Modular, multiple airflow pattern water source heat pump

-

The present invention is a water source heat pump using various modular components to determine and locate the air flow pattern through and around in multiple patterns as assembled post production in the heat pump system. The current invention uses conventional water source heat pump components, assembled in modules including a refrigerant system using a heat exchange medium existing in both the gaseous and liquid form during operation and includes all other necessary components for control, air movement, and commonly occurring processes as in conventional water source heat pumps. The current invention will use an industry standard geothermal or geoexchange source as with the earth as a heat source for heating and a heat sink for cooling in a commonly referred to as an “open loop” or “closed loop” fashion, or as a water source heat pump utilizing a mechanical means for heating or cooling a source liquid.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
REFERENCES CITED

2289809 July 1942 Sherwood 2320436 June 1943 Hull 2513373 July 1950 Sporn et al. 2581744 January 1952 Zimmerman 2751532 August 1955 Wright 2726067 December 1955 Wetherbee et al. 3035419 May 1962 Wigert 3112890 December 1963 Snelling 3167930 February 1965 Block et al. 3782132 January 1974 Lofoff 3965694 June 1976 Vignal et al. 4042012 August 1977 Perry 4255936 March 1981 Cochran 4383419 May 1983 Bottum

FIELD OF THE INVENTION

The present invention relates to a modular water source heat pump that can be assembled to allow for multiple air flow patterns.

BACKGROUND OF THE INVENTION

There are four problems related to water source heat pumps currently manufactured: The first problem facing water source heat pumps is the need for a manufacturer or distributor to carry a wide range of geothermal equipment in many different configurations. Most current manufacturers and distributors must stock a multitude of water source heat pumps in various capacities and at least 5 different airflow configurations consisting of at least a left return top outlet system, a right return top outlet system, a left return bottom outlet system, a right return bottom outlet system, and occasionally a “split” system where the air handling section is separate from the compressor/heat exchanger section. By implementing a modular water source heat pump, the main components—that are interchangeable within a range of capacities—enable a manufacturer or distributor to stock individual modules. This allows a manufacturer or distributor to carry less total inventory and be more suited to meet the varied needs of its customers. In addition, water source heat pump modules can be packaged individually, for easier warehousing and decreased shipping damage.

The second problem is that there are no manufacturers building a “straight through” water source heat pump. Most conventional heating and cooling systems are based on a “straight through” airflow configuration; where return air enters the unit from the top or bottom of the unit, and exits through the opposite end. In other words, intake air will go straight through the system. This modular water source heat pump would require less space, be less expensive, and less difficult to install versus the existing left or right air intake/top or bottom outlet style water source heat pumps available. It is important to note that a very large number of furnaces and air handlers are installed in closets in the interior of a home. With currently manufactured water source heat pumps are installed in a closet, air must enter from the left or right side. In most applications, there is not enough room in the closet to install the system.

The third problem is serviceability. Currently manufactured water source heat pumps are difficult to service due to the amount of components contained within a single enclosure. The added convenience of multiple service access panels and the ability to access components within individual modules improves service access greatly.

The fourth problem is that with currently manufactured water source heat pumps utilizing a single enclosure, if one major component fails, it may necessitate the replacement of the entire water source heat pump. Service life of the individual water source heat pump components can vary. In a modular water source heat pump, if a major component fails, only that module would need to be replaced.

SUMMARY OF THE INVENTION

The present invention is a water source heat pump using modules to accomplish the mechanical refrigeration heat transfer that can be assembled to allow multiple airflow patterns and configurations.

This modular water source heat pump can provides multiple airflow configurations.

These airflow configurations are summarized as follows:

    • 1. “Left Return Upflow”
    • 2. “Right Return Upflow”
    • 3. “Left Return Downflow”
    • 4. “Right Return Downflow”
    • 5. “Straight-Through Upflow”
    • 6. “Straight-Through Downflow”
    • 7. “Split-System” with remote air distribution module or other air distribution system

The modules can be assembled as a sub-assembly to allow for a “Split-System” whereas the compressor module may be located separately from the air distribution module. When installed in this configuration, the compressor module may be placed separately from the supplied air distribution module or with another manufacturer's air distribution unit. The compressor module may be connected by means of refrigerant piping to a refrigeration coil on a fossil fuel, electric, or other heating and cooling unit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the modular water source heat pump with modules assembled in the right return downflow configuration.

FIG. 2 is a schematic diagram of the modular water source heat pump with modules assembled in the left return downflow configuration.

FIG. 3 is a schematic diagram of the modular water source heat pump with modules assembled in the right return upflow configuration.

FIG. 4 is a schematic diagram of the modular water source heat pump with modules assembled in the left return upflow configuration.

FIG. 5 is a schematic diagram of the modular water source heat pump with modules assembled in the straight-through downflow configuration.

FIG. 6 is a schematic diagram of the modular water source heat pump with modules assembled in the straight-through upflow configuration.

FIG. 7 is a schematic diagram of the modular water source heat pump with the compressor module placed separately from the air distribution system.

DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. In particular, the number of modules necessary to comprise the entire system or unit may in actuality become more or less than three individual modules. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.

References to the mechanical operation of a water source heat pump have been omitted, to allow for more ample explanation of the Claims listed.

Referring now to FIG. 1, the individual modules are field assembled in which the compressor module with said air duct as mentioned in Claim 2 is placed in the center, with the fan module arranged as to be placed on the top of the said compressor module and the coil module placed as shown on the bottom of the unit, will allow for air, typically from a duct system; to be drawn into the unit from the left side, further directed through the duct as mentioned in Claim 2 through the compressor module, and drawn through the fan in the fan module and further delivered out of the unit through the top of the assembled unit typically back to the supply side of a duct system.

FIG. 2 is in the same arrangement as in FIG. 1, with provisions for right air return.

Referring now to FIG. 3, the individual modules are field assembled in which the compressor module with said air duct as mentioned in Claim 2 is placed in the center, with the fan module arranged as to be placed below the said compressor module and the coil module placed as shown on the top of the unit, will allow for air, typically from a duct system; to be drawn into the unit from the left side, further directed through the duct as mentioned in Claim 2 through the compressor module, and drawn through the fan in the fan module and further delivered out of the unit through the bottom of the assembled unit typically back to the supply side of a duct system.

FIG. 4 is in the same arrangement as in FIG. 3, with provisions for right air return.

Referring now to FIG. 5, the individual modules are field assembled in which the compressor module with said air duct as mentioned in Claim 2 is placed in the center, with the fan module arranged as to be placed on the top of the said compressor module and the coil module as shown on the bottom of the unit, will allow for air, typically from a duct system; to be drawn into the unit from the bottom into the coil module, further directed through the duct as mentioned in Claim 2 through the compressor section, and drawn through the fan in the fan module and further delivered out through the top of the assembled unit typically back to the supply side of a duct system.

Referring now to FIG. 6, the individual modules are field assembled in which the compressor module with said air duct as mentioned in Claim 2 is placed in the center, with the coil module arranged as to be placed on the top of the said compressor module and the fan module as shown on the bottom of the unit, will allow for air, typically from a duct system; to be drawn into the unit from the top of the assembled unit into the coil module, further directed through the duct as mentioned in Claim 2 through the compressor module, and drawn through the fan in the fan module and further delivered out through the bottom of the assembled unit typically back to the supply side of a duct system.

Referring now to FIG. 7, the modules are shown assembled as a sub-assembly to allow for a “Split-System” whereas the compressor module may be located separately from the air distribution module. When installed in this configuration, the compressor module may be placed separately from the supplied air distribution module or with another manufacturer's air distribution unit. The compressor module may be connected by means of refrigerant piping to a refrigeration coil on a fossil fuel, electric, or other heating and cooling unit. As shown in FIG. 7, the assembled modules are in the vertical upflow position. This arrangement is shown for illustration only, and may be arranged in various airflow configurations.

While various mechanical arrangements of the apparatus have been disclosed herein, it is to be understood that there are various mechanical arrangements that do not depart from the spirit of this invention, and that such mechanisms as fall within the scope of the claims are intended to be included herein.

Claims

1. A modular water source heat pump comprised of individual modules for mechanical refrigeration heat transfer whereas modular sections may be assembled in a manner in the field to comply with the needs of the airflow for the specific application:

a.) Individual modules may be assembled for multiple air flow pattern configurations of left return air inlet in a ninety-degree air flow pattern with air entering the assembled unit from the left, and air exiting the from the top of the assembled unit.
b.) Individual modules may be assembled for multiple air flow pattern configurations of right return air inlet in a ninety-degree air flow pattern with air entering the assembled unit from the right, and air exiting the from the top of the assembled unit.
c.) Individual modules may be assembled for multiple air flow pattern configurations of left return air inlet in a ninety-degree air flow pattern with air entering the assembled unit from the left, and air exiting the from the bottom of the assembled unit.
d.) Individual modules may be assembled for multiple air flow pattern configurations of right return air inlet in a ninety-degree air flow pattern with air entering the assembled unit from the right, and air exiting the from the bottom of the assembled unit.
e.) Individual modules may be assembled for multiple air flow pattern configurations of air inlet in a “straight through” air flow pattern whereas return air enters the bottom of the assembled unit and exits from the top of the assembled unit in a pattern parallel to a vertical straight line.
f.) Individual modules may be assembled for multiple air flow pattern configurations of air inlet in a “straight through” air flow pattern whereas return air enters the top of the assembled unit and exits from the bottom of the assembled unit in a pattern parallel to a vertical straight line.
g.) Individual modules may be assembled to comprise a system whereas one or more modules may be located separately for mechanical refrigeration heat transfer.

2. A modular water source heat pump as in claim 1 wherein said means for distributing air in a straight line parallel pattern, as in claim 1. e. and 1. f. is accomplished by a duct within a module that comprises the assembled unit.

Patent History
Publication number: 20080156468
Type: Application
Filed: Dec 29, 2006
Publication Date: Jul 3, 2008
Applicant:
Inventor: Jay Allen Hammond (Fort Wayne, IN)
Application Number: 11/648,380
Classifications
Current U.S. Class: Interdigitated Plural First And Plural Second Fluid Passages (165/165)
International Classification: F28F 1/00 (20060101);