Method of manufacturing wafer-level chip-size package and molding apparatus used in the method
Provided are a method of manufacturing wafer-level chip-size packages and a molding apparatus suitable for practicing the method whereby a semiconductor wafer having a plurality of semiconductor chips formed thereon may be encapsulated. The semiconductor wafer, typically with a plurality of conductive bumps extending from the semiconductor chips, will be placed in a cavity formed between upper and lower molds. Injection molding of an encapsulant composition or compression molding of encapsulant sheets may then be used to apply encapsulating layers to the upper and lower surfaces of the semiconductor wafer in a substantially simultaneous manner, thereby reducing the likelihood of warping and mechanical damage to the semiconductor wafer. The wafer-level chip-size packages can then be separated from the encapsulated semiconductor wafer.
This application claims priority from Korean Patent Application No. 03-59832, which was filed on 28 Aug. 2003 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a method of manufacturing a semiconductor package, and a molding apparatus used in the method, and more particularly, to a method of manufacturing a wafer-level chip-size package, and a molding apparatus used in the method.
2. Description of the Related Art
In keeping with the trend toward miniaturization in the development of electronic devices, i.e., the trend toward making ever smaller and ever thinner packages, wafer-level chip-size packages. Such packages, which are about the same size as the incorporated semiconductor chips and which are substantially complete before being separated from the wafer, have been the subject of increasing interest. During the manufacture of a wafer-level chip-size package, typically both a rewiring process and an encapsulating process are performed while the chips remain in a wafer state, after which the individual chip packages are separated from the wafer using a dicing process.
If a thin wafer is used for making a wafer-level chip-size package, the wafer tends to have insufficient strength and is more susceptible to deformation such as bending and/or warping. Both the likelihood and seriousness of such wafer warping formation tends to increase as the diameter of the wafer increases. Similar problems are associated with larger semiconductor chip geometries which may experience or be susceptible to chip warping. Both wafer warping and/or chip warping are detrimental to the fabrication process and tend to decrease the overall process yield and may degrade the quality and reliability of the wafer-level chip-size packages that are produced.
In particular, conventional wafer-level chip-size packages are susceptible to wafer warping because only the front surface of the wafer is molded using an encapsulant. Further, when a wafer is molded only on its front surface, the edges of chips of the wafer may be more susceptible to cracking or chipping during the subsequent dicing processing and associated handling. Moreover, conventional wafer-level chip-size packages having and encapsulant layer provided only on the front surface tend to be more susceptible to semiconductor chip cracking resulting from impacts associated with the handling during subsequent wafer level testing, board mounting processes and package test processes.
SUMMARY OF THE INVENTIONThe present invention provides exemplary methods of manufacturing a wafer-level chip-size package that may exhibit increased resistance to wafer warping and semiconductor chip edge cracking.
The present invention also provides an exemplary molding apparatus that can be used for manufacturing a wafer-level chip-size package.
An exemplary embodiment of a manufacturing method according to the present invention provides a method of manufacturing a wafer-level chip-size package including preparing a wafer having a lower surface and a plurality of semiconductor chips on an upper surface, the semiconductor chips including conductive bumps on their upper surface; molding the upper and lower surfaces of the wafer at the same time using an encapsulant; exposing upper surfaces of the conductive bumps by removing an upper portion of the encapsulant; forming terminals on the exposed surfaces of the conductive bumps; and separating the wafer into individual wafer-level chip-size packages.
The wafer including the plurality of semiconductor chips and having conductive bumps on its upper surface may be formed after preparing a wafer comprising a plurality of semiconductor chips having input/output pads, by forming the conductive bumps on the input/output pads of the semiconductor chips. The molding of the upper and lower surfaces of the wafer using an encapsulant may be performed using either an injection molding method or a compression molding method.
If an injection molding method is used to mold the upper and lower surfaces of the wafer, the injection molding method may include: tightly contacting a releasing film to a lower mold and an upper mold of a molding apparatus; loading the wafer having the plurality of conductive bumps between the lower mold and the upper mold; injecting the encapsulant between the lower mold and the upper mold; heating the upper and/or lower molds while closed to cure, at least partially, the injected encapsulant or cooling an encapsulant melt to solidify the encapsulant; and separating the wafer from the upper and lower molds using the releasing film. The wafer molded using the encapsulant may be subjected to a post-molding heat treatment after being separated from the upper and lower molds. The encapsulant utilized in the injection molding method may be a liquid encapsulant or a solid encapsulant.
If a compression molding method is used to mold the upper and lower surfaces of the wafer, the compression molding method may include: contacting a releasing film tightly to the lower mold and the upper mold of the molding apparatus; placing encapsulant sheets on the tightly contacted releasing film; placing the wafer between the encapsulant sheets; thermally compressing the encapsulant sheets onto the upper and lower surfaces of the wafer by pressing the upper and lower molds together; curing the upper and lower molds together with the encapsulant; and separating the wafer from the upper and lower molds using the releasing film. The encapsulant sheets that may be used in the compression molding method may include one or more materials such as polyimide, epoxy and silicon.
In accordance with another aspect of the present invention, there is provided an exemplary molding apparatus useful for manufacturing wafer-level chip-size packages. The exemplary molding apparatus includes: a lower mold support where a lower mold is located; a mold moving control unit, located under the lower mold, that moves the lower mold and the lower mold support; an upper mold support that supports an upper mold that faces the lower mold; an encapsulant injection unit that injects an encapsulant between the lower mold and the upper mold; and a temperature control unit that controls the temperature of the lower mold.
An exemplary mold moving control unit may include: a supporting unit that supports the lower mold; and a hydraulic pump that moves the lower mold and the lower mold support upward. An exemplary encapsulant injection unit may include: an encapsulant injection controller that controls an injection speed and quantity of the encapsulant; an air tube connected to the encapsulant injection controller; an encapsulant source connected to the air tube; and an injection needle that injects the encapsulant between the lower mold and the upper mold. An exemplary temperature control unit may include: a heat controller that controls a temperature of the lower mold; and a heat pipe that connects the heat controller to the lower mold.
According to the present invention, since the lower and upper surfaces of a wafer are molded at the same time using an encapsulant, warping of even thin and large wafers can be reduced or eliminated, and occurrence of cracking at the edges of semiconductor chips resulting from impacts during subsequent handling can also be reduced or prevented.
The above and other features and advantages of the present invention will become more apparent by describing exemplary embodiments of the manufacturing method and manufacturing apparatus in detail with reference to the attached drawings, in which:
These drawings have been provided to assist in the understanding of the exemplary embodiments of the invention as described in more detail below and should not be construed as unduly limiting the invention. In particular, the relative spacing, sizing and dimensions of the various elements illustrated in the drawings are not drawn to scale and may have been exaggerated, reduced or otherwise modified for the purpose of improved clarity.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTSHereinafter, exemplary embodiments of the present invention will be described more fully with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure is thorough and complete and fully conveys the concept of the invention to those skilled in the art. In the drawings, identical reference numerals denote the same or corresponding elements.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
An exemplary encapsulant injection unit includes: an encapsulant injection controller 111 for controlling the injection speed and quantity of the encapsulant, an air tube 113 connected to the encapsulant injection controller 111, an encapsulant source unit 115 connected to the air tube 113, and an injection needle 117 connected to the encapsulant source 115 for injecting the encapsulant between the upper mold 107 and the lower mold 101. The encapsulant source unit 115 is designed to use a liquid encapsulant, but when a solid encapsulant such as EMC is used, a heating device (not shown) can be provided on the encapsulant source unit 115. Although, as illustrated in
In addition, the exemplary molding apparatus as illustrated in
As shown in
Next, as shown in
When curing has been completed or has progressed sufficiently to render the encapsulant generally solid, as shown in
When, using the configuration shown in
As illustrated in
As illustrated in
As described above, in the method of manufacturing a wafer-level chip-size package according to the present invention, since both upper and lower surfaces of the wafer are molded with an encapsulant at the same time, warping of thin and/or large wafers can be prevented, and semiconductor chips are protected from cracking resulting from impacts incurred during subsequent handling in wafer level testing, board mounting processes and package testing.
In addition, the molding apparatus used for manufacturing a wafer-level chip-size according to the present invention can mold a wafer using either injection molding, compression molding or a combination of injection and compression molding. Therefore, the molding apparatus according to the present invention can use a liquid encapsulant, a solid encapsulant, or encapsulant sheets.
While this invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
1.-12. (canceled)
13. A molding apparatus for manufacturing a wafer-level chip-size package, the molding apparatus comprising:
- a lower mold;
- an upper mold;
- means for selectively moving the lower mold relative to the upper mold between an open position and a closed position, the lower mold and the upper mold cooperating to form a mold cavity when in the closed position;
- means for positioning a semiconductor wafer within the mold cavity;
- an encapsulant injection unit arranged and configured to inject an encapsulant composition into the mold cavity; and
- means for heating the encapsulant within the cavity to a temperature sufficient to initiate curing of the encapsulant.
14. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 13, further comprising:
- a lower mold support arranged and configured to support the lower mold;
- a mold moving control unit arranged and configured for moving the lower mold and the lower mold support;
- an upper mold support arranged and configured to support the upper mold; and
- a temperature control unit arranged and configured to control the temperature of the lower mold.
15. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 14, wherein:
- the mold moving control unit includes a hydraulic actuator arranged and configured for moving the lower mold support and the lower mold toward the upper mold.
16. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 13, wherein:
- the encapsulant injection unit includes; an encapsulant injection controller arranged and configured to control an injection rate and an injection volume of the encapsulant composition injected into the mold cavity.
17. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 16, wherein:
- the encapsulant injection unit includes; an air tube connected to the encapsulant injection controller; an encapsulant source connected to the air tube; and an injection needle connected to the encapsulant source through which the encapsulant composition is injected into the mold cavity.
18. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 14, wherein:
- the temperature control unit includes; a heat controller that controls a temperature of the lower mold; and a heat pipe that connects the heat controller to the lower mold.
19. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 13, further comprising:
- a releasing film supply arranged and configured for extending a releasing film across a mold surface; and
- a vacuum arranged and configured to increase the contact between the releasing film and the mold surface.
20. A molding apparatus for manufacturing a wafer-level chip-size package according to claim 19, wherein:
- the releasing film supply is arranged and configured to provide a first releasing film on an upper surface of the lower mold and a second releasing film on a lower surface of the upper mold; and
- vacuum ports arranged on the upper surface of the lower mold and the lower surface of the upper mold whereby a partial vacuum may be applied to backside surfaces of the releasing films to secure the releasing films to the upper and lower surfaces.
Type: Application
Filed: Apr 2, 2008
Publication Date: Aug 7, 2008
Inventor: Tae-Sung Yoon (Cheonan-si)
Application Number: 12/078,638
International Classification: B29C 45/03 (20060101); B29C 45/14 (20060101);