,382,559, issued to Sutterfield et al. on May 7, 2002, teaches a further jet thrust vectoring mechanism.
U.K. Patent Application No. 1,063,945, published on Feb. 22, 1965, teaches a liquid jet reaction propulsion unit. U.K. Patent Application No. 2,060,078, published on Apr. 29, 1981, teaches a flight stabilization system for rockets including spiral twist of the exhaust flow. However, the invention avoids use of an external structure to create the intended thrust flow, but rather uses modification of the internal surface of the rocket exhaust nozzle to resemble the spiral pattern obtained from a rifled gun barrel.
U.K. Patent No. 2,094,252, published on Mar. 2, 1981, teaches a water-jet steering mechanism. German Patent No. 3,222,413, published on Dec. 15, 1983, teaches a direction converter for an aircraft for controlling vertical and horizontal flight. As noted above, many patents have issued describing various jet propelled vehicles including various types of directional control systems. However, none teach the application of a slit-shaped exit to control the flow of a jet exhaust to resemble a 3D spiral. More specifically, the present invention requires the use of a slit to create a 3D spiral exhaust pattern in any jet-propelled vehicle, including jet aircraft and watercraft.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
SUMMARY OF THE INVENTIONThe present invention is a modification of the exhaust of an existing jet propelled vehicle to produce a 3 dimensional ribbon-like spiral formation. The modified 3D jet exhaust can be created either by applying an attachment to an existing structure, e.g., jet ski, or by producing a slit-like exit into the nozzle during initial production of the jet- or rocket-propelled vehicle. Furthermore, instead of the thrust being initiated in a round or cylindrical shape, the initial thrust is formed in a straight line type thrust that is then changed by the exit slit to produce 3D spiral thrust.
Accordingly, it is a principal object of the invention to provide an attachment device for modifying the exhaust from a jet nozzle into a 3D spiral formation.
It is another object of the invention to provide a jet-propelled vehicle incorporating the modifying device to produce a 3D spiral formation.
It is yet another object of the invention to provide a jet-propelled vehicle incorporating the modifying device in which the slit has a generally “elongated S”-shaped configuration.
It is an object of the invention to provide improved elements and arrangements thereof in an apparatus for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes.
These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSThe present invention is directed to a propulsion system for a jet- or rocket-propelled vehicle, including aircraft and watercraft. In particular, the invention is directed to a modification in which the jet propulsion exhaust exiting the jet nozzle is oriented in a 3D spiral created by an elongated S-shaped opening. The present invention may be used with any type of propulsion exhaust and is not limited to gas or water exhaust.
In all cases, the slit is preferably in the general shape of a long “S” having opposed inwardly and outwardly opposing portions. This preferred configuration is shown as the generally S-shaped slit 104 in
Although the invention has been discussed above to denote attachments to jet and rocket nozzles to impart the desired 3D spiral exhaust formations, the modification can equally well be incorporated into the original equipment structure of the vehicle nozzle to provide the desired 3D spiral exhaust formation. In some situations, the slit can be made flexible and form a closed slit that opens when the exhaust pressure becomes sufficient to open the slit.
One example that clarifies the principle of 3D spiral propulsion would be the male urine stream.
It is to be understood that the present invention is not limited to the sole embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Claims
1. A propulsion system, comprising:
- a vehicle producing exhaust;
- a conduit connected to said vehicle, the exhaust flowing through said conduit; and
- an exhaust altering attachment disposed on said conduit, the attachment having a slit defined therein dimensioned and configured for expelling the exhaust from said conduit in a three dimensional helical pattern.
2. The propulsion system according to claim 1, wherein said slit comprises an opening defined by a pair of interconnectable side portions.
3. The propulsion system according to claim 1, wherein the side portions of said slit are contoured to ensure the exhaust is expelled in a three dimensional helical pattern.
4. The propulsion system according to claim 1, wherein said slit comprises a generally S-shaped opening.
5. The propulsion system according to claim 1, wherein said slit comprises a first S-shaped portion and a second S-shaped portion perpendicularly disposed across said first S-shaped portion.
6. The propulsion system according to claim 1, wherein said conduit is selected from the group consisting of jet exhausts, rocket exhausts and self-propelled vehicle exhausts.
7. The propulsion system according to claim 1, wherein said conduit is a large sphere and said exhaust altering attachment is a rotatable smaller sphere disposed inside the larger sphere, whereby the slit is rotatably controlled by the rotation of said smaller sphere so that the direction of flow of the exhaust is controlled by the movement of said smaller sphere.
8. The propulsion system according to claim 1, wherein said exhaust altering attachment comprises an extended portion that performs as a rudder.
Type: Application
Filed: Jun 6, 2007
Publication Date: May 29, 2008
Inventor: Oscar D. Windham (Tampa, FL)
Application Number: 11/808,111
International Classification: F02K 1/00 (20060101); B63H 11/00 (20060101); B64D 33/04 (20060101);