Free Part Retrieval System and Method

A stamping system comprising a press system including a plurality of bolsters, and a chute system disposed below the press system. The chute system communicates with the press system via a plurality of through-holes formed in the bolsters. In this manner, parts manufactured using the press system may pass through the bolsters into the chute system.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to a stamping system.

BACKGROUND OF THE INVENTION

Stamping system are known and used in the automotive industry to stamp and form various substrates or blanks into body panels for motor vehicles. In this regard, there are different-sized stamping systems that are used to form different-sized body panels. Some stamping systems, however, are not as efficient (i.e., produce to much blank material) as other stamping systems. This waste in material is not cost effective.

That is, known stamping systems generally produce a large amount of scrap metal. Although this scrap metal may be recycled, the re-sale value of the scrap metal is well below the initial retail cost of the metal blanks. Accordingly, there is a need to improve the efficiency of stamping systems by either reducing or utilizing the amount of scrap metal produced during a stamping operation, as well as increasing productivity of under-utilized stamping systems.

SUMMARY OF THE INVENTION

The present teachings provide a stamping system comprising a press system including a plurality of bolsters, and a chute system disposed below the press system. The chute system communicates with the press system via a plurality of through-holes formed in the bolsters. In this manner, parts manufactured using the press system may pass through the bolsters into the chute system.

Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:

    • FIG. 1 is a cross-sectional view of a stamping system according to the present teachings;

FIG. 2 is a top-perspective view of another stamping system according to the present teachings;

FIG. 3 is a perspective view of a bolster and die that may be used in conjunction with the present invention;

FIG. 4 is a perspective view of another stamping system according to the present teachings;

FIG. 5 is an example of a blank that may be used to produce parts from portions of metal that otherwise would be disposed of as scrap; and

FIG. 6 is an example of another blank that may be used to produce parts according to the present teachings.

DETAILED DESCRIPTION

The following description is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.

FIGS. 1-4 illustrate a stamping system 10 according to the present teachings. Stamping system 10 generally is used to stamp and form steel substrates or blanks that, subsequently, will be used as a panel or part for an automobile. Exemplary panels include side body panels, door panels, hoods, liftgates, etc. The stamping system 10 generally includes a press system 12 and a chute system 14.

Stamping system 10 is a large manufacturing device typically used in a manufacturing or assembly plant or factory, wherein the press system 12 is located on the main floor of the plant, while the chute system 14 is disposed below the press system 12 in a basement or lower level of the plant. Press system 12 includes transfer mechanisms 16 that are disposed between an upper press 18 and at least one base member or bolster 20. Bolster 20 generally supports a lower die 22 (see FIG. 3) that is used to stamp and form the substrate or blank.

Press system 12 may be any type of press system known to one skilled in the art. In this regard, various types of press systems include a tri-axes press system, a tandem press system, a cross-bar press system, a hand-line system, open-back incline (OBI) system, an in-line stamping system, and a progressive stamping system. These press systems are generally distinguishable by the type of transfer mechanisms 16 used to transfer substrates or blanks from one bolster 20 to another. Regardless, the present teachings are equally applicable to any of these types of press systems.

The press system 12 shown in FIGS. 1 and 4 are known as a tri-axes press system, where blanks are transferred from each station or bolster 20 by transfer mechanisms 16 that are disposed on carriages 24 that move along three axes (not shown) as is known in the art. In this manner, after the blank has been stamped or formed at one station 20, the transfer mechanisms 16 are moved into place by the carriages 24. The transfer mechanisms 16 then lift the blanks, and the carriages 24 move the transfer mechanisms 16 carrying the blanks to another station or bolster 20 where the blank is then deposited. The process is then repeated until the blank is fully stamped and formed. Subsequently, the finished part or blank will exit the stamping press 12 via a conveyor system 26.

The chute system 14 of the present teachings will be described in more detail. As illustrated in FIG. 1, the chute system 14 communicates with through-holes 28 that are formed in each bolster 20. That is, as best shown in FIGS. 2 and 3, the bolsters 20 may each include a plurality of through-holes 28. As the blank moves through the stamping system 12, as stated above, the blank will be transferred through a plurality of stations 20. Each station includes a support member or bolster 20 that supports a lower die 22 or some other type of forming or cutting tool (FIG. 4).

For example, as shown in FIG. 2, a stack 30 of blanks is stored at a first end 32 of the stamping system 12. The stack 30 of blanks is transferred, one at a time, through each of the stations 20 of the stamping system 12. The first station 20 in the illustrated example is a forming station 20a, and the station (bolster) 20a includes a plurality of air pins 34. The air pins 34 are used to provide air pressure to form the blank to have a desired curvature.

After the blank has been formed at the forming station 20a, the blank is transferred to the next station 20b. In FIG. 2, the illustrated stamping system 12 is a cross-bar stamping system. To transfer the blank, therefore, the cross-bars 36, which each include a plurality of finger-line devices and/or suction cups (not shown), are actuated to grasp the blank and transfer it from the forming station 20a to the next station 20b. After being formed or stamped at the station 20b, the blank is subsequently transferred to another station 20c, which may be a trim station where the blank is trimmed of any excess metal that is not required in forming the final part, or another stamping for forming station where various portions of the blank are stamped or punched out. Regardless, the blanks are transferred through each of the stations 20a-20e until the final part is achieved.

In accordance with the present teachings, at least one of the stations 20 is equipped with a lower die 22 supported thereon that is capable of forming various parts. Specifically, a referring to FIG. 3, at least one of the stations 20 is equipped with a lower die 22 capable of forming and cutting various parts from the blank. As shown in FIG. 3, the lower die 22 includes various steels or molds 38 used to form the blank to have the desired shape and contours. It should be noted, however, that various through-holes 28 are left open beside the lower die 22. These through-holes 28 provide a path of entry into the chute system 14.

More particularly, once the parts are formed and cut by compression of the blank between the upper die 18 and lower die 22, the parts are free to be disposed of through the through-holes 28 formed in the bolster 20 and into the chute system 14. To protect the parts from damage as the parts travel through the chute system 14, the chute system 14 is configured to include a plurality of baffles 40. Baffles 40 are necessary because, as stated above, the chute system 14 is generally disposed beneath the press system 12 in the basement or lower level of the stamping plant. The distance that a part may fall from the press system 12, therefore, can be up to, and sometimes greater than, twenty feet. The baffles 40 slow and cushion the travel of the parts through the chute system 14. Although only a single chute system 14 is shown, it should by understood that each station 20 may be in communication with a chute system 14.

The baffles 40 are angled such that the parts will slide down the baffles 40 in a back-and-forth manner through the chute system 14. The baffles 40 are also spaced from each other at a distance sufficient to prevent damage of the parts as they travel through the chute system 14. In this regard, the baffles 40 should also be spaced at a distance sufficient to allow the parts to travel through the chute system 14 without becoming stuck or lodged in the chute system 14.

Preferably, the baffles 40 are spaced between one and two feet apart. It should be understood, however, that the present teachings are adaptable to produce different parts having different and larger dimensions. Accordingly, the baffles 40 may be spaced apart to accommodate any size desired. Regardless, to further protect against parts becoming stuck in the baffles 40, chute system 14 may be provided with an observation system including various cameras 42 to monitor and make sure the chute system 14 remains clear. Further, various doors (not shown) may be used to access the chute system 14 to remove parts that may become lodged in the chute 14.

Another alternative includes having the baffles 40 linked together to form a purge system. In this regard, the baffles 40 may be linked together or enabled to pivot in a manner such that when the chute system 14 needs to be purged of a part that has become lodged in the chute system 14, the baffles 40 may be rotated to a substantially vertical position that enables the blockage to fall to the bottom of the chute system 14.

Once the part reaches the bottom, the parts will be guided to either a crate or some other type of storage receptacle. In this regard, the chute system 14 may include deflector devices 44 that are actuated by an air cylinder 46 or some other type of actuating device. The deflector device 44 actuate a deflector plate 48 between a first position and a second position such that a first passageway 50 or second passageway 52 is opened. In the first position, the parts may be deflected to either a storage receptacle or onto a conveyor system 54 (FIG. 5). In the second position, the deflector plate may deflect the parts to either another storage receptacle or another conveyor system 56.

Because the chute system 14 includes deflector devices 44, it should be understood that the chute system 14 may be used for purposes other than to safely direct manufactured parts. More specifically, if parts are not being manufactured using the press system 12, the chute system 14 may alternatively be used to dispose of scrap metal pieces that are formed during the stamping process. To enable the chute system 14 to dispose of scrap metal, the deflector devices 44 are actuated to the second position that enables the second passageway 52 to open. In this manner, the scrap metal traveling through the chute system 14 may be directed to a scrap metal storage receptacle or to the conveyor system 56.

Regardless whether the scrap metal is directed to a storage receptacle or to one of the conveyor systems 54 and 56, it should be understood that the present teachings provide for a chute system 14 that is switchable between a mode that directs parts manufactured with press system 12, and a mode that directs scrap metal produced during operation of the press system 12. This may be accomplished by using deflector devices 44 that actuate deflector plates 46 to open and close the first and second passageways 50 and 52. In this manner, both the parts and the scrap metal produced may be either organized or disposed of more efficiently. It should also be understood that the chute system 14 may be adapted to operate in both modes simultaneously. For example, one chute may operate in a “scrape mode” while another chute operates in a “parts mode.”

Now referring to FIG. 4, the conveyor systems 54 and 56 will now be described. As can be seen in FIGS. 1 and 4, the conveyor systems 54 and 56 are disposed adjacent the chute system 14. As stated above, conveyor system 54 is generally used for directing parts manufactured using press system 12 after the parts have traveled through the chute system 14, while conveyor system 56 is generally used to dispose of scrap metal produced during stamping operations that has traveled through the chute system 14.

With respect to conveyor system 54, as the parts exit the chute system 14, the parts may be carried by conveyor system 54 to another conveyor system 58 that carries the parts back up to the main floor of the manufacturing plant. In this manner, the parts may be sorted and stored by workers stationed on the main floor, or automatically through automation. Although a pair of conveyor systems 54 and 58 are shown to direct the parts, it should be understood that only a single conveyor system 54 may be used. Further, although the conveyor systems 54 and 58 carry the parts back to the main floor of the manufacturing plant, it should be understood that the parts may be automatically sorted and dropped into storage receptacles in the lower level or basement of the plant without departing from the spirit and scope of the present teachings.

Conveyor system 56 is also disposed adjacent chute system 14 and carried scrap metal away from the chute system 14 when the chute system 14 has been switched into its scrap metal mode. That is, conveyor system 56 operates after deflector devices 44 actuate deflector plates 48 to open the second passageways 52. By using conveyor system 56, scrap metal may be transferred and disposed of.

It should be understood that although the above described stamping system 10 has been described using a chute system 14 and conveyor systems 54, 56, and 58 that assist in directing or disposing of parts and scrap metal, the present teachings are particularly directed to a method for manufacturing parts using available portions of the blanks that otherwise would be discarded. For example, referring to FIG. 5, a blank 60 is shown that, after passing through a stamping system, will form a door panel for an automobile. To form the door panel, however, blank 60 will have to have various portions 62 cut and stamped out of the blank 60 to form, for example, a window in the door. These portions 62, generally, are disposed of as scrap metal. Notwithstanding, in accordance with the present teachings, these portions 62 may instead by used to form “free parts” 64. By the phrase “free part” is meant a part that may be made from material that otherwise would be scrap. This type of part is also known as a “piggy-back” part.

By using portions 62 that otherwise would become scrap metal to form free parts 64, an enormous cost savings can be achieved. This is because scrap metal, although recyclable, is sold at a price will below its initial retail value. Moreover, the productivity of the stamping system 10 can be increased from merely forming stamped parts such as doors and body panels by adding the additional function of forming and/or trimming free parts 64.

Accordingly, the present teachings are easily applicable to existing stamping systems that may be present in a manufacturing plant. That is, as described above, each bolster 20 of the stamping system 10 includes a plurality of through-holes 28. As these parts 64 are manufactured, therefore, the free parts 64 may pass through the through-holes 28 and enter the chute system 14 to be automatically/mechanically stored and organized. Accordingly, the only modifications to existing stamping systems to implement the present teachings entails manufacture of the chute system 14 and modification of the lower dies 22 such that the free parts 64 may be manufactured during the stamping process.

In another aspect of the present teachings, stamping systems that are not as productive (i.e., not used as much) as other stamping systems in the manufacturing plant may be modified to be solely used to manufacture various parts 66. For example, referring to FIG. 6, the blank 60 may be divided into a plurality of areas that may be used to form the same part, as (as shown) a plurality of different parts 66. In this manner, a generally used stamping system may be converted into a productive piece of equipment that may produce hundreds, and even thousands, of parts 66 per hour.

As shown in both FIGS. 5 and 6, differently shaped parts 64 and 66 may be manufactured at the same time. In this regard, it should be noted that the chute system 14 may be modified such that each of the differently shaped parts 64 and 66 are directed out the chute system 14 to either a separate storage receptacle or to a different point on the conveyor system 54. In this manner, the differently shaped parts will not require sorting and can be easily organized and stored.

Lastly, it should be understood that the stamping systems 10 described above the beneficial in that the parts manufactured using the stamping system are not required to be made at another manufacturing plant or purchased from another part. In this manner, a significant cost savings may be achieved by eliminating the need for additional manufacturing space to make the parts, and by eliminating the need to purchase these parts from another party.

The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.

Claims

1. A stamping system comprising a press assembly including at least one support member including a plurality of through-holes, said support member supporting a cutting tool such that during stamping of a blank on said cutting tool, a part manufactured during stamping may pass through said through-hole.

2. The stamping system of claim 1, further comprising a chute system in communication with said through-holes.

3. The stamping system of claim 2, wherein said chute system includes a plurality of baffles.

4. The stamping system of claim 2, wherein said chute system includes a deflector device that actuates a deflector plate between a first passageway and a second passageway.

5. The stamping system of claim 2, further comprising a conveyor system.

6. The stamping system of claim 1, further comprising a plurality of support members that support a plurality of cutting tools.

7. The stamping system of claim 6, wherein each support member is in communication with a chute system.

8. The stamping system of claim 3, wherein said baffles are movable to enable said part to be purged from said chute system.

9. A stamping system comprising:

a press system including a plurality of bolsters; and
a chute system disposed below said press system,
wherein said chute system communicates with said press system via a plurality of through-holes formed in said bolsters.

10. The stamping system of claim 9, wherein said chute system includes a plurality of angled baffles.

11. The stamping system of claim 9, wherein said chute system includes an observation system.

12. The stamping system of claim 9, wherein said chute system includes a deflector device.

13. The stamping system of claim 9, wherein said chute system is switchable between a first mode and a second mode.

14. The stamping system of claim 13, wherein said first mode directs parts manufactured using said press system, and said second mode directs scrap produced using said press system.

15. The stamping system of claim 9, further comprising a plurality of conveyor systems in communication with said chute system.

16. The stamping system of 9, wherein said stamping system is a tri-axis system, a tandem system, or a cross-bar system.

17. The stamping system of claim 9, further comprising a plurality of transfer mechanisms between said bolsters.

18. The stamping system of claim 9, wherein at least one bolster includes a cutting tool for manufacturing at least one part that may pass through said through-holes into said chute system.

19. A method for manufacturing a part comprising:

feeding a blank through a stamping assembly, said stamping assembly including at least one station that includes a through hole;
forming the part from said blank using the stamping assembly; and
passing the part through said through hole.

20. The method of claim 19, further comprising passing the part through a chute system in communication with said through hole.

Patent History
Publication number: 20080148802
Type: Application
Filed: Dec 21, 2006
Publication Date: Jun 26, 2008
Inventors: Daniel F. Nieschulz (Macomb, MI), George R. Basler (Oakland, MI), Joseph P. Meyecic (White Lake, MI), Michael A. Mersino (Macomb, MI)
Application Number: 11/614,568
Classifications
Current U.S. Class: Including Product Handling Means (72/426)
International Classification: B21D 45/00 (20060101);