METHOD OF COOLING AN ACCESSORY GEARBOX
The accessory gearbox (AGB) has at least one coolant passage between the AGB and the accessory for externally cooling the accessory without coolant flow inside the accessory.
The technical field relates generally to cooling arrangements and methods of cooling, more particularly the cooling an accessory used in an accessory gearbox of a gas turbine engine.
BACKGROUNDGas turbine engines are often equipped with various mechanically-driven accessories which are connected to a casing referred to an accessory gearbox (AGB).
Some accessories are generating intense heat during their operation and for this reason, they require cooling. Oil in the AGB is often used for cooling the accessories, such as the starter/generator unit. Oil passages are provided inside the starter/generator unit and heat is exchanged between the oil and the internal parts of the starter/generator unit. This arrangement has been used in the past in an extensive number of designs. However, it requires oil connectors between the AGB and the electrical device, and also internal oil passages in the electrical device.
SUMMARYIn one aspect, there is provided a method of cooling a gas turbine accessory comprising the steps of: circulating engine oil from an engine oil circuit around an external side surface of the accessory, and circulating the oil within the engine to provide at least one of cooling and lubrication to at least one other part of the engine.
Still other aspects and features will be better understood with reference to the following description and the appended figures.
An annular oil passage 36 is provided between the internal wall surface 34 of the AGB 30 and the external side wall surface 22 of the accessory 20. The example illustrated in
As can be appreciated, the arrangement described herein creates a cooling jacket around the accessory 20 and allows heat to be exchanged, which may negate the need for additional cooling means, such as internal oil passages inside the accessory 20.
Oil is provided by the gas turbine's oil system (not depicted in this figure) to the annular oil passage 36 from at least one inlet oil passage 42, such as one located in the internal wall surface 34 of the AGB 30. Similarly, oil exits the annular oil passage 36 through at least one outlet oil passage 44 located in the internal wall surface 34 of the AGB 30, for return to the oil system. These inlet and outlet oil passages 42,44 may be configured and disposed to generate a constant flow of oil in the various regions of the annular oil passage 36. The flow is sufficient to provide the desired cooling to accessory 20.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made without departing from the scope of what is disclosed. For example, the improvements are not limited to a single annular oil passage 36. Two or more oil passages can be used and may communicate in parallel or serially with the source. The shape of the annular oil passage 36 may be any desirable and is not necessarily with a purely circular path but can include spiral-shaped paths and/or other cooling-enhancing features such as trip strips, etc. Although oil is often the coolant with which the system can be used, any suitable cooling liquid may be used. Still other modifications will be apparent to those skilled in the art, in light of a review of the present disclosure, and such modifications are intended to fall within the scope of the appended claims.
Claims
1. A method of cooling a gas turbine accessory comprising the steps of:
- circulating a coolant liquid from an engine coolant circuit around an external side surface of the accessory, and
- circulating the coolant liquid within the engine to provide at least one of cooling and lubrication to at least one other part of the engine.
2. The method as defined in claim 1, wherein the step of circulating coolant liquid around the accessory includes the step of circulating coolant liquid between an inlet of a coolant liquid passage and an outlet of the coolant liquid passage to exchange heat between the coolant liquid and the external side surface of the accessory.
3. The method as defined in claim 2, wherein the accessory is at least partially inserted in an accessory gearbox (AGB).
4. The method as defined in claim 3, wherein the accessory has a circular cross section.
5. The method as defined in claim 3, wherein the coolant liquid passage is at least partially axially delimited by a pair of spaced-apart seals provided between an internal wall surface of the AGB and the external side surface of the accessory, the external side surface being radially inward of the internal wall surface.
6. The method as defined in claim 3, wherein an internal wall surface of the AGB and the external side surface of the accessory define the coolant liquid passage.
7. The method as defined in claim 3, wherein the coolant liquid directly contacts the external side surface of the accessory to thereby cool the accessory.
8. The method as defined in claim 7, wherein the accessory is substantially enveloped by the internal wall surface of the AGB.
9. The method as defined in claim 7, wherein the accessory is sealingly received by the internal wall surface of the AGB.
10. The method as defined in claim 1, wherein the coolant liquid comprises oil and the coolant liquid circuit includes a main oil circuit communicating with at least one main bearing cavity in the engine.
Type: Application
Filed: Apr 16, 2008
Publication Date: Aug 14, 2008
Inventor: DAVID BROUILLET (St. Basile Le Grand)
Application Number: 12/103,762
International Classification: F01D 25/08 (20060101);