Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
The data structure on the recording medium includes a temporary defect management area storing a data block. The data block includes sequential recording information and a temporary definition structure. The sequential recording information provides information on continuous recording areas in the data area of the recording medium. The temporary definition structure includes at least one pointer to information in the temporary defect management area.
This application is a continuation of U.S. patent application Ser. No. 10/840,264 filed on May 7, 2004, the entirety of which hereby is incorporated herein by reference. This application also claims priority under 35 U.S.C. 119 on U.S. Provisional Application No. 60/469,006 filed on May 9, 2003 and Korean Application No. 10-2003-031958 filed on May 16, 2003; the entire contents of U.S. Provisional Application No. 60/469,006 and Korean Application No. 10-2003-031958 are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a recording medium having a data structure for managing at least a data area of the recording medium as well as methods and apparatuses for reproduction and recording.
2. Description of the Related Art
The standardization of new high-density read only and rewritable optical disks capable of recording large amounts of data has been progressing rapidly and new optical disk related products are expected to be commercially available in the near future. For example, the blu-ray disc (BD), which belongs to the next-generation HD-DVD technology, is the next-generation optical recording solution that can strikingly surpass the data recording capability of existing DVDs.
Recording on and reading from a BD uses a celadon laser having a wavelength of 405 nm, which is much denser than a red laser having a wavelength of 650 nm used with existing DVDs. Thus, a greater amount of data may be stored on BD than on existing DVDs.
While at least one standard related to the BD (Blu-ray Disc) has been developed, such as BD-RE (BD Rewritable disc), many other standards such as BD-WO (BD Write Once disc) are still in development. Standards such as BD-RE provide a data structure for managing defects in the data area of the recording medium. However, the BD-WO, because of its write-once nature, presents challenges not faced by existing BD standards such as BD-RE, and an effective data structure and method of managing defects is still under development for the BD-WO standard.
SUMMARY OF THE INVENTIONThe recording medium according to the present invention includes a data structure for managing at least a data area of the recording medium.
In one exemplary embodiment, a temporary defect management area of the recording medium stores a first data block that includes sequential recording information and a temporary definition structure. The sequential recording information provides information on continuous recording areas in the data area of the recording medium. The temporary definition structure includes at least one pointer to information in the temporary defect management area.
In one embodiment, the sequential recording information includes a header, information entries for each continuous recording area and a terminator. The header identifies the sequential recording information as sequential recording information. Each information entry provides information on an associated continuous recording area, and the terminator indicates an end of the sequential recording information.
In one embodiment, the header information indicates a number of the continuous recording areas and a number of the continuous recording areas open for recording.
In an example embodiment, each information entry indicates a status of the associated continuous recording area, indicates a starting physical sector number of the associated continuous recording area, and indicates a last recording address of the associated continuous recording area.
In an example embodiment, a recording medium includes a data area and a management area. The data area includes at least one recording partition, and the recording partition is classified into one of recordable recording partition and non-recordable partition. The management area stores therein recording partition information that includes a list having entry information for each of the recording partition. The entry information is sorted in order of a preceding position of the recording partition.
An example embodiment provides a method for recording management information on a recording medium. The method includes sorting entry information for each of the recording partition in order of a preceding position of the recording partition; and recording a list having the sorted entry information on the management area.
An example embodiment provides a method for reproducing management information form a recording medium. The method includes reading a list having entry information for each of the recording partition from the management area; sorting the entry information in order of a preceding position of the recording partition; and identifying the recording partition on the data area based on the sorted entry information.
An example embodiment provides an apparatus for recording management information on a recording medium. The apparatus includes a pickup configured to record data on the recording medium; a control unit configured to sort entry information for each of the recording partition in order of a preceding position of the recording partition, and control the pickup to record a list having the sorted entry information on the management area of the recording medium.
An example embodiment provides an apparatus for reproducing management information. The apparatus includes a pickup configured to reproduce data from the recording medium; and a control unit configured to control the pickup to read a list having entry information for each of the recording partition from the management area, sort the entry information in ascending order of a start address of the recording partition, and identify the recording partition on the data area based on the sorted entry information.
The present invention further provides apparatuses and methods for recording and reproducing the data structure according to the present invention.
The above features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
In order that the invention may be fully understood, exemplary embodiments thereof will now be described with reference to the accompanying drawings. For convenience, a write-once optical Blu-ray disc will be used as an example of a write-once recording medium in the exemplary embodiments.
Kinds of Tracks and Data Structure of the Recording Medium
Referring to
Track 5 provides an example of the last track that includes area on which additional recording is possible. This track is called an intermediate track. Accordingly, there are three kinds of tracks—open, closed and intermediate.
Each of the tracks has a last recorded address (LRA) regardless of the kind of the track. The LRA is the last address at which actual data was recorded in the track. Accordingly, with respect to track 3, the position (or address) before the track 3 was padded with zeros is the LRA for track 3 (LRA3). More specifically, assuming the unit for recording data on the optical disc is a cluster, and there are 32 sectors in one cluster, if less than the 32 sectors have data recorded therein, then the remaining sectors are padded with zeros. The last sector address before the padding is the LRA.
For each of the open and intermediate tracks, but not the closed tracks, a next writable address (NWA) indicating the next address into which data may be written may be determined. The NWA is obtained from the LRA as the next sector address following the LRA.
As shown, the write-once optical disc in this example is a single layer disc that has one recording layer. The disc includes spare areas (ISA0/ISA1) for recording data the could not be recorded in the main data area because of defects in the main data area (e.g., physical defects). Information for managing the replacement of defect portions of the data area with portions of the spare area is recorded in a temporary defect management area or areas (TDMA).
In general, a rewritable, as opposed to a write-once, optical disc has a limited defect management area (DMA) because data can be written and erased from the DMA repeatedly. A write-once optical disc needs a larger amount of to manage defects since data can be written only once and not erased. Accordingly, the TDMA is used for recording the defect management information as this information changes during use of the optical disc. Once the disc is complete, the last version of the defect management information is copied from the TDMA to a DMA on the write-once optical disc.
Referring to
As discussed above, when a defect area exists in the data area, a spare area (ISA0/OSA0) is substituted for the defect area. The TDFL provides information to manage this process in the form of a list. For example, the list indicates the defect area and the spare area replacing the defect area. According to one embodiment of the present invention, the size of the TDFL, varies from 1 to 4 clusters depending on the amount of information in the TDFL. By contrast, according to one example embodiment of the present invention, the amount of space devoted to the TDDS remain fixed at one cluster. According to this embodiment, this data block includes the TDDS and disc usage status information as discussed in detail below with respect to
Referring first to
In the case of a rewritable optical disk, the DDS consumes a very small portion of the disc—about 60 bytes of one cluster (one cluster having 32 sectors). The remaining area of the cluster is set by ‘zero padding’. However, according to this embodiment of the present invention, the remaining area as well as the area (60 bytes) used in the conventional rewritable optical disk is used as disc management information. Accordingly, in the TDDS of the present invention, information particular to a write-once optical disc as well as DDS as used in the conventional rewritable optical disc is recorded sequentially in one sector (2048 bytes). For example, the information particular to the write-once optical disc may be position information of the latest TDFL.
As shown in
Accordingly, the TDDS as used in this disclosure should be construed broadly as described above and not as a term defined according to one particular standard.
Data Structure of Track Information on the Recording Medium
First, the present invention does not limit the number of the open tracks. Accordingly, there may exist a plurality of open tracks and complete tracks. The present invention provides a data structure on the recording medium for managing this potential in an efficient manner. An embodiment of this track information data structure will now be described in detail with respect to
As shown, the sequential recording, or more particularly, the track information includes three parts: a header for indicating that the data structure provides track information, a track information list providing the track information, and an terminator indicating an end of the track information.
The header is positioned at the front portion of the track information and includes a ‘track information structure identifier’ field indicating that information following the identifier is track information. The next indicator ‘track information format’ indicates the format of the track information. This is followed by a ‘layer number (0 or 1)’ field representing the recording layer to which the track information corresponds. While the example thus far has been for a single sided, single recording layer write-once optical disc, the optical disc may have multiple recording layers and/or be double sided.
The header further includes a ‘total number of tracks’ field representing the number tracks in the data area of the recording layer to which the track information corresponds, and ‘total number of open tracks’ field representing the number of the open tracks in this data area. Before reading the track information list, the total track information may be confirmed.
The track information list is recorded after the header and will be described in greater detail below. The track information list terminator represents the end of the track information. Accordingly, the track information includes a header, track information list and a terminator recorded in series.
An example embodiment of the track information list will now be described in more detailed. The track information list includes one entry for each track in the corresponding data area of the disc. Each entry may be allocated to, for example, 8 bytes. This track information entry includes track status information, a first address of the corresponding track and the last recorded address information of the track.
The track status information indicates the kind of track—open, closed or intermediate, and may be represented by 4 bits as shown in
In the example of
The track status information in each entry may also include a session start status (e.g., one of the bits in the track status information in each entry may be used as the session start bit). The session status indicates if the track is the first track or not the first track in a session. Here, the clustering of tracks into a group is called a session.
Track Information Update Method
When to update the track information may be a design parameter established according to the system or system designer. However, examples of events triggering update will be described in detail below.
When a new track is generated or a track is closed, since the track information is newly generated, the track information may be updated. When a disc is ejected from a driver or the power to the driver is turned off, use of the disc is stopped at least temporarily. At these times, the track information is updated.
More specifically, to record the track information updated at time n+1, the track information recorded at time n and the track information at time n+1 are recorded sequentially. In other words, the track information in the preceding track recording step is included, but recorded separately from current track information. Similarly when updating the track information at time n+2, the track information recorded at time n and n+1 is included, but recorded separately.
The advantage of this embodiment is that the contents of the track information at each stage of disc usage is recorded in sequential order. It is easy to confirm the usage status of the disc. If only the latest track information is recorded, it would be more difficult to access the previous track information and require a longer time to access this information.
More specifically, to record the track information updated at time n+1, the track information recorded at time n and the track information to be updated now at time n+1 are considered as one track information list and sorted. The sorted version of the track information is then recorded in a specific order.
For example, the track information list entries may be sorted by track status (i.e., the kind of track). Using the format of the track status information described above with respect to
Another method is also possible. For example at first the track information list entries may be sorted by the first address information such that the entries having smaller addresses are recorded first. It should be understood that these are merely examples of the sorting that may take place, and that a system designer may adopt other basis for sorting that fall within the spirit and scope of the present invention.
The advantage of this embodiment of the present invention is that information on the tracks in a disc are sorted according to their kind so that the information related to a kind of track (e.g., open track) may be easily obtained. Also, because the track information for each track is recorded in the updating, the track information for the data area is easily and quickly accessible.
The two embodiments described above are complementary to each other. The system or user may select and use the method suitable to their environment.
The controller 10 also creates the navigation and management information for managing reproduction of the data being recorded on the optical disk. For example, the controller 10 controls the drive 3 to record one or more of the data structures of
During reproduction or further recording operations, the controller 10 may control the drive 3 to reproduce this data structure. Based on the information contained therein, as well as user input received over the user interface (e.g., control buttons on the recording and reproducing apparatus or a remote associated with the apparatus), the controller 10 controls the drive 3 to reproduce and/or record data from/to the optical disk as discussed in detail above.
Reproduced source packets are received by a source depacketizer 4 and converted into a data stream (e.g., an MPEG-2 transport packet stream). A demultiplexer 5 demultiplexes the data stream into encoded data. A decoder 6 decodes the encoded data to produce the original data that was fed to the encoder 9. During reproduction, the controller 10 controls the operation of the source depacketizer 4, demultiplexer 5 and decoder 6. The controller 10 receives user input on the reproducing operation, and provides control information to decoder 6, demultiplexer 5 and the source packetizer 4. For example, the controller 10 instructs the decoder 9 on the type of decoding to perform, instructs the demultiplexer 5 on the transport stream to demultiplex, and instructs the source depacketizer 4 on the source packet format.
While
The write-once optical disc management data structure and method of recording and reproducing this data structure as well as updating the management data provide information regarding the use of the recording medium to sequentially store data in continuous recording areas (e.g., tracks). This data structure and these methods remain applicable for the case where the number of the open tracks, in which additional recording is possible, is not limited.
The data structure for and method for managing at least a data area of a high-density recording medium in accordance with embodiments of the present invention enables an efficient and progressive use of a write-once recording medium such as BD-WO.
As apparent from the above description, the present invention also provides apparatuses for recording a data structure on a high density recording medium for managing at least a data area of the recording medium.
While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations there from. For example, while described with respect to a Blu-ray Write-Once optical disk in several instances, the present invention is not limited to this standard of optical disk or to optical disks. It is intended that all such modifications and variations fall within the spirit and scope of the invention.
Claims
1. A recording medium comprising:
- a data area including at least one recording partition, the recording partition being classified into one of recordable recording partition and non-recordable partition; and
- a management area storing therein recording partition information that includes a list having entry information for each of the recording partition,
- wherein the entry information is sorted in order of a preceding position of the recording partition.
2. The recording medium of claim 1, wherein the entry information is sorted in ascending order of a start address of the recording partition.
3. The recording medium of claim 1, wherein the entry information includes a last recorded address indicating a position on which data is recorded last within the recording partition.
4. The recording medium of claim 1, wherein the entry information includes a start address of the recording partition.
5. The recording medium of claim 1, wherein the entry information includes status information indicating status of the recording partition and the entry information is sorted based on the status information.
6. The recording medium of claim 5, wherein the status information indicates whether the recording partition is a recordable recording partition.
7. The recording medium of claim 5, wherein entry information of which status information indicates that the recording partition is a recordable recording partition is sorted first.
8. A method for recording management information on a recording medium, the recording medium having a data area divided into at least one recording partition which is classified into one of recordable partition and non-recordable partition and a management area storing the management information for the recording partition, the method comprising:
- sorting entry information for each of the recording partition in order of a preceding position of the recording partition; and
- recording a list having the sorted entry information on the management area.
9. The method of claim 8, wherein the sorting sorts the entry information in ascending order of a start address of the recording partition.
10. The method of claim 8, wherein the entry information includes a last recorded address indicating a position on which data is recorded last within the recording partition.
11. The method of claim 8, wherein the entry information includes a start address of the recording partition.
12. The recording medium of claim 8, wherein the entry information includes status information indicating status of the recording partition and the entry information is sorted based on the status information.
13. The recording medium of claim 12, wherein the status information indicates whether the recording partition is a recordable recording partition.
14. A method for reproducing management information from recording medium, the recording medium having a data area divided into at least one recording partition which is classified into one of recordable partition and non-recordable partition and a management area storing the management information for the recording partition, the method comprising:
- reading a list having entry information for each of the recording partition from the management area;
- sorting the entry information in order of a preceding position of the recording partition; and
- identifying the recording partition on the data area based on the sorted entry information.
15. The method of claim 14, wherein the sorting sorts the entry information in ascending order of a start address of the recording partition.
16. The method of claim 14, further comprising:
- checking a last recorded address included in the entry information, the last recorded address indicating a position on which data is recorded last within the recording partition.
17. The method of claim 14, wherein the entry information includes a start address of the recording partition.
18. The method of claim 14, wherein the entry information includes status information indicating status of the recording partition and the entry information is sorted based on the status information.
19. The method of claim 18, wherein the status information indicates whether the recording partition is a recordable recording partition.
20. An apparatus for recording management information on a recording medium, the recording medium having a data area divided into at least one recording partition which is classified recordable recording partition and non-recordable recording partition and a management area storing the management information for the recording partition, the apparatus comprising:
- a pickup configured to record data on the recording medium; and
- a control unit configured to sort entry information for each of the recording partition in order of a preceding position of the recording partition, and control the pickup to record a list having the sorted entry information on the management area of the recording medium.
21. The apparatus of claim 20, wherein the control unit is configured to sort the entry information in ascending order of a start address of the recording partition.
22. The apparatus of claim 20, wherein the control unit is configured to generate the entry information to include a last recorded address indicating a position on which data is recorded last within the recording partition.
23. The apparatus of claim 20, wherein the control unit is configured to generate the entry information to include a start address of the recording partition.
24. The apparatus of claim 20, wherein the control unit is configured to generate the entry information to include status information indicating status of the recording partition and the control unit is configured to sort the entry information based on the status information first.
25. An apparatus for reproducing management information from a recording medium, the recording medium having a data area divided into at least one recording partition which is classified into one of recordable partition and non-recordable partition and a management area storing the management information for the recording partition, the apparatus comprising:
- a pickup configured to reproduce data from the recording medium; and
- a control unit configured to control the pickup to read a list having entry information for each of the recording partition from the management area, sort the entry information in ascending order of a start address of the recording partition, and identify the recording partition on the data area based on the sorted entry information.
26. The apparatus of claim 25, wherein the entry information includes the start address of the recording partition.
27. The apparatus of claim 25, wherein the control unit is configured to sort the entry information based on status information included in the entry information first.
Type: Application
Filed: Apr 14, 2008
Publication Date: Aug 14, 2008
Inventor: Yong Cheol Park (Gwachon-si)
Application Number: 12/081,285
International Classification: G11B 7/00 (20060101);