DRR generation using a non-linear attenuation model
A method and system are presented for generating a DRR of an anatomical region so that the visibility within the DDR of one or more skeletal reference structures is enhanced. 3D scan data, which have been obtained from a 3D scan of the object conducted at a 3D scan energy level, are provided. The 3D scan data are modified to compensated for a difference between the ratio of bone-to-tissue attenuation at the 3D scan energy level, and the ratio of bone-to-tissue attenuation at the intensity of the imaging beam which the DRR emulates. The modified 3D scan data are related to the raw 3D scan data by a non-linear, exponential relationship. A plurality of hypothetical rays are cast through the modified 3D scan data, from the known geometry of the imaging beam. The 3D scan data are integrated along each hypothetical ray, and the integrated values are projected onto an imaging plane.
This application is a continuation of application Ser. No. 10/881,206, filed Jun. 30, 2004, which is hereby incorporated by reference.
BACKGROUNDIn image registration, an optimal transformation is sought between different image acquisitions of one or more objects. Image registration techniques may be used in the medical field to relate a pre-operative image of a patient's anatomy to a near real time image of the patient during actual treatment. During radiosurgery, for example, the change in target position at the time of treatment, as compared to its position at the time of the diagnostic treatment planning, may be detected. This may be accomplished by registering the 2D image acquired at treatment time with the 3D scan obtained at the time of treatment planning. A robust and accurate 2D-3D image registration algorithm may enable the position of the target, as viewed in the real-time 2D image, to be properly correlated with the pre-operative 3D scan. In practice, a formal mathematical transformation may be derived that best aligns the pre-operative image coordinate system with the patient's physical world coordinate system, defined for example in the treatment room.
Fiducial markers may be attached to, or implanted within, the patient before the pre-operative images are acquired, in order to accomplish a point-based alignment of the different coordinate systems. These fiducial markers are typically designed so that they can be localized relatively accurately in the pre-operative image, as well as in the real physical world. The respective localization points may then be used to calculate a rigid body transformation between the two coordinate systems.
The tracking of fiducials can be difficult for the patient, however, for a number of reasons. For example, high accuracy tends to be achieved by using bone-implanted fiducial markers, but less invasive techniques such as skin-attached markers or anatomical positions tend to be less accurate. Implantation of fiducials into a patient may be painful and difficult, especially for the C-spine, the implantation process for which may frequently lead to clinical complications. Attempts have therefore been made to develop techniques for fiducial-less tracking.
By using anatomical structures, for example skeletal or vertebral structures, as reference points, the need for fiducial markers (and ensuing surgical implantation) may be eliminated in image-guided surgery. A fiducial-less tracking system and method, which relies on skeletal structures as references, may eliminate the need for fiducial markers.
Typically, in 2D-3D image registration, DRRs (digitally reconstructed radiographs) are reconstructed from the preoperative 3D images, after which image registration is performed between the DRRs and the real-time 2D projection images.
Although fiducial-less tracking that relies on skeletal structures may overcome many of the drawbacks associated with implanted fiducials, these skeletal structures may frequently not be easily visible, or may even be hidden, in the pre-operative DRRs.
Accordingly, there is a need for an improved DRR generation technique, which can increase the constrast, and bring out the reference structures, in the DRRs that are based on the pre-operative scans.
SUMMARYA method and system are presented for generating DRRs (digitally reconstructed radiograph) of an anatomical region in a way that the visibility within the DRRs of one or more reference structures is enhanced. The DRRs represent radiographic projection images of the object that would be obtained with an imaging beam of a known intensity and projection geometry, if the object were positioned as shown in the 3D scan data.
3D scan data of the anatomical region, which result from a 3D scan conducted at a 3D scan energy level, are provided. The 3D scan data may be 3D CT scan data, for example. The 3D CT scan data are modified to compensate for a difference between the attenuation of the reference structures at the scan energy level, and the attenuation of the reference structures at the known intensity of the imaging beam. In one embodiment, the 3D CT scan data are modified by performing a mathematical operation derived from a non-linear x-ray attenuation model, and given by:
C(x,y,z)=aC0(x,y,z)ebC
- where C(x,y,z) represents the modified 3D CT scan data representative of a 3D CT voxel located at a point (x,y,z);
- a and b represent weighting coefficients;
- and C0(x,y,z) represents the unmodified 3D CT scan data, based on a linear attenuation model, of a 3D CT voxel having a location (x,y,z).
The 3D CT scan data may be CT numbers that are representative of the x-ray attenuation characteristics of corresponding CT voxels. A plurality of hypothetical rays are cast through the modified CT numbers at the known intensity of the imaging beam, and from the known projection geometry of the imaging beam. The 3D numbers are integrated along the CT voxels encountered by each cast ray, and the integrated values of the CT numbers are projected onto an imaging plane. Bi-linear interpolation of the CT numbers may be performed, followed by a 1D polynomial interpolation over voxel slices, for each voxel of interest.
A method and system is presented for tracking and aligning a treatment target, without using fiducial markers. An intensity-based, non-rigid 2D-3D image registration method and system is performed. Anatomical reference structures, for example skeletal or vertebral structures that are rigid and easily visible in diagnostic x-ray images, are used as reference points, eliminating the need for fiducial markers which must be surgically implanted. The tracking method and system of the present invention is useful in image guided radiosurgery and radiotherapy, and is particularly useful for spinal applications, i.e. for tracking skeletal structures in the body, especially in the regions containing or located close to spinal vertebrae. The method and system of the present invention, however, can also be used in any other application in which there is a need to register one image onto a different image.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the present invention.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of acts leading to a desired result. The acts are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention can be implemented by an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer, selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method. For example, any of the methods according to the present invention can be implemented in hard-wired circuitry, by programming a general purpose processor or by any combination of hardware and software. One of skill in the art will immediately appreciate that the invention can be practiced with computer system configurations other than those described below, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. The required structure for a variety of these systems will appear from the description below.
The methods of the invention may be implemented using computer software. If written in a programming language conforming to a recognized standard, sequences of instructions designed to implement the methods can be compiled for execution on a variety of hardware platforms and for interface to a variety of operating systems. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.
Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, application . . . ), as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a computer causes the processor of the computer to perform an action or produce a result.
For radiosurgical treatment of tumorous targets, the task of fiducial-less tracking is to predict patient target movement between pre-operative patient CT scanning and patient radiation treatment, based on the skeletal structures. Target movement is tracked by comparing the pre-operative 3D CT data and intra-operative x-ray 2D projection images, i.e. a 2D/3D image registration is performed. As well known, the basic problem in image registration is to find the optimal transformation that relates different representations or images of the same object. A 2D/3D registration, in particular, seeks to determine a projection mapping or transformation, from a 3D to a 2D coordinate system, such that points in each space which correspond to the same anatomical point are mapped to each other. In one embodiment, the transformation is represented, for example, by a set of non-rigid transformation parameters (dxT, dyT, dzT, r, p, w), where (dxT, dyT, dzT) represent the translations of the object, which may be a treatment target, and (r, p, w) represent global rigid rotations of the target.
In one embodiment, two orthogonal x-ray projections are used to solve for these six parameters. In this embodiment, the registration in each projection is performed individually, and the results of the registration for each projection are subsequently combined, to obtain the six 3D transformation parameters. In other embodiments, however, different projections or combinations thereof may be used to solve for the transformation parameters.
In
For projection A, the 2D motion field (dxA, dyA) is estimated by registering the x-ray image that is projected onto the image plane A, with the corresponding reference DRR image. For projection B, the 2D motion field (dxB, dyB) is estimated by registering the x-ray image that is projected onto the image plane B, with the corresponding reference DRR image. Given the 2D motion fields (dxA, dyA) for projection A, and (dxB, dyB) for projection B, the 3-D target translation (dxT,dyT,dzT), as well as the global rigid rotations (r, p, w), can be obtained for both projections A and B, by a straightforward mathematical operation.
It is to be understood, however, that the method and system described in this section can be used in any other type of image registration process between a first image acquisition of an object (which may be any kind of object and is not limited to a target region within a patient), and a second image acquisition of the object. In one embodiment, the images for which non-rigid image registration is performed are discretized images each characterized by an array of pixels, each pixel having an associated pixel value representative of the intensity of the image at a surface unit area corresponding to the pixel.
As a first step, 2D DRRs (digitally reconstructed radiographs) may be generated from pre-operative 3D scan data, in step 102. An improved DRR generation process can be implemented in step 102 to bring out the skeletal structures, which are usually not easily visible in the images, or even may be hidden. In step 102, the CT scan data are modified based on a non-linear attenuation model that emphasizes the skeletal structures and thus improves the quality of the DRRs. In the image enhancement technique, implemented for the DRRs in step 103 in flowchart 100, a top-hat filter is used to bring out the skeletal structures in the DRRs generated in step 102.
In the illustrated embodiment, image registration is performed in a selected region of interest (ROI) within the enhanced DRR, in order to improve efficiency. Accordingly, an ROI is defined in the DRR, in step 104, after enhancement of the DRRs. An ROI selection process is performed that is based on image entropy, is fully automatic, and does not require user interaction. Intra-operative 2D x-ray projection images are then generated, in near real time, in step 110. Image enhancement is performed on the x-ray images, in step 115, using a top-hat filter as in step 103.
Non-rigid image registration is then performed between the enhanced x-ray images and the enhanced DRRs, within the ROI. In particular, a similarity measure is used to compare the pixel intensities in the x-ray images and the DRR images, in order to determine any change in the position and/or orientation and/or physiological deformation of the patient. In steps 120-150, a non-rigid deformation that describes real patient movement and body deformation is defined. To define the non-rigid deformation, a full motion field is constructed that is composed of many local motion fields, i.e. a plurality of locally estimated motion vectors. To estimate local motion at a given point of interest within the ROI, a similarity measure based on pattern intensity is used to compare pixel intensities.
A full motion field that is composed of many local motions can describe any desired non-rigid deformation. Further, a full motion field derived in this manner can account for non-rigid motions (translations and/or rotations) of the object, in addition to non-rigid deformations, between different image acquisitions of the object. In order to efficiently compute the local motion vectors at any point of interest within the ROI, hierarchical mesh motion estimation and multi-level block matching (performed in conjunction with an intensity-based similarity measure) are performed. These methods allow for a fast computation of the image registration algorithm 100. A smoothness constraint is imposed to reconstruct the motion field at mesh nodes in which mismatching occurred. The non-rigid transformation parameters for the non-rigid image registration are then computed from the full motion field.
In the embodiment illustrated in
In the final steps, shown as step 155 and step 160 in
As known, CT scans can generate a 3D image of the target object, one axial slice at a time. Each axial CT slice can be viewed as being composed of a plurality of individual volume elements, called CT voxels. Each CT voxel is thus disposed within one of a plurality of axial voxel slices, each voxel slice representing a corresponding axial slice of the target object. Each CT voxel is characterized by a numerical value, called the CT number, which represents the x-ray attenuation characteristics of the corresponding CT voxel. A CT image of a target object can be viewed as a map or distribution within the object of a 3D array of CT numbers. The reconstruction of a CT image thus requires an accurate measurement of the x-ray attenuations, and an accurate determination of CT numbers.
Typically, DRRs are generated by casting hypothetical beams or rays through the CT volumetric image of the target. Each ray goes through a number of voxels of the 3D CT image 60. By integrating the CT numbers for these voxels along each ray, and projecting onto an imaging plane (shown as 70A and 70B, respectively, in
Applications such as image-guided radiosurgery require that the comparison between the DRRs and the real-time x-ray images, as well as the subsequent adjustment of the position of the x-ray source, be made very rapidly and accurately. In practice, the accuracy should be below 1 mm, and the computation time should be on the order of a few seconds. Unfortunately, it is difficult to meet both requirements simultaneously. For example, the two different modality images, i.e. CT scan images and x-ray images, have different spatial resolution and image quality. Generally, x-ray image resolution and quality are superior to the resolution and quality of DRR images, which are only synthesized images. Typically, some structures in the DRR may appear more blurred (especially normal to the CT slice plane), compared to the x-ray image. Ideally, an optimal similarity measure for a 2D/3D registration process should allow for an accurate registration to be achieved, despite such differences. Also, DRR generation relies on a proper attenuation model. Because attenuation is proportional to the mass intensity of the target volume through which the beam passes, the exact relationship between the traversed mass intensity and the CT image intensity needs to be known, in order to obtain an accurate modeling. Establishing this relationship is difficult, however, so the linear attenuation model is often used, in conventional methods and systems for DRR generation.
As is known, the linear attenuation coefficient of a material is dependent on x-ray energy. CT machines and x-ray machines work at different effective energies, however. As a result, the attenuation coefficients measured by a CT scanner are different from the attenuation of a beam of x-rays passing through the target. The skeletal structures in DRR images cannot be reconstructed very well using the linear model, the DRRs being only synthetic x-ray projection images. At the CT scan x-ray energies, the ratio of bone-to-soft-tissue attenuation is much lower than at the x-ray radiographic projection energies. Thus, in a DRR produced from a 3D CT volume, the image contrast from soft tissue tends to be comparable with the image contrast from bone, reducing the clarity of bone details, for example.
The quality of DRR images relies on proper attenuation modeling, as well as a proper interpolation scheme for interpolation the CT numbers. In one embodiment, an improved DRR generation is accomplished during step 102 (as shown in
C(x,y,z)=aC0(x,y,z)ebC
- where C(x,y,z) represents the modified CT number of a 3D CT voxel located at a point (x,y,z);
- a and b represent weighting coefficients;
- and C0(x,y,z) represents the unmodified CT number, based on a linear attenuation model, of a 3D CT voxel having a location (x,y,z).
The interpolation scheme used in one embodiment to improve the quality of DRRs is bi-linear interpolation. In this embodiment, bi-linear interpolation is performed in step 210, to integrate the CT numbers along the CT voxels that are encountered by each cast ray. In one embodiment, the bi-linear interpolation is followed by a 1-D polynomial interpolation over three voxel slices, for each voxel of interest. The three voxel slices include the voxel slice containing the voxel of interest, plus each adjacent voxel slice.
Fiducial-less tracking relies on skeletal reference structures that are usually not easily visible, or may even be hidden in the DRRs and in the x-ray projection images. Because fiducial-less tracking is based on registration of such skeletal structures, both the DRR and the x-ray images have to be enhanced to bring out the details of the vertebral structures and improve their visibility. In one embodiment, therefore, image enhancement is undertaken for both the DRRs and the x-ray projection images. In most thoracic and lumbar cases, the skeletal structures are not easily visible or even hidden in DRR and X-ray images. For these cases therefore, enhancement of the DRR and the x-ray images is necessary, in order to make registration at all possible. In cervical cases, the skeletal structures of spine are well visible in both the DRR and the x-ray images, but the details of the structures are still not clear. Accordingly, in cervical cases, the DRR and the x-ray images should be enhanced to improve the registration.
In one embodiment, the top-hat filter is designed by using a weighted combination of image opening and closing with a certain structural element. The top hat filter operator is defined mathematically as follows:
- where fe represents the enhanced image, resulting from the application of the top hat filter operator to each pixel in the original image;
- f represents the original image;
- w and b represent weighting coefficients,
- γB(f) represents a structural element for the opening of the original image f, and
- φB(f) represents a structural element for the closing of the original image f.
In expression (2) above, WTH(f)=f−γB(f) is called a white top-hat filter, whereas BTH(f)=φB(f)−f is called a black top-hat filter. The structural elements γB(f) and φB(f) are masks that are used to perform the basic morphological operation. The sizes of the structural elements vary slightly for cervical, thoracic, and lumbar applications. The empirical values are determined experimentally. The weighting coefficients w and b are determined adaptively by the amplitudes of WTH(f) and BTH(f), respectively. Empirically, the values of the weighting coefficients w and b have been found to be about 1 each (w=1, b=1), for a cervical case in which less tissue is present. In the lumbar case, in which more tissue is present, the values of w and b have been found to be greater than about 2 each (w>2, b>2). In the lumbar case, the weighting process brings out the skeletal structures to a greater degree, compared with the cervical case.
In one embodiment, image registration is conducted only in a certain region of interest (ROI) defined in the DRR. The ROI contains the treatment target (e.g. a tumor or lesion). In one embodiment, image entropy is specifically defined, in step 104 in
The Shannon entropy, known from conventional communication theory, is commonly used as a measure of information in signal and image processing. It is defined as H=−Σinpi log pi, where H represents the average information supplied by a set of n symbols whose probabilities are given by p1, p2, . . . , pn. When applied to the pixels of each image (as enhanced in steps 103 or 115 in
In one embodiment, the Shannon entropy H is modified, based on the fact that the skeletal structures occur in-bright areas. In this embodiment, a modified Shannon entropy is used for each image, which is defined as follows:
H=−Σ1Ip(I)log p(I), (3)
where again I is the image intensity level, and p(I) is the probability of the image intensity value I occurring within the ROI. In step 104 (shown in
Restricting the image registration process to within a ROI has several advantages. One advantage is that such a restriction can speed up the registration process, since the registration needs to be performed only for the ROI. For example, the similarity measure needs only be computed for the ROI, and block matching need only be performed within the ROI. Further, the registration process is more accurate when limited to an area within the ROI. The more limited the region in which registration is conducted, the less likely it is that structures within the ROI would have moved relative to each other between the time of the pre-operative CT scans and the time of the medical treatment.
Based on the improved and enhanced DRRs (step 103 in
A non-rigid image registration allows the inherent local anatomical variations that exist between different image acquisitions to be accounted for, in contrast to a rigid image registration which does not allow the overcoming of such variations. Non-rigid registration defines a deformation field that provides a translation or mapping for every pixel in the image. In one embodiment, a full motion field, composed of many local motion vectors or fields, is computed in order to derive the non-rigid deformation field.
In order to estimate local motion fields, in one embodiment, a multi-level block matching method is used in conjunction with a similarity measure based on pattern intensity. This approach allows the local motion to be rapidly and accurately estimated in most parts of the ROI. Multi-level block matching, which allows for computational efficiency, is described in conjunction with a rigid registration algorithm, in a commonly owned application, U.S. Ser. No. 10/652,786 (the “'786 application”), incorporated by reference in its entirety. A similarity measure based on pattern intensity, used in conjunction with a registration algorithm based on rigid transformations, i.e. the “FAST 6D algorithm” developed by Accuray, Inc. for use with the Cyberknife radiosurgery system, is described in full in commonly owned applications, U.S. Ser. No. 10/652786 (the “'786 application”), Ser. No. 10/652717 (the “'717 application”), and Ser. No. 10/652785 (the “'785 application”), which are all incorporated by reference in their entireties. In the present patent, the pattern intensity based similarity measure and the multi-level block matching method are used in conjunction with a registration algorithm based on a non-rigid (rather than a rigid) transformation. The pattern intensity-based similarity measure, originally developed for a rigid image registration algorithm, provides a powerful and efficient technique for solving the 2D/3D image registration problem, also in a non-rigid framework.
In one embodiment, block matching is performed, i.e. a small block centered around a point of interest is used in order to locally estimate the displacements at each desired point within the ROI. As known, when using block matching to register a first image onto a second image, the first image is divided into different blocks, typically rectangular boxes of equal size. Each point of interest, which may be a mesh node, or may be a non-node pixel that is surrounded by mesh nodes, is taken as the center of one of the blocks. These blocks are then translated so as to maximize a local similarity criterion, which in one embodiment is the pattern intensity based similarity measure, described above.
In block matching methods, it is generally assumed that each pixel in a block has the same motion, and a block matching algorithm is typically used to estimate the motion vectors for each block. In a block matching algorithm used in one embodiment, a search is conducted for a matching block in the second image, in a manner so as to maximize a measure of similarity, based on pattern intensity, between the respective blocks. The search is for a location of the maximum in the similarity measure function, the maximum representing the existence of a matching block in the second image. The search may be conducted within a search window that is defined around the point of interest and that contains the block.
In any block matching algorithm, it is important to optimize the search strategy, and to select an appropriate block size. For small blocks, the translational rigid model is typically assumed. Even though rigid rotations or some other complicated deformations exist, the rigid body translation model is valid for estimating the translations for the block center point. When rotations or other deformations exist in addition to the translations, the accuracy increases with decreasing block size, and decreases with increasing block size. With the use of smaller block sizes, however, the possibility of mismatching increases. In one embodiment, a block size selection strategy is adopted in which it is assumed that larger blocks are needed for larger displacements, and that smaller blocks are need for smaller displacements.
In
in Level 2 and Level 3, respectively, as indicated in the figure. In the lowest resolution level (Level 3), a large search range is used to enable estimation of large displacements. A very small search range (−2, +2) is used in the rest of the resolution levels.
The results at the lower resolution level serve to determine rough estimates of the displacements. The output at the lower level is then passed onto the subsequent higher resolution level. The estimated motion vector (in most cases, a translation vector) for the block is successively refined, using the higher resolution images. In the final matching results, the accuracy of the estimated translations depends on the spatial resolution of the highest resolution images (shown as level 1 in
There is some risk in multi-level matching. It is possible that the estimate at lower levels may fall in a local maximum, and far away from the global maximum that is being sought. In this case, further matchings at subsequent higher resolution levels may not converge to its global maximum. To overcome this risk, multiple candidates are used for the estimates, in one embodiment. Many candidates that have shown optimal matching results are passed on from the lower levels to the higher resolution levels. The more candidates that are used, the more reliable are the estimates. In one embodiment, the best candidates are ranked by the similarity measure function values.
In one embodiment, a similarity measure based on pattern intensity is used, in conjunction with multi-level block matching. As mentioned earlier, this similarity measure is a key element contributing to the success of the “FAST 6D algorithm,” described in the commonly owned '786 application, '717 application, and '785 application. In one embodiment, the similarity measure is determined by forming a difference image between the “live” (or near real time) x-ray projection images and the DRR images, and applying upon each pixel of the difference image a pattern intensity function. Specifically, the difference image Idiff(i,,j) is formed by subtracting a corresponding pixel value of the pre-operative DRR image from each pixel value of the intra-operative x-ray projection image, within the ROI:
Idiff(i,j)=ILive(i,j)−IDRR(i,j) (4)
In equation (4), I(i,j) represents the image intensity value of a pixel located at the i-th row and j-th column of each pixel array for the respective image. Specifically, Idiff(i,j) represents an array of pixel values for a difference image formed by subtracting the corresponding pixel values of the second image from each pixel value of the first image. Ilive(i,j) represents the (i,j)-th pixel value of the first image of the object. IDRR(i,j) represents the (i,j)-th pixel value of the second image of the object. The similarity measure operates on this difference image, and is expressed as the summation of asymptotic functions of the gradients of the difference image over the pixels within a neighborhood R:
In equation (5) above, the constant σ is a weighting coefficient for the pattern intensity function. The sensitivity of the solution to the variation of x-ray image can be minimized by careful selection of this constant. The larger the weighting coefficient, the more stable the results. However, the choice of a entails a tradeoff between stability and accuracy. When the value of σ is too large, some small details in the images cannot be reflected in the similarity measure. Based on the experiments, the empirical value for σ is in the range from about 4 to about 16, in one embodiment.
Equations (5) and (6) for pattern intensity have several advantages. First, the difference image filters out the low frequency part that predominantly consists of the soft tissues, and keeps the high frequency part that predominantly consists of the skeletal structures. This feature makes the algorithm robust to some brightness intensity difference between live and DRR images. Second, because of the asymptotic function, the measure is less affected by the pixels whose intensity value slightly deviates from its neighboring pixels. These types of pixels are thought to contain random noise. Third, because the asymptotic function quickly approaches to zero when the variable increases, large intensity differences such as image artifacts have the same effects on the similarity measure regardless of their magnitude. Due to this feature, the pattern intensity is less sensitive to image artifacts.
The estimation of local motion fields using block matching together with hierarchical mesh motion estimation, as well as the reconstruction of the full motion field from the plurality of locally estimated motion fields, are performed in steps 120-150 of the flowchart shown in
In one embodiment, a global translation of the entire image (measured as a translation of the image center of the image) is first estimated, then used as the initial estimates for all further local motion estimation. In other words, a rough estimate is made of the center displacement for the entire image, and is used as the starting estimate for all local displacements. Referring back to
After global motion estimation, the next step 130 (see
With a 2D mesh, motion compensation within each mesh element or patch may be accomplished by deriving a spatial transformation between the images, where the transformation parameters are computed from the nodal motion vectors, i.e. from the motion vectors that are estimated for the mesh nodes that are located at the vertices of the mesh. In other words, mesh-based motion estimation consists of finding a spatial transformation that best maps one set of mesh elements in a first image acquisition onto another set of mesh elements in a second image acquisition. In particular, mesh motion estimation consists of finding the vertices of corresponding mesh elements in the other image, i.e. finding the corresponding mesh nodes in the other image, such that errors are minimized in the overall motion field. Typically, a number of mesh nodes are selected in one image, and the corresponding mesh nodes in the other image are estimated.
For any pixel located within a mesh element (as opposed to being located on the vertices of the mesh elements), the mapping between different image acquisitions is performed through interpolation. The local motion vectors for such pixels are estimated by interpolating from the nodal motion vectors that were estimated for the mesh nodes that surround the pixel.
In one embodiment, hierarchical mesh motion estimation may be performed. By hierarchical mesh motion estimation, it is meant that nodal motion is estimated for the mesh nodes that define the mesh structure, for each of a plurality of mesh resolution levels. Motion estimation performed with a course mesh provides the initialization for the subsequent (finer) resolution levels of the mesh. To estimate the motion of each mesh node, multi-level block matching may be performed.
For most mesh nodes, the estimates of motion are reliable and accurate. For a few nodes where mismatching may occur and the estimation may not be reliable, the displacements need to be reconstructed by the surrounding node displacements. Accordingly, the next step in the registration algorithm flow chart in
Local motion estimation relies on the local image content. In some smooth local regions, mismatching may occur. During mesh motion estimation, the estimation in most nodes is pretty accurate. For a few nodes where mismatching occurs, the motions should be reconstructed from their surrounding nodes. What is known a priori is matter coherence of bone and tissue, and accordingly, the smoothness of local motion. In other words, the estimated local motion vectors are thought to be smooth and continuous, because of matter coherence. By imposing this physically-based smoothness constraint, a cost function is formulated to reconstruct the motion field.
In one embodiment, the cost function is expressed mathematically as follows:
E(d)=∫∫β(d−u)2dxdy+λ∫∫(d,x2+d,y2)dxdy (7)
In equation (7) above, E(d) represents the cost function, d represents a desired local estimate for a nodal motion vector at coordinates (x,y), u represents a locally estimated nodal motion vector at coordinates (x,y), and β represents a reliability constant that ranges from 0 to 1, where β=0 indicates an unreliable estimation, and β=1 indicates a reliable estimation.
By performing a finite difference of the derivatives over the mesh grids, a discretized form for the cost function in equation (7) is expressed as:
E(di,j)=ΣΣβi,j(di,j−ui,j)2+λΣΣ[(di,j−di−1,j)2+(di,j−di,j−1)2] (8)
where ui,j represents the locally estimated translations, di,j is the local motion desired, βi,j=1 if the estimation is reliable and βi,j=0 if the estimation is unreliable. The first term on the right side of equation (8) reflects the fidelity to the observed data in the reconstruction. The second term imposes the smoothness constraints on the motion field in two spatial directions.
The minimization of the cost function given by equation (8) results in a system of simultaneous linear equations
In one embodiment, the iterative algorithm of successive-over relaxation (SOR), which is fast and convergent, is used to solve the equations:
di,j(n+1)=di,j(n)−ω[(βi,j+4λ)di−1,j(n)−λ(di−1,j(n)+di+1,j(n)+i,j−1(n)+di,j+1(n))−βi,jui,j]/(βi,j+4λ) (10)
Once all the nodal motion vectors have been estimated at all the mesh nodes, the translations for any point (or pixel) inside the ROI can be computed by interpolation.
Assuming the motion vector (dx(i),dy(i)) for nine nodes, the motion vector (dx, dy) at the point of interest is computed using the following expressions:
where N(i) is the shape function for the node (i), and where N(i) for I=1, 2, . . . 9 are given as follows:
N(1)=(1−ξ)(1−η)/4−(N8+N5)/2,
N(2)=(1−ξ)(1−η)/4−(N5+N6)/2,
N(3)=(1+ξ)(1+η)/4−(N6+N7)/2,
N(4)=(1−ξ)(1+η)/4−(N7+N8)/2,
N(5)=(1−ξ2)(1−η)/2,
N(6)=(1−ξ)(1−η2)/b 2,
N(7)=(1−ξ2)(1+η2)/2,
N(8)=(1−ξ)(1−η2)/2,
N(9)=(1−ξ2)(1−η2). (12)
Using steps 120, 130, and 140, described above, the local motion vectors can be estimated for a plurality of points of interest within the ROI. The full motion field is obtained as a composite or superposition of all of the local motion vectors that are estimated for the many points of interest that have been selected for motion estimation.
The final step in the image registration process is target localization, namely deriving the target translations and rotations from the full motion field that has been determined. In one embodiment, non-rigid image registration seeks to determine a projection mapping or transformation between different coordinate systems in respective image acquisitions such that points in each space which correspond to the same anatomical point are mapped to each other. In one embodiment, the transformation is represented by a set of non-rigid transformation parameters (dxT, dyT, dzT, r, p, w), where (dxT, dyT, dzT) represent the translations of the target, and (r, p, w) represent rotations of the target.
Referring back to
dxT=(dxTA+dxTB)/2,
dyT=(dyTA−dyTB)/√{square root over (2)},
dzT=(dyTA+dyTB)/√{square root over (2)} (13)
The global rigid rotations (r, p, w) can be calculated from the motion fields (dxA, dyA) in projection A and (dxB, dyB) in projection B. Using the target as the rotation center, global rigid rotations are useful for position and rotation correction and compensation during initial patient alignment and treatment. Because the target translation is already calculated, the calculation of the global translation is not needed. To get the three rotations in 3D patient coordinates, three 2D in-plane rotations are first computed, including the in-plane rotations θA and θB in projections A and B, respectively, and the in-plane rotation θx in a plane perpendicular to the inferior-superior axis. Approximately, the global rotations can be expressed as:
r=θx,
p=(θB−θA)/√{square root over (2)},
w=(θB+θA)/√{square root over (2)}, (14)
Estimation of θA and θB is directly based the 2D motion fields in projections A and B, respectively. To estimate θx, a plane is first defined, which passes the target point and is perpendicular to the axis x in the 3D patient coordinate system. Then the motion field is calculated from the two motion fields (xA, yA) and (xB, yB) in projections A and B, respectively.
Assuming (dx, dy) is the motion field in the corresponding coordinate (x, y) and θ is the global rotation. When the rotation is small (<10°), the following transformation equation is valid:
Given (dx,dy) and (x,y) in many points, θ can be easily calculated using least square minimization method
Using equations (14) and (16) above, the average rigid transformation parameters can be obtained, in step 160 illustrated in
In one embodiment, the apparatus 300 is configured to perform mesh motion estimation, and to perform multi-level block matching at each mesh node. In this embodiment, the apparatus 300 includes: 1) a mesh grid generator 310 configured to generate in the DRRs a mesh grid defined by a plurality of mesh nodes or vertices; 2) a nodal motion estimator 320 configured to estimate at least one nodal motion vector for each mesh node; and 3) a motion field interpolator 330 configured to determine a local motion vector for each of a plurality of points of interest within the DRR, by interpolating from the surrounding mesh nodes, i.e. by interpolating from the nodal motion vectors that have been estimated for the mesh nodes that surround each of the plurality of points of interest. In an embodiment in which the DRR has been cropped so as to include a specific ROI, so that image registration is restricted to an ROI within the DRR, the motion field interpolator 330 determines the local motion vectors for each of a plurality of points of interest within an ROI defined within the DRR. The ROI can be defined so as to maximize image entropy within the ROI, as explained before.
In one embodiment, the system 300 performs hierarchical mesh tracking, i.e. mesh nodal motion estimation is performed for the mesh nodes of the mesh structures defined at each of a plurality of mesh resolution levels. Preferably, these mesh resolution levels are successively increasing mesh resolution levels, i.e. the mesh grid at each successive mesh resolution level has a number of mesh nodes that is greater, compared to the number of mesh nodes at each previous mesh resolution level. In this embodiment, the mesh grid generator 310 is configured to repeat, at each of a plurality of mesh resolution levels, the act of generating a mesh grid defined by a plurality of mesh nodes, and the nodal motion estimator 320 is similarly configured to repeat, at each of a plurality of mesh resolution levels, the act of estimating the nodal motion vector for each mesh node. In this embodiment, the motion field interpolator interpolates from nodal motion vectors that have been determined at the final mesh resolution level.
In one embodiment, the mesh nodes at each mesh resolution level after the first level include both previously existing nodes, and nodes that are newly added on, at the current level. In this embodiment, the nodal motion estimator 320 is configured to pass on, at each mesh resolution level, one or more nodal motion vectors that have been estimated at the current mesh resolution level, onto a subsequent mesh resolution level. In particular, for the previously existing nodes, the nodal motion estimator 320 uses the nodal motion vectors that were estimated during a previous mesh resolution level, and that were passed onto the current level from the previous level. The nodal motion estimator 320 includes an interpolator 321, which interpolates from the nodal motion vectors estimated for the previously existing nodes, in order to estimate the nodal motion vectors for the newly added nodes. The nodal motion estimator 320 further includes a nodal motion refiner 323. For both previously existing nodes and newly added nodes, the nodal motion refiner 323 refines the nodal motion vector that has been estimated for each node.
In one embodiment, the nodal motion refiner 323 refines the nodal motion vector by performing multi-level block matching, using a pattern-intensity based similarity measure. In this embodiment, the nodal motion refiner 323 defines a block centered on each mesh node in the DRR, and searches for a matching mesh node in the x-ray projection image that maximizes a similarity measure between the block in the DRR, and a matching block in the x-ray image that is centered on the matching mesh node. In one embodiment, the similarity measure is given by equations (5) and (6) above. The nodal motion refiner 323 then refines and modifies the nodal motion vector that was estimated for the particular mesh node, until the nodal motion vector describes a mapping of the mesh node onto the matching mesh node.
In one embodiment, the nodal motion refiner 323 performs multi-level block matching, i.e. repeats for a plurality of image resolution levels the acts of defining a block centered on the mesh node of interest, searching for the matching mesh node, and refining the nodal motion vector. In one embodiment, the nodal motion refiner 323 defines a search window around the mesh node of interest, and searches within the search window for a maximum in the similarity measure. Because several local maximums may exist, in addition to the desired global maximum, the nodal motion refiner 323 preferably reviews a plurality of candidates when searching for the location of the maximum in the similarity measure.
In one embodiment, the nodal motion estimator 320 is configured to estimate a global translation of the DRR, and to use the global translation as an estimate for the nodal motion vector for each mesh node in the first mesh resolution level. The global translation represents a translation of the image center of the DRR.
In one embodiment, the apparatus 300 further includes a motion field reconstructor 328. The motion field reconstructor 328 is configured to reconstruct the nodal motion vector for any mesh node at which mismatching occurs, i.e. for which the estimated nodal motion vector is unreliable. The motion field reconstructor 328 reconstructs such unreliable nodal motion vectors by interpolating from the mesh nodes that surround the unreliable mesh node. In this embodiment, the nodal motion estimator 320 computes the difference between the nodal motion vector for a mesh node, and the median nodal motion vector computed from its surrounding 9 nodes. If the difference is less than a predefined threshold, the node is considered as a reliable node, otherwise it is considered as an unreliable node. The nodal motion vector for an unreliable node is replaced with the median values, and passed on to the subsequent mesh.
In one embodiment, the motion field reconstructor 328 reconstructs nodal motion vectors for unreliable nodes by imposing a smoothness constraint on the nodal motion vectors estimated by the nodal motion estimator 320. In one embodiment, the motion field reconstructor 328 imposes the smoothness constraint by formulating a cost function given by equation (8) above, and minimizing the cost function by solving the system of linear equations, as expressed in equation (9).
In one embodiment, the motion field interpolator 330 interpolates, for any desired point of interest within the ROI of the DRR, the local motion vector for the point of interest by interpolating from the nodal motion vectors estimated for the surrounding mesh nodes, by performing the summation described in equations (6) and (7).
The apparatus 300 may include a computer-readable medium having stored therein computer-readable instructions for a processor. These instructions, when read and implemented by the processor, cause the processor to: 1) input and store, for a first image of an object, data representative of a mesh grid having a plurality of mesh nodes, for each of a plurality of mesh resolution levels; 2) estimate, for each mesh node in each mesh resolution level, at least one nodal motion vector that describes a matching of the mesh node onto a corresponding mesh node in a second image; and 3) compute a local motion vector for one or more points of interest in the first image by interpolating from the nodal motion vectors estimated at a final mesh resolution level for the mesh nodes that surround each point of interest.
The computer-readable medium may have stored therein further computer-readable instructions for the processor. These further instructions, when read and implemented by the processor, cause the processor to detect any mesh node for which a mismatch occurs between the mesh node (in the first image) and its corresponding mesh node (in the second image), and to reconstruct the nodal motion vector for the detected mesh node by imposing a smoothness constraint. The computer-readable medium may be any medium known in the art, including but not limited to hard disks, floppy diskettes, CD-ROMs, flash memory, and optical storage devices. The computer readable instructions described above may be provided through software that is distributed through the Internet.
The system 400 includes means 405 for providing the 3D scan data of the anatomical region. The 3D scan data may be CT scan data provided by a CT scanner. Alternatively, MRI scan data, provided by an MRI system, may be used. Alternatively, PET scan data, provided by a PET system, may be used. In these different embodiments, the means 305 for providing 3D scan data may include, but is not limited to, a CT scanner, an MRI system, and a PET system, respectively. The system 400 includes a DRR generator 410 configured to generate at least one DRR (digitally reconstructed radiograph) of the anatomical region, using the 3D scan data and the known locations, angles, and intensities of the imaging beams.
The system 400 further includes: 1) an ROI selector 420 configured to select an ROI (region of interest) within the DRR, the ROI containing the treatment target and preferably at least one reference structure; 2) an image enhancer 430 configured to enhance the DRRs and the x-ray images by applying a filter operator to the DRR and to the x-ray image; 3) a similarity measure calculator 440 configured to determine a measure of similarity between the DRR and the x-ray image; 4) a motion field generator 450 configured to generate a 3D full motion field by estimating, for each of a plurality of resolution levels, one or more 2D local motion fields within the ROI, using the similarity measure; and 5) a parameter determiner 460 configured to determine a set of non-rigid transformation parameters that represent the difference in the position and orientation of the treatment target as shown in the x-ray image, as compared to the position and orientation of the treatment target as shown in the DRR, from the 3D full motion field.
In an embodiment in which CT data are used, the 3D scan data consist of a plurality of CT numbers representing the image intensity of corresponding 3D CT voxels, where each CT voxel represents a corresponding volume element of the anatomical region, and each CT number represents the attenuated intensity of an x-ray CT beam that has been generated at a CT scan energy level and that has traversed the corresponding volume element of the anatomical region.
The system 400 further includes a scan data modifier 470, configured to modify the 3D scan data before the 3D scan data are used by the DRR generator 410, so as to compensate for the difference between the ratio of bone-to-tissue attenuation at the CT scan energy level, and the ratio of bone attenuation at the x-ray projection energy level, i.e. at the known intensity level of the imaging beam. The scan data modifier 470 includes a processor for performing on each CT number a mathematical operation derived from a non x-ray attenuation model, where the mathematical operation is given by:
C(x,y,z)=aC0(x,y,z)ebC
In this formula, C(x,y,z) represents the modified CT number of a 3D CT voxel having a location (x,y,z); a and b represent weighting coefficients; and C0(x,y,z) represents the unmodified CT number, based on a linear attenuation model, of a 3D CT voxel having a location (x,y,z).
In one embodiment, the DRR generator 410 includes: 1) a ray casting subsystem 412 configured to cast a plurality of hypothetical rays through the 3D CT voxels, at the known intensities and from the known positions and angles; 2) a CT number integrator 414 for integrating along each hypothetical ray the CT numbers corresponding to the CT voxels that are traversed by the hypothetical ray; 3) a projector 416 for projecting the integrated values of the CT numbers onto an imaging plane.
In one embodiment, the CT number integrator 414 includes a bi-linear interpolator 416 configured to perform bi-linear interpolation on the voxels encountered by each ray, and a polynomial interpolator 418 configured to perform, for each voxel of interest within a voxel slice, a one-dimensional polynomial interpolation over the voxel of interest and over voxels on each adjacent voxel slice. Bi-linear interpolation, as well as 1-D polynomial interpolation, are well known, and standard software and/or algorithms that are commercially available may be used.
In one embodiment, the filter operator applied by the image enhancer 430 is a top-hat filter, configured to select the pixel having the brightest pixel value from each of at least two different neighborhoods within the DRR and the x-ray image, and to eliminate the remaining pixels in the neighborhoods. Mathematically, the top hat filter is defined by equation (2) above.
In one embodiment, the ROI selector includes an entropy calculator that calculates a modified Shannon entropy of the DRR. The modified Shannon entropy is given by: H=−ΣII P(I)log P(I), where I is the value of the intensity of the image, at each pixel of the image, and P(I) is the probability of an image intensity value I occurring within the ROI. The ROI selector further includes region selecting processor for selecting the ROI so that the entropy measure H is maximized within the ROI. Calculation of Shannon entropy is well known in signal processing. Also well known is maximizing (or minimizing) an entropy function, for desired purposes. Therefore, standard software and/or algorithms that are commercially available may be used in the ROI selector 420, with only minimal trivial revisions to incorporate the modification indicated in the formula for modified Shannon entropy.
In one embodiment, the similarity measure calculator 440 is configured to form a difference image by subtracting a corresponding pixel value of the DRR from each pixel value of the near real time (or “live”) x-ray image, so that the pixel value at the i-th row and j-th column of the array of pixel values for the difference image is given by:
Idiff(i,j)=ILive(i,j)−IDRR(i,j).
The similarity measure calculator 440 is also configured to apply upon each pixel of the difference image a pattern intensity function, defined by summing asymptotic functions of the gradients of the difference image over the pixels within a neighborhood R. R is defined so that the gradients of the difference image can be considered in at least four directions: a) a substantially horizontal direction; b) a substantially vertical direction; c) a substantially diagonal direction at about 45 degrees; and d) a substantially diagonal direction at about −45 degrees. The pattern intensity function is characterized by a mathematical formulation given by equations (5) and (6) above.
The details of the motion field generator 450 have been fully described above in conjunction with
x=(xA+xB)/2, y=(yA−yB)/√{square root over (2)}, z=(yA+yB)/√{square root over (2)},
r=θx, p=(θB−θA)/√{square root over (2)}, w=(θB+θA)/√{square root over (2)} (17)
Experiments in 2D/3D image registration, in accordance with the algorithm illustrated in the flow chart in
In order to evaluate the image registration algorithm, the target registration error (TRE) has been computed. The TRE is computed as the difference between the displacements obtained using the fiducial-less tracking, and the displacements using fiducial tracking:
In sum, a method and system is disclosed in this patent for generating DRRs from 3D scan data, in a way that the visibility within the DRRs of desired structures is enhanced. Enhancing the quality of DRRs is useful, for example, in fiducial-less tracking of treatment targets for image-guided surgery, during which a non-rigid image registration is performed between pre-operative DRRs and near real time x-ray projection images.
While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
1. A method of generating a digitally reconstructed radiograph (DRR) from 3D scan data of an object so as to increase the visibility within the DRR of one or more structures in the object, the DRRs representing a radiographic projection image of the object that would be obtained with a 2D imaging beam of a known intensity, origination position, and angle if the object were positioned as shown in the 3D scan data, the method comprising:
- providing 3D scan data of the object, the 3D scan data resulting from a 3D scan conducted at a 3D scan energy level;
- modifying the 3D scan data to compensate for a difference between the attenuation of the one or more structures at the scan energy level and the attenuation of the one or more structures at the known intensity of the 2D imaging beam;
- casting a plurality of hypothetical rays through the modified 3D scan data from the known intensity, the known origination position, and angle of the 2D imaging beam; and
- integrating the 3D scan data along each hypothetical ray, and projecting the integrated value of the 3D scan data onto an imaging plane.
2. The method in accordance with claim 1, wherein the 3D scan data comprise at least one of CT scan data, MRI scan data, PET scan data, and ultrasound scan data.
3. The method in accordance with claim 1, wherein the 3D scan data comprise a plurality of CT numbers representing the image intensity of corresponding 3D CT voxels, each CT voxel representing a corresponding volume element of the object, each CT number representing the attenuated intensity of an x-ray CT beam that has been generated at a CT scan energy level and that has traversed the corresponding volume element of the object.
4. The method in accordance with claim 3, wherein each CT voxel is disposed within one of a plurality of axial voxel slices, each axial voxel slice representing a corresponding axial slice of the object.
5. The method in accordance with claim 4, wherein the act of integrating the CT numbers along the hypothetical ray comprises:
- performing a bi-linear interpolation for the CT voxels encountered by the ray; and
- for each voxel of interest, performing a one-dimensional polynomial interpolation over the voxel of interest and for voxels on each adjacent voxel slice.
6. The method in accordance with claim 1, wherein the object comprises an anatomical region, and the one or more structures comprise at least one reference structure within the anatomical region, and at least one target within the anatomical region.
7. The method in accordance with claim 6, wherein the reference structure comprises a skeletal structure.
8. The method in accordance with claim 6, wherein the anatomical region comprises at least one of: a cervical region of the spine; a thoracic region of the spine; and a lumbar region of the spine.
9. The method in accordance with claim 6, wherein the anatomical region comprises bone and tissue, and wherein the act of modifying the 3D scan data compensates for a difference between the ratio of bone-to-tissue attenuation at the energy level of the 3D scan, and the ratio of bone-to-tissue attenuation at the known intensity of the imaging beam.
10. A system for generating a digitally reconstructed radiograph (DRR) from 3D scan data of an object to increase the visibility within the DRR of one or more structures in the object, the DRRs representing a radiographic projection image of the object that would be obtained with a 2D imaging beam of a known intensity, origination position, and angle if the object were positioned as shown in the 3D scan data, the system comprising:
- means for providing 3D scan data of the object, wherein the 3D scan data are obtained from a 3D scan conducted at a 3D scan energy level;
- a scan data modifier configured to compensate for a difference between the attenuation of the one or more structures at the 3D scan energy level, and the attenuation of the one or more structures at the known intensity of the 2D imaging beam; and
- a DRR generator configured to generate at least one DRR of the object from the 3D scan data, the DRR generator comprising:
- a ray casting subsystem configured to cast a plurality of hypothetical rays through the modified 3D scan data at the known intensity of the 2D imaging beam and from the known origination position and angle of the 2D imaging beam;
- a CT number integrator configured to integrate the 3D scan data along each hypothetical ray; and
- a projector configured to project the integrated values of the 3D scan data onto an imaging plane.
11. The system in accordance with claim 10, wherein the 3D scan data comprise at least one of CT scan data, MRI scan data, PET scan data, and ultrasound scan data.
12. The system in accordance with claim 10, wherein the 3D scan data comprise a plurality of CT numbers representing the image intensity of corresponding 3D CT voxels, each CT voxel representing a corresponding volume element of the object, each CT number representing the attenuated intensity of an x-ray CT beam that has been generated at a CT scan energy level and that has traversed the corresponding volume element of the anatomical region.
13. The system in accordance with claim 12, wherein each CT voxel is disposed within one of a plurality of axial voxel slices, each axial voxel slice representing a corresponding axial slice of the object.
14. The system in accordance with claim 12, wherein the CT number integrator comprises:
- a bi-linear interpolator configured to perform bi-linear interpolation on the CT voxels encountered by each ray; and
- a polynomial interpolator configured to perform, for each voxel of interest within a voxel slice, a one-dimensional polynomial interpolation over the voxel of interest and for voxels on each adjacent voxel slice.
15. The system in accordance with claim 10, wherein the object comprises an anatomical region, and the one or more structures comprise at least one reference structure within the anatomical region, and at least one target within the anatomical region.
16. The system in accordance with claim 15, wherein the reference structure comprises a skeletal structure.
17. The system in accordance with claim 15, wherein the anatomical region comprises at least one of: a cervical region of the spine; a thoracic region of the spine; and a lumbar region of the spine.
18. The system in accordance with claim 15, wherein the anatomical region comprises at least some bone and at least some tissue, and wherein the scan data modifier is configured to compensate for a difference between the ratio of bone-to-tissue attenuation at the energy level of the 3D scan, and the ratio of bone-to-tissue attenuation at the known intensity of the imaging beam.
19. The system in accordance with claim 10, wherein the means for providing 3D scan data comprises at least one of a CT scanner, an MRI scanner, a PET scanner, and an ultrasound scanner.
20. An image registration system for registering at least one 2D image of an anatomical region with previously generated 3D scan data of the anatomical region, the anatomical region including at least one treatment target and at least one reference structure, wherein the 2D image is generated in near real time by detecting one or more radiographic imaging beams after the imaging beams have traversed at least a portion of the anatomical region, the imaging beams having known intensities and known positions and angles relative to the anatomical region, the system comprising:
- means for providing the 3D scan data of the anatomical region;
- a scan data modifier configured to modify the 3D scan data so as to compensate for a difference between the ratio of bone-to-tissue attenuation at the energy level of the 3D scan, and the ratio of bone-to-tissue attenuation at the energy level of the imaging beam used for the near real-time 2D image;
- a digitally reconstructed radiograph (DRR) generator configured to generate at least one DRR of the anatomical region, using the 3D scan data and the known locations, angles, and intensities of the imaging beams;
- a motion field generator configured to generate a 3D full motion field within the DRR by estimating a plurality of local motion fields within the DRR; and
- a parameter determiner configured to determine from the 3D full motion field a set of non-rigid transformation parameters that represent the difference in the position and orientation of the treatment target as shown in the 2D image, as compared to the position and orientation of the treatment target as shown in the DRR; and
- means for adjusting the position and orientation of the treatment target to correct for the difference.
21. A system in accordance with claim 20, wherein the DRR generator comprises:
- a ray casting subsystem configured to cast a plurality of hypothetical rays through the modified 3D scan data at the known intensity and from the known origination position and angle of the imaging beam;
- a CT number integrator configured to integrate the 3D scan data along each hypothetical ray; and
- a projector configured to project the integrated values of the 3D scan data onto an imaging plane.
22. The system in accordance with claim 20, wherein the motion field generator comprises: and
- a mesh grid generator configured to generate in the 2D image a mesh grid having a plurality of mesh nodes;
- a nodal motion estimator configured to estimate, for each mesh node in the 2D image, at least one nodal motion vector that describes a matching of the mesh node with a corresponding mesh node in the DRR;
- a motion field interpolator configured to determine a local motion vector for each of a plurality of points of interest within the 2D image, by interpolating from the nodal motion vectors of the mesh nodes that surround each point of interest.
23. The system in accordance with claim 20, wherein the mesh grid generator is configured to repeat, at each of a plurality of mesh resolution levels, the act of generating of the mesh grid;
- wherein nodal motion estimator is configured to repeat, at each of the plurality of mesh resolution levels, the act of estimating the at least one nodal motion vector for each mesh node; and
- wherein the interpolated nodal motion vectors comprise nodal motion vectors that have been estimated at a final one of the plurality of mesh resolution levels.
24. The system in accordance with claim 20, further comprising a motion field reconstructor configured to reconstruct the nodal motion vector for a mesh node if any nodal motion vector estimated for any mesh node is unreliable.
25. A method of registering a near real-time 2D x-ray image of an anatomical region with 3D scan data representative of a preoperative image of the anatomical region, the anatomical region including at least one reference structure and at least one treatment target, the method comprising:
- modifying the 3D scan data, and reconstructing from the modified 3D scan data at least one digitally reconstructed radiograph (DRR);
- generating a 3D motion field by estimating one or more 2D local motion fields within the DRR, and constructing a full 3D motion field from the local motion fields; and
- determining from the full 3D motion field a set of non-rigid transformation parameters that represent the difference in the position and orientation of the reference structure and the treatment target, as shown in the 2D x-ray image, as compared to the position and orientation of the reference structure and the treatment target, as shown in the DRR; and
- adjusting the position and orientation of the treatment target to correct for the difference.
26. The method in accordance with claim 27, wherein the anatomical region comprises at least some bone and at least some tissue, and wherein the 3D scan data are modified to compensate for a difference between the ratio of bone-to-tissue attenuation at the energy level of the 3D scan, and the ratio of bone-to-tissue attenuation at the energy level of the x-ray imaging beam used for the near real-time x-ray image
27. The method in accordance with claim 25, wherein the act of generating the 3D motion field comprises:
- generating in the 2D x-ray image a mesh grid having a plurality of mesh nodes;
- for each mesh node in the 2D x-ray image, estimating at least one nodal motion vector that describes a matching of the mesh node with a corresponding mesh node in the DRR; and
- determining a local motion vector for each of a plurality of points of interest within the first image, by interpolating from the nodal motion vectors of the mesh nodes that surround the point of interest.
28. The method in accordance with claim 27, further comprising repeating, at each of a plurality of mesh resolution levels, the acts of generating in the 2D x-ray image a mesh grid having a plurality of mesh nodes and estimating at least one nodal motion vector for each mesh node; and
- wherein the nodal motion vectors of the mesh nodes that surround the point of interest comprise nodal motion vectors that have been estimated at a final one of the plurality of mesh resolution levels.
29. The method in accordance with claim 28, further comprising determining whether any nodal motion vector that was estimated for any mesh node is unreliable, and if so, reconstructing the nodal motion vector for the mesh node.
30. The method in accordance with claim 28, further comprising passing, at each mesh resolution level, one or more nodal motion vectors that have been estimated at the current mesh resolution level onto a subsequent mesh resolution level.
31. The method in accordance with claim 28, wherein at each mesh resolution level subsequent to the first mesh resolution level, the act of estimating the at least one nodal motion vector comprises:
- i) using the nodal motion vectors passed on from the previous mesh resolution level as estimates for nodal motion vectors for the first subset of mesh nodes;
- ii) interpolating from the estimated nodal motion vectors for the first subset of mesh nodes to estimate the nodal motion vectors for the second subset of mesh nodes; and
- iii) for each mesh node in both the first and second subsets in the first image, refining the nodal vector that was estimated for the mesh node.
32. The method in accordance with claim 31, wherein refining the estimated nodal motion vector for a mesh node in the 2D x-ray image comprises:
- defining a block centered around the mesh node in the 2D x-ray image;
- searching for a matching mesh node in the DRR that maximizes a similarity measure between the block in the 2D x-ray image and another block centered around the matching mesh node in the DRR; and
- revising the local motion vector so that the nodal motion vector describes a mapping of the mesh node in the 2D x-ray image onto the matching mesh node in the DRR.
Type: Application
Filed: Mar 5, 2008
Publication Date: Jul 3, 2008
Inventors: Dongshan Fu (Santa Clara, CA), Gopinath Kuduvalli (San Jose, CA)
Application Number: 12/074,829
International Classification: G06K 9/00 (20060101);