Method For Making a Chlorohydrin Starting With a Polyhydroxylated Aliphatic Hydrocarbon

Process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon with a chlorinating agent in a reactor which is supplied with one or more liquid streams containing less than 50% by weight of the polyhydroxylated aliphatic hydrocarbon relative to the weight of the entirety of the liquid streams.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The present patent application claims the benefit of patent application FR 05.05120 and of patent application EP 05104321.4, both filed on 20 May 2005, and of provisional U.S. patent applications 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 and 60/734636, all filed on 8 Nov. 2005, the content of all of which is incorporated here by reference.

The present invention relates to a process for chlorohydrin. The present invention relates more specifically to a process for preparing a chlorohydrin by reacting polyhydroxylated aliphatic hydrocarbon with a chlorinating agent.

Chlorohydrins are reaction intermediates in the preparation of epoxides. Dichloropropanol, for example, is a reaction intermediate in the preparation of epichlorohydrin and of epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).

According to known processes it is possible to obtain dichloropropanol in particular by hypochlorinating allyl chloride, by chlorinating allyl alcohol and by hydrochlorinating glycerol. This latter process has the advantage that the dichloropropanol can be obtained starting from fossil raw materials or from renewable raw materials, and it is known that natural petrochemical resources, from which the fossil materials are obtained, such as petroleum, natural gas or coal, for example, are limited in their terrestrial availability.

International application WO 2005/021476 describes a process for preparing dichloropropanol by reacting glycerol with gaseous hydrogen chloride in the presence of acetic acid as catalyst. A mixture containing the dichloropropanol produced, the water of reaction and the residue hydrogen chloride is separated by distillation. Application WO 2005/054167 of SOLVAY SA describes a process for preparing dichloropropanol by reacting glycerol with hydrogen chloride in the presence of another catalyst such as adipic acid. A mixture of water, dichloropropanol and hydrogen chloride is likewise separated by distillation. In both processes the presence of hydrogen chloride in the distillate may be a source of losses of this reagent and of corrosion problems associated with the presence of potentially corrosive liquid phases.

The objective of the invention is to provide a process for preparing a chloroalcohol or chlorohydrin that does not exhibit these drawbacks.

The invention accordingly provides a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent in a reactor which is supplied with one or more liquid streams containing less than 50% by weight of the polyhydroxylated aliphatic hydrocarbon, the ester of a polyhydroxylated aliphatic hydrocarbon or the mixture thereof relative to the weight of the entirety of the liquid streams introduced into the reactor.

The liquid stream or streams contain often less than 40% by weight of the polyhydroxylated aliphatic hydrocarbon, the ester of a polyhydroxylated aliphatic hydrocarbon or the mixture thereof, relative to the weight of the entirety of the liquid streams introduced into the reactor, frequently less than 30% by weight, specifically less than 20% by weight and more specifically less than 10% by weight.

The process for preparing a chlorohydrin according to the invention preferably comprises the following steps:

  • (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give at least one mixture containing the chlorohydrin, water and chlorinating agent
  • (b) at least a fraction of the mixture formed in step (a) is withdrawn
  • (c) the fraction withdrawn in step (b) is subjected to a distillation and/or stripping operation in which polyhydroxylated aliphatic hydrocarbon is added so as to separate, from the fraction withdrawn in step (b), a mixture containing water and the chlorohydrin that has a reduced chlorinating agent content as compared with that of the fraction withdrawn in step (b).

It has been found that the addition of the polyhydroxylated aliphatic hydrocarbon to step (c) offers the following advantages among others:

  • 1) the maintenance of the chlorinating agent in the mixture of step (a), with a simultaneous increase in the yield of the reaction forming the chlorohydrin
  • 2) an equivalent separation efficiency energy gain by virtue of reduced reflux of water in the distillation and/or stripping column
  • 3) reduced corrosiveness of the liquid phases obtained after condensation of the mixture from step (c).

The term “polyhydroxylated aliphatic hydrocarbon” refers to a hydrocarbon which contains at least two hydroxyl groups attached to two different saturated carbon atoms. The polyhydroxylated aliphatic hydrocarbon may contain, but is not limited to, from 2 to 60 carbon atoms.

Each of the carbons of a polyhydroxylated aliphatic hydrocarbon bearing the hydroxyl functional group (OH) cannot possess more than one OH group and must have sp3 hybridization. The carbon atom carrying the OH group may be primary, secondary or tertiary. The polyhydroxylated aliphatic hydrocarbon used in the present invention must contain at least two sp3-hybridized carbon atoms carrying an OH group. The polyhydroxylated aliphatic hydrocarbon includes any hydrocarbon containing a vicinal diol (1,2-diol) or a vicinal triol (1,2,3-triol), including the higher, vicinal or contiguous orders of these repeating units. The definition of the polyhydroxylated aliphatic hydrocarbon also includes, for example, one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups.

The polyhydroxylated aliphatic hydrocarbon may also be a polymer such as polyvinyl alcohol. Geminal diols, for example, are excluded from this class of polyhydroxylated aliphatic hydrocarbons.

The polyhydroxylated aliphatic hydrocarbons may contain aromatic moieties or heteroatoms, including, for example, heteroatoms of halogen, sulphur, phosphorus, nitrogen, oxygen, silicon and boron type, and mixtures thereof.

Polyhydroxylated aliphatic hydrocarbons which can be used in the present invention comprise, for example, 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1-chloro-2,3-propanediol (chloropropanediol), 2-chloro-1,3-propanediol (chloropropanediol), 1,4-butanediol, 1,5-pentanediol, cyclohexanediols, 1,2-butanediol, 1,2-cyclohexanedimethanol, 1,2,3-propanetriol (also known as “glycerol” or “glycerin”), and mixtures thereof. With preference the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures of at least two thereof. More preferably the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures of at least two thereof. 1,2,3-Propanetriol or glycerol is the most preferred.

The esters of the polyhydroxylated aliphatic hydrocarbon may be present in the polyhydroxylated aliphatic hydrocarbon and/or may be produced in the process for preparing the chlorohydrin and/or may be prepared prior to the process for preparing the chlorohydrin. Examples of esters of the polyhydroxylated aliphatic hydrocarbon comprise ethylene glycol monoacetate, propanediol monoacetates, glycerol monoacetates, glycerol monostearates, glycerol diacetates and mixtures thereof.

The term “chlorohydrin” is used here in order to describe a compound containing at least one hydroxyl group and at least one chlorine atom attached to different saturated carbon atoms. A chlorohydrin which contains at least two hydroxyl groups is also a polyhydroxylated aliphatic hydrocarbon. Accordingly the starting material and the product of the reaction may each be chlorohydrins. In that case the “product” chlorohydrin is more chlorinated than the starting chlorohydrin, in other words has more chlorine atoms and fewer hydroxyl groups than the starting chlorohydrin. Preferred chlorohydrins are chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two thereof. Dichloropropanol is particularly preferred. Chlorohydrins which are more particularly preferred are 2-chloroethanol, 1-chloropropan-2-ol, 2-chloropropan-1-ol, 1-chloropropane-2,3-diol, 2-chloropropane-1,3-diol, 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and mixtures of at least two thereof.

The polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated hydrocarbon, or mixtures thereof in the process according to the invention may be obtained starting from fossil raw materials or starting from renewable raw materials, preferably starting from renewable raw materials.

By fossil raw materials are meant materials obtained from the processing of petrochemical natural resources, such as petroleum, natural gas and coal, for example. Among these materials preference is given to organic compounds containing 2 and 3 carbon atoms. When the polyhydroxylated aliphatic hydrocarbon is glycerol, allyl chloride, allyl alcohol and “synthetic” glycerol are particularly preferred. By “synthetic” glycerol is meant a glycerol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is ethylene glycol, ethylene and “synthetic” ethylene glycol are particularly preferred. By “synthetic” ethylene glycol is meant an ethylene glycol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is propylene glycol, propylene and “synthetic” propylene glycol are particularly preferred. By “synthetic” propylene glycol is meant a propylene glycol generally obtained from petrochemical resources.

By renewable raw materials are meant materials obtained from the processing of renewable natural resources. Among these materials preference is given to “natural” ethylene glycol, “natural” propylene glycol and “natural” glycerol. “Natural” ethylene glycol, propylene glycol and glycerol are obtained for example by conversion of sugars by thermochemical processes, it being possible for these sugars to be obtained starting from biomass, as described in “Industrial Bioproducts: Today and Tomorrow”, Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56. One of these processes is, for example, the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose. Another process is, for example, the catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose. The xylose may for example be obtained by hydrolysis of the hemicellulose present in maize fibres. By “natural glycerol” or “glycerol obtained from renewable raw materials” is meant, in particular, glycerol obtained during the production of biodiesel or else glycerol obtained during conversions of animal or vegetable oils or fats in general, such as saponification, transesterification or hydrolysis reactions.

Among the oils which can be used to prepare natural glycerol, mention may be made of all common oils, such as palm oil, palm kernel oil, copra oil, babassu oil, former or new (low erucic acid) colza oil, sunflower oil, maize oil, castor oil and cotton oil, peanut oil, soya bean oil, linseed oil and crambe oil, and all oils obtained, for example, from sunflower plants or colza plants obtained by genetic modification or hybridization.

It is also possible to employ used frying oils, various animal oils, such as fish oils, tallow, lard and even squaring greases.

Among the oils used mention may also be made of oils which have been partly modified by means, for example, of polymerization or oligomerization, such as, for example, the “stand oils” of linseed oil and of sunflower oil, and blown vegetable oils.

A particularly suitable glycerol may be obtained during the conversion of animal fats. Another particularly suitable glycerol may be obtained during the production of biodiesel. A third, very suitable glycerol may be obtained during the conversion of animal or vegetable oils or fats by transesterification in the presence of a heterogeneous catalyst, as described in documents FR 2752242, FR 2869612 and FR 2869613. More specifically, the heterogeneous catalyst is selected from mixed oxides of aluminium and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminium, and mixed oxides of bismuth and aluminium, and the heterogeneous catalyst is employed in the form of a fixed bed. This latter process can be a process for producing biodiesel.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon may be as described in the patent application entitled “Process for preparing chlorohydrin by converting polyhydroxylated aliphatic hydrocarbons”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose total metal content, expressed in elemental form, is greater than or equal to 0.1 μg/kg and less than or equal to 1000 mg/kg is reacted with a chlorinating agent.

In the process according to the invention, preference is given to using glycerol, a glycerol ester or a mixture thereof which are obtained starting from renewable raw materials.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated hydrocarbon or the mixture thereof may be crude products or purified products, such as are specifically disclosed in application WO 2005/054167 of SOLVAY SA, from page 2 line 8 to page 4 line 2. In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated hydrocarbon or the mixture thereof may be a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content may be less than or equal to 5 g/kg, as described in the application entitled “Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon”, filed in the name of SOLVAY SA on the same day as the present application, and whose content is incorporated here by reference. The alkali metals may be selected from lithium, sodium, potassium, rubidium and cesium and the alkaline earth metals may be selected from magnesium, calcium, strontium and barium.

In the process according to the invention, the alkali metal and/or alkaline earth metal content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is less than or equal to 5 g/kg, often less than or equal to 1 g/kg, more particularly less than or equal to 0.5 g/kg and in certain cases less than or equal to 0.01 g/kg. The alkali metal and/or alkaline earth metal content of the glycerol is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention the alkali metals are generally lithium, sodium, potassium and cesium, often sodium and potassium, and frequently sodium.

In the process for preparing a chlorohydrin according to the invention, the lithium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the sodium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the potassium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the rubidium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the cesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention the alkaline earth metal elements are generally magnesium, calcium, strontium and barium, often magnesium and calcium and frequently calcium.

In the process according to the invention, the magnesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the calcium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the strontium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention, the barium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μg/kg.

In the process according to the invention the alkali and/or alkaline earth metals are generally present in the form of salts, frequently in the form of chlorides, sulphates and mixtures thereof. Sodium chloride is the most often encountered.

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 25 to page 6 line 2.

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be hydrogen chloride as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 30 to page 6 line 2.

The hydrogen chloride may originate from a process for pyrolysing organic chlorine compounds, such as, for example, from a vinyl chloride production, from a process for producing 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI), from metal pickling processes or from the reaction of an inorganic acid such as sulphuric or phosphoric acid with a metal chloride such as sodium chloride, potassium chloride or calcium chloride.

In one advantageous embodiment of the process for preparing a chlorohydrin according to the invention, the chlorinating agent is gaseous hydrogen chloride or an aqueous solution of hydrogen chloride, or a combination of the two.

In the process for preparing a chlorohydrin according to the invention, the hydrogen chloride may be an aqueous solution of hydrogen chloride or may be preferably anhydrous hydrogen chloride, obtained from a plant for producing allyl chloride and/or for producing chloromethanes and/or a chlorinolysis plant and/or a plant for high-temperature oxidation of chlorine compounds, as described in the application entitled “Process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon with a chlorinating agent”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, from an ester of a polyhydroxylated aliphatic hydrocarbon or from a mixture thereof, and from a chlorinating agent, the chlorinating agent comprising at least one of the following compounds: nitrogen, oxygen, hydrogen, chlorine, an organic hydrocarbon compound, an organic halogen compound, an organic oxygen compound and a metal.

Particular mention is made of an organic hydrocarbon compound which is selected from saturated or unsaturated aliphatic and aromatic hydrocarbons and mixtures thereof.

Particular mention is made of an unsaturated aliphatic hydrocarbon which is selected from acetylene, ethylene, propylene, butene, propadiene, methylacetylene and mixtures thereof, of a saturated aliphatic hydrocarbon which is selected from methane, ethane, propane, butane and mixtures thereof and of an aromatic hydrocarbon which is benzene.

Particular mention is made of an organic halogen compound which is an organic chlorine compound selected from chloromethanes, chloroethanes, chloropropanes, chlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, perchloroethylene, trichloroethylene, chlorobutadienes, chlorobenzenes and mixtures thereof.

Particular mention is made of an organic halogen compound which is an organic fluorine compound selected from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride and mixtures thereof.

Particular mention is made of an organic oxygen compound which is selected from alcohols, chloroalcohols, chloroethers and mixtures thereof.

Particular mention is made of a metal selected from alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium, aluminium, bismuth and mixtures thereof.

Mention is made more particularly of a process wherein the chlorinating agent is obtained at least partly from a process for preparing allyl chloride and/or a process for preparing chloromethanes and/or a process of chlorinolysis and/or a process for oxidizing chlorine compounds at a temperature greater than or equal to 800° C.

In one particularly advantageous embodiment of the process for preparing a chlorohydrin according to the invention, the hydrogen chloride is an aqueous solution of hydrogen chloride and does not contain gaseous hydrogen chloride.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in a reactor as described in application WO 2005/054167 of SOLVAY SA on page 6 lines 3 to 23.

Mention is made particularly of a plant made of or covered with materials which are resistant, under the reaction conditions, to the chlorinating agents, particularly to hydrogen chloride. Mention is made more particularly of a plant made of enamelled steel or of tantalum.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in apparatus which is made of or covered with materials that are resistant to chlorinating agents, as described in the patent application entitled “Process for preparing a chlorohydrin in corrosion-resistant apparatus”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin that includes a step in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent containing hydrogen chloride and to at least one other step carried out in an apparatus made of or covered with materials resistant to the chlorinating agent, under the conditions in which that step is realized. Mention is made more particularly of metallic materials such as enamelled steel, gold and tantalum and of non-metallic materials such as high-density polyethylene, polypropylene, poly(vinylidene fluoride), polytetrafluoroethylene, perfluoroalkoxyalkanes and poly(perfluoropropyl vinyl ether), polysulphones and polysulphides, and unimpregnated and impregnated graphite.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in a reaction mixture, as described in the application entitled “Continuous process for preparing chlorohydrins”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a continuous process for producing chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid in a liquid reaction medium whose steady-state composition comprises polyhydroxylated aliphatic hydrocarbon and esters of polyhydroxylated aliphatic hydrocarbon for which the sum of the amounts, expressed in moles of polyhydroxylated aliphatic hydrocarbon, is greater than 1.1 mol % and less than or equal to 30 mol %, the percentage being based on the organic part of the liquid reaction medium.

The organic part of the liquid reaction medium consists of all of the organic compounds of the liquid reaction medium, in other words the compounds whose molecule contains at least one carbon atom.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out in the presence of a catalyst as described in application WO 2005/054167 of SOLVAY SA from page 6 line 28 to page 8 line 5.

Mention is made particularly of a catalyst based on a carboxylic acid or on a carboxylic acid derivative having an atmospheric boiling point of greater than or equal to 200° C., especially adipic acid and derivatives of adipic acid.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out at a catalyst concentration, temperature and pressure and for residence times as described in the application WO 2005/054167 of SOLVAY SA from page 8 line 6 to page 10 line 10.

Mention is made particularly of a temperature of at least 20° C. and not more than 160° C., of a pressure of at least 0.3 bar and not more than 100 bar and of a residence time of at least 1 h and not more than 50 h.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in the presence of a solvent as described in application WO 2005/054167 of SOLVAY SA at page 11 lines 12 to 36.

Mention is made particularly of organic solvents such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent which is miscible with the polyhydroxylated aliphatic hydrocarbon, such as chloroethanol, chloropropanol, chloropropanediol, dichloropropanol, dioxane, phenol, cresol and mixtures of chloropropanediol and dichloropropanol, or heavy products of the reaction such as at least partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon, as described in the application entitled “Process for preparing a chlorohydrin in a liquid phase”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and having a boiling temperature under a pressure of 1 bar absolute of at least 15° C. more than the boiling temperature of the chlorohydrin under a pressure of 1 bar absolute.

In the process for preparing a chlorohydrin according to the invention the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent is preferably carried out in a liquid reaction medium. The liquid reaction medium may be a single-phase or multi-phase medium.

The liquid reaction medium is composed of all of the dissolved or dispersed solid compounds, dissolved or dispersed liquid compounds and dissolved or dispersed gaseous compounds at the temperature of the reaction.

The reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, the reaction intermediates, the products and the by-products of the reaction.

By reactants are meant the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon and the chlorinating agent.

Among the impurities present in the polyhydroxylated aliphatic hydrocarbon mention may be made of carboxylic acids, salts of carboxylic acids, esters of fatty acid with the polyhydroxylated aliphatic hydrocarbon, esters of fatty acids with the alcohols used in the transesterification, and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the impurities in the glycerol that may be mentioned include carboxylic acids, salts of carboxylic acids, fatty acid esters such as mono-, di- and triglycerides, esters of fatty acids with the alcohols used in the transesterification and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

Among the reaction intermediates mention may be made of monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and/or polyesters, the esters and/or polyesters of the polyhydroxylated aliphatic hydrocarbon and the esters of polychlorohydrins.

When the chlorohydrin is dichloropropanol, the reaction intermediates that may be mentioned include glycerol monochlorohydrin and its esters and/or polyesters, the esters and/or polyesters of glycerol and the esters of dichloropropanol.

The ester of polyhydroxylated aliphatic hydrocarbon may therefore be, at each instance, a reactant, an impurity of the polyhydroxylated aliphatic hydrocarbon or a reaction intermediate.

By products of the reaction are meant the chlorohydrin and water. The water may be the water formed in the chlorination reaction and/or water introduced into the process, for example via the polyhydroxylated aliphatic hydrocarbon and/or the chlorinating agent, as described in the application WO 2005/054167 of SOLVAY SA at page 2 lines 22 to 28 to page 3 lines 20 to 25, at page 5 lines 7 to 31 and at page 12 lines 14 to 19.

Among the by-products mention may be made for example of the partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the by-products that may be mentioned include, for example, the partially chlorinated and/or esterified oligomers of glycerol.

The reaction intermediates and the by-products may be formed in the different steps of the process, such as, for example, during the step of preparing the chlorohydrin and during the steps of separating off the chlorohydrin.

The liquid reaction medium may therefore contain the polyhydroxylated aliphatic hydrocarbon, the chlorinating agent in solution or dispersion in the form of bubbles, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, such as dissolved or solid salts, for example, the reaction intermediates, the products and the by-products of the reaction.

The process for preparing the chlorohydrin according to the invention may be conducted in batch mode or in continuous mode. Continuous mode is preferred.

Steps (a), (b) and (c) of the process according to the invention may be carried out in batch mode or in continuous mode. It is preferred to carry out all of the steps in continuous mode.

In the process according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with the methods as described in the application WO 2005/054167 of SOLVAY SA from page 12 line 1 to page 16 line 35 and page 18 lines 6 to 13. These other compounds are those mentioned above and include unconsumed reactants, the impurities present in the reactants, the catalyst, the solvent, the reaction intermediates, the water and the by-products of the reaction.

Particular mention is made of separation by azeotropic distillation of a water/chlorohydrin/chlorinating agent mixture under conditions which minimize the losses of chlorinating agent, followed by isolation of the chlorohydrin by decantation.

In the process for preparing a chlorohydrin according to the invention, the isolation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with methods of the kind described in patent application EP 05104321.4, filed in the name of SOLVAY SA on May 20, 2005 and the content of which is incorporated here by reference. Particular mention is made of a separation method including at least one separating operation intended to remove the salt from the liquid phase.

Particular mention is made of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of the polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one solid or dissolved metal salt, the process including a separation operation intended to remove part of the metal salt. Mention is made more particularly of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one chloride and/or a sodium and/or potassium sulphate and in which the separating operation intended to remove part of the metal salt is a filtering operation. Particular mention is also made of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and the chlorohydrin is removed, (c) at least a part of the fraction obtained in step (b) is introduced into a distillation step and (d) the reflux ratio of the distillation step is controlled by providing water to the said distillation step. Mention is made very particularly of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with hydrogen chloride in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and chlorohydrin is removed, (c) at least part of the fraction obtained in step (b) is introduced into a distillation step in which the ratio between the hydrogen chloride concentration and the water concentration in the fraction introduced into the distillation step is smaller than the hydrogen chloride/water concentration ratio in the binary azeotropic hydrogen chloride/water composition at the distillation temperature and pressure.

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled “Process for preparing a chlorohydrin”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin which comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to give a mixture containing the chlorohydrin and esters of the chlorohydrin, (b) at least part of the mixture obtained in (a) is subjected to one or more treatments subsequent to step (a), and (c) the polyhydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), in order to react at a temperature greater than or equal to 20° C. with the esters of the chlorohydrin, so as to form, at least partly, esters of the polyhydroxylated aliphatic hydrocarbon. Mention is made more particularly of a process in which the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application “Process for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference. Particular mention is made of a process for preparing a chlorohydrin that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give a mixture containing the chlorohydrin, chlorohydrin esters and water, (b) at least a fraction of the mixture obtained in step (a) is subjected to a distillation and/or stripping treatment so as to give a portion concentrated in water, in chlorohydrin and in chlorohydrin esters, and (c) at least a fraction of the portion obtained in step (b) is subjected to a separating operation in the presence of at least one additive so as to obtain a moiety concentrated in chlorohydrin and in chlorohydrin esters and containing less than 40% by weight of water.

The separating operation is more particularly a decantation.

In the process for preparing the chlorohydrin according to the invention, the isolation and the treatment of the other compounds of the reaction mixture may be carried out in accordance with methods as described in the application entitled “Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon”, filed in the name of SOLVAY SA on the same day as the present application. A preferred treatment consists in subjecting a fraction of the by-products of the reaction to a high-temperature oxidation.

Particular mention is made of a process for preparing a chlorohydrin that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, a chlorinating agent and an organic acid are reacted so as to give a mixture containing at least the chlorohydrin and by-products, (b) at least a portion of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a), and (c) at least one of the steps subsequent to step (a) consists in an oxidation at a temperature greater than or equal to 800° C. More particular mention is made of a process wherein, in the subsequent step, a portion of the mixture obtained in step (a) is removed and this portion is subjected to oxidation at a temperature greater than or equal to 800° C. in the course of the removal. Particular mention is also made of a process wherein the treatment of step (b) is a separating operation selected from phase separation, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, and adsorption operations or the combinations of at least two of these operations.

In the process according to the invention, the chlorinating agent content of the fraction withdrawn in step (b) is generally greater than or equal to 0.035 percent by weight, preferably greater than or equal to 0.35 percent by weight and with particular preference greater than or equal to 3.5 percent by weight. Said content is generally less than or equal to 30 percent by weight, preferably less than or equal to 20 percent by weight and, with particular preference, less than or equal to 10 percent by weight. The chlorinating agent is preferably hydrogen chloride.

In the process according to the invention, the chlorinating agent content of the fraction withdrawn in step (b) is generally smaller than the chlorinating agent concentration of the binary azeotropic chlorinating agent/water composition at the temperature and pressure of distillation and/or stripping. The chlorinating agent is preferably hydrogen chloride. When the chlorinating agent is hydrogen chloride, the ratio between the hydrogen chloride content and the water content of the fraction withdrawn in step (b) is less than or equal to the ratio between the hydrogen chloride content and the water content of the binary azeotropic hydrogen chloride/water composition at the temperature and pressure of distillation and/or stripping.

By stripping is meant the separation of a substance by entrainment with the vapour of a substance which does not dissolve it. By distillation is meant the direct passage from the liquid state to the gaseous state of the substance to be separated, followed by the condensation of the vapours obtained. The distillation is preferably a fractional distillation, in other words a sequence of distillations conducted on the successively condensed vapours.

In the process according to the invention, the ratio between the chlorinating agent content of the mixture separated off in step (c) and the chlorinating agent content of the fraction withdrawn in step (b) is generally less than or equal to 0.95, in particular less than or equal to 0.70, most often less than or equal to 0.5. The chlorinating agent is preferably hydrogen chloride.

Step (c) of the process according- to the invention is generally carried out at a temperature greater than or equal to 50° C., frequently greater than or equal to 70° C. and most often greater than or equal to 90° C. This temperature is generally less than or equal to 180° C., often less than or equal to 150° C. and in particular less than or equal to 120° C.

Step (c) of the process according to the invention is generally carried out at a pressure greater than or equal to 0.1 bar, often greater than or equal to 0.5 bar and more particularly greater than or equal to 0.9 bar. This pressure is generally less than or equal to 20 bar, frequently less than or equal to 10 bar and in certain cases less than or equal to 5 bar.

Step (c) of the process according to the invention is carried out at a mass ratio between the polyhydroxylated hydrocarbon and the fraction withdrawn in step (b) of generally greater than or equal to 0.02, often greater than or equal to 0.05 and in particular greater than or equal to 0.1. This mass ratio is generally less than or equal to 2 and frequently less than or equal to 1.

Step (c) of the process according to the invention may be carried out in any vessel, such as, for example, a distillation and/or stripping column, with reflux. This column may be of any type, and generally comprises at least one feed point for the fraction withdrawn in step (b), at least one feed point for the polyhydroxylated aliphatic hydrocarbon, at least one reflux feed point and at least one theoretical plate below the reflux feed point.

The distillation or stripping column may be situated at any location relative to the reactor in which step (a) of the process according to the invention is carried out.

In the case of the stripping operation, the stripping gas may be any gas which is inert towards the chlorohydrin, such as, for example, water vapour, air, nitrogen or carbon dioxide.

In a first configuration the column is situated above the reactor in which step (a) of the process according to the invention is carried out. The fraction withdrawn in step (b) is in that case a fraction of the gaseous phase in contact with the liquid phase in which the reaction of step (a) takes place.

In a second configuration, the column is not situated above the vessel in which step (a) of the process according to the invention is carried out, but is instead situated, for example, in a liquid-phase take-off loop.

In the process according to the invention, the polyhydroxylated hydrocarbon may be added in step (c) at any level of the distillation column. It is preferably added at a level corresponding to at least 1 and not more than 4 theoretical plates below the reflux feed point.

In the process according to the invention, when the chlorohydrin is chloropropanol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1-chloropropan-2-ol and 2-chloropropan-1-ol. This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and particularly more than 50%. The mixture commonly contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and more particularly less than 90% by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

The mass ratio of the isomers, 1-chloropropan-2-ol and 2-chloropropan-1-ol, is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

In the process according to the invention, when the chlorohydrin is chloroethanol, it is generally employed in the form of a mixture of compounds comprising the 2-chloroethanol isomer. This mixture generally contains more than 1% by weight of the isomer, preferably more than 5% by weight and particularly more than 50%. The mixture commonly contains less than 99.9% by weight of the isomer, preferably less than 95% by weight and more particularly less than 90% by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloroethanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

In the process according to the invention, when the chlorohydrin is chloropropanediol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol. This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and particularly more than 50%. The mixture commonly contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and more particularly less than 90% by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloropropanediol, such as residual reactions, reaction by-products, solvents and, in particular, water.

The mass ratio between the 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol isomers is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25. In the process according to the invention, when the chlorohydrin is dichloropropanol, it is generally employed in the form of a mixture of compounds comprising the isomers of 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol. This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and in particular more than 50%. The mixture commonly contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and more particularly less than 90% by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the dichloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

The mass ratio between the 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol isomers is commonly greater than or equal to 0.01, often greater than or equal to 0.4, frequently greater than or equal to 1.5, preferably greater than or equal to 3.0, more preferably greater than or equal to 7.0 and with very particular preference greater than or equal to 20.0. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in the presence of an organic acid as catalyst. The organic acid may be a product originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon, or a product not originating from this process. In this latter case, the product in question may be an organic acid which is used in order to catalyse the reaction of the polyhydroxylated aliphatic hydrocarbon with the chlorinating agent. The organic acid may also a mixture of an organic acid originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon, and an organic acid not originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon.

In the process according to the invention, the ester of polyhydroxylated aliphatic hydrocarbon may originate from the reaction between the polyhydroxylated aliphatic hydrocarbon and the organic acid, before, during or within the steps which follow the reaction with the chlorinating agent.

The chlorohydrin obtained in the process according to the invention may include a heightened amount of halogenated ketones, in particular of chloroacetone, as described in the patent application FR 05.05120 of May 20, 2005, filed in the name of the applicant, and the content of which is incorporated here by reference. The halogenated ketone content may be reduced by subjecting the chlorohydrin obtained in the process according to the invention to an azeotropic distillation in the presence of water or by subjecting the chlorohydrin to a dehydrochlorination treatment as described in this application from page 4 line 1 to page 6 line 35.

Particular mention is made of a process for preparing an epoxide wherein halogenated ketones are formed as by-products and which comprises at least one treatment of removal of at least a portion of the halogenated ketones formed. Mention is made more particularly of a process for preparing an epoxide by dehydrochlorinating a chlorohydrin of which at least one fraction is prepared by chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof, a treatment of dehydrochlorination and a treatment by azeotropic distillation of a water/halogenated ketone mixture, which are intended to remove at least a portion of the halogenated ketones formed, and a process for preparing epichlorohydrin wherein the halogenated ketone formed is chloroacetone.

The chlorohydrin obtained in the process according to the invention may be subjected to a dehydrochlorination reaction in order to produce an epoxide, as described in the patent applications WO 2005/054167 and FR 05.05120, both filed in the name of SOLVAY SA.

The term “epoxide” is used herein to describe a compound containing at least one oxygen bridged on a carbon-carbon bond. Generally speaking, the carbon atoms of the carbon-carbon bond are adjacent and the compound may contain atoms other than carbon atoms and oxygen atoms, such as hydrogen atoms and halogens. The preferred epoxides are ethylene oxide, propylene oxide, glycidol and epichlorohydrin.

The dehydrochlorination of the chlorohydrin may be carried out as described in the application entitled “Process for preparing an epoxide starting from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide wherein a reaction mixture resulting from the reaction between a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, is subjected to a subsequent chemical reaction without intermediate treatment.

Mention is also made of the preparation of an epoxide that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to form the chlorohydrin and chlorohydrin esters in a reaction mixture containing the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon, water, the chlorinating agent and the organic acid, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, (b) at least a fraction of the reaction mixture obtained in step (a), this fraction having the same composition as the reaction mixture obtained in step (a), is subjected to one or more treatments in steps subsequent to step (a), and (c) a basic compound is added to at least one of the steps subsequent to step (a) in order to react at least partly with the chlorohydrin, the chlorohydrin esters, the chlorinating agent and the organic acid so as to form the epoxide and salts.

The process for preparing the chlorohydrin according to the invention, may be integrated within an overall plan for preparation of an epoxide, as described in the application entitled “Process for preparing an epoxide starting from a chlorohydrin”, filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide that comprises at least one step of purification of the epoxide formed, the epoxide being at least partly prepared by a process of dehydrochlorinating a chlorohydrin, the latter being at least partly prepared by a process of chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof.

When the chlorohydrin is dichloropropanol, the process according to the invention may be followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol, and the epichlorohydrin may be used in the production of epoxy resins.

In the process according to the invention, the polyhydroxylated aliphatic hydrocarbon is preferably glycerol and the chlorohydrin is preferably dichloropropanol.

FIG. 1 shows a particular scheme of plant which can be used to implement the separation process according to the invention.

A reactor (4) is supplied in continuous mode or in batch mode with a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated hydrocarbon or a mixture thereof, via line (1), and with catalyst via line (2); chlorinating agent is supplied in continuous mode or in batch mode via line (3); a distillation column (6) is supplied via line (5) with vapours produced in reactor (4); a stream is taken off from column (6) via line (7) and is introduced into a condenser (8); the stream originating from the condenser is introduced via line (9) into a decanter (10), wherein aqueous and organic phases are separated. Part of the separated aqueous phase is optionally recycled via line (11) to the top of the column to maintain the reflux. Fresh water may be introduced into line (11) via line (12). The production of chlorohydrin is distributed between the organic phase taken off via line (14) and the aqueous phase taken off via line (13). The residue from column (6) may be recycled to reactor (4) via line (15). Polyhydroxylated aliphatic hydrocarbon may be introduced into distillation column (6) beneath the reflux feed point (11) via line (33). A portion of the heavy products is taken off from reactor (4) via the purge (16) and is introduced via line (17) into an evaporator (18), in which a partial evaporation operation is conducted, for example, by heating or by gas scavenging with nitrogen or water vapour; the gaseous phase containing the majority of the hydrogen chloride of stream (17) is recycled via line (19) to column (6) or via line (20) to reactor (4); a distillation or stripping column (22) is supplied with the liquid phase coming from evaporator (18) via line (21), line (21) and/or distillation column (22) and/or evaporator (18) and/or line (17) are supplied with polyhydroxylated aliphatic hydrocarbon via, respectively, line (32) and/or line (31) and/or line (33) and/or line (34); the major part of the chlorohydrin is collected at the top of column (22) via line (23), and the residue, which contains esters of the polyhydroxylated aliphatic hydrocarbon, is introduced via line (24) into the filtering column (25), in which the liquid and solid phases are separated; and the liquid phase is recycled via line (26) to reactor (4). The solid may be taken off from filtering unit (25) via line (27) in the form of a solid or a solution. Solvents may be added to filtering unit (25) via lines (28) and (29) for washing and/or dissolving the solid, and may be taken off via line (27).

Optionally a stream is taken off from purge (16) and introduced via line (30) into filtering column (25). Evaporator (18) and distillation column (22) are in that case short-circuited.

Claims

1. A process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent in a reactor which is supplied with one or more liquid streams comprising less than 50% by weight of the polyhydroxylated aliphatic hydrocarbon, the ester of a polyhydroxylated hydrocarbon or the mixture thereof relative to the weight of the entirety of the liquid streams introduced into the reactor.

2. The process for preparing a chlorohydrin according to claim 1, comprising:

(a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent so as to form at least one mixture comprising the chlorohydrin, water and chlorinating agent;
(b) withdrawing at least a fraction of the mixture formed in (a): and
(c) distilling and/or stripping the fraction withdrawn in (b) in which polyhydroxylated aliphatic hydrocarbon is added so as to separate, from the fraction withdrawn in (b), a mixture comprising water and the chlorohydrin that has a reduced chlorinating agent content as compared with that of the fraction withdrawn in (b).

3. The process according to claim 1, wherein a carboxylic acid, a carboxylic anhydride, a carboxylic chloride, a carboxylic salt or a carboxylic ester having an atmospheric boiling point of greater than or equal to 200° C. is used as catalyst in (a).

4. The process according to claim 1, wherein the reaction of (a) is carried out in a liquid phase.

5. The process according to claim 4, wherein the distillation and/or stripping is carried out in a distillation and/or stripping column comprising at least one feed point for the fraction withdrawn in (b), at least one feed point for the polyhydroxylated aliphatic hydrocarbon, at least one reflux feed point and at least one theoretical plate below the reflux feed point.

6. The process according to claim 5, wherein the polyhydroxylated aliphatic hydrocarbon is added in (c) at a level corresponding to at least 1 and not more than 4 theoretical plates below the reflux feed point.

7. The process according to claim 2, wherein the chlorinating agent content of the fraction withdrawn in (b) is greater than or equal to 0.035 percent by weight and less than or equal to 30 percent by weight.

8. The process according to claim 2, wherein the chlorinating agent is hydrogen chloride and the ratio between the hydrogen chloride content and the water content of the fraction withdrawn in (b) is less than or equal to the ratio between the hydrogen chloride content and the water content of he a binary azeotropic hydrogen chloride/water composition at the a temperature and a pressure of distillation and/or stripping.

9. The process according to claim 2, wherein the ratio between the chlorinating agent content of the mixture separated off in (c) and the chlorinating agent content of the fraction withdrawn in (b) is less than or equal to 0.95 and greater than or equal to 0.0015.

10. The process according to claim 2, wherein (c) is carried out at a temperature greater than or equal to 50° C. and less than or equal to 180° C., at a pressure greater than or equal to 0.1 bar and less than or equal to 20 bar and at a mass ratio between the polyhydroxylated aliphatic hydrocarbon and the fraction withdrawn in (b) of greater than or equal to 0.1 and less than or equal to 1.5.

11. The process according to claim 2, wherein (a), (b) and (c) are conducted continuously.

12. The process according to claim 1, wherein the polyhydroxylated aliphatic hydrocarbon, the ester of a polyhydroxylated aliphatic hydrocarbon or the mixture thereof is obtained starting from renewable raw materials.

13. The process according to claim 1, wherein the polyhydroxylated aliphatic hydrocarbon is selected from ethylene glycol, propylene glycol, chloropropanediol, glycerol and mixtures of at least two thereof.

14. The process according to claim 1, wherein the chlorohydrin is selected from chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two thereof.

15. The process according to claim 14, wherein the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is chloropropanediol and/or dichloropropanol.

16. The process according to claim 15, followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol.

17. The process according to claim 16, wherein the epichlorohydrin is used in the production of epoxy resins.

18. The process according to claim 1, wherein the chlorinating agent contains hydrogen chloride.

19. The process according to claim 18, wherein the hydrogen chloride is a combination of gaseous hydrogen chloride with an aqueous solution of hydrogen chloride, or an aqueous solution of hydrogen chloride.

Patent History
Publication number: 20080200701
Type: Application
Filed: May 19, 2006
Publication Date: Aug 21, 2008
Inventors: Philippe Krafft (Rhode Saint Genese), Patrick Gilbeau (Braine-le-Comte), Dominique Balthasart (Brussels), Valentine Smets (Brussels)
Application Number: 11/915,067
Classifications
Current U.S. Class: Oxirane Ring Formed (549/518); Halogen Containing (568/841); Polyhydroxy Or Polyhalogen (h Of -oh May Be Replaced By A Group Ia Or Iia Light Metal) (568/844)
International Classification: C07D 301/26 (20060101); C07C 31/36 (20060101); C07C 31/42 (20060101);