Apparatus for manipulating power tongs
An apparatus for manipulating a power tong to various positions on the rig floor. A boom of fixed length is mounted to a drilling rig either directly or indirectly by means of a bearing housing. The bearing housing is slewable about a vertical axis and the boom is axially drivable with respect to the bearing housing, these motions together or individually causing lateral motion to the power tong. In one embodiment, the bearing housing and thereby the boom is tilted by use of hydraulic cylinders mounted between the bearing housing and slewing housing, allowing the elevation of the power tong to be changed. In a second embodiment, the end of the boom at the power tong is supported by a hydraulic cylinder and hanging cable. In a third embodiment, the power tong is supported directly by a hanging cable and hydraulic cylinder arrangement and the end of the boom pushes and slews to impart lateral motion indirectly to the power tong by way of the hanging cable or cylinder or tong itself.
This invention relates generally to rotary drilling apparatus for oil and gas wells and in particular to apparatus for handling power tongs on the rig floor.
BACKGROUND OF THE INVENTIONRotary drilling operations for oil and gas wells generally employs a drill string consisting of many joints of drill pipe at the top of the string and several joints of drill collars at the bottom of the string nears the bit.
Periodically during the drilling of a well when the string, partially or entirely, must be removed from the hole. Such cases include the need for changing bits, running casing or for other reasons. Also, as the drilling progresses and the bore hole becomes deeper, additional joints or stands of pipe must be added for drilling to continue.
To add or remove drill pipe or drill collar segments to or from the drill string, the existing connections between the drill pipe or drill collar segments must be broken loose and then rotated multiple times to disengage the threaded connection and separate the segments so the segments may be removed from the drill string. The pipe sections must be rotated clockwise and retightened before drilling can recommence. For these operations, current art utilizes large machines known as power tongs, to hydraulically make these connections. These machines are large and unwieldy and require means to support them and move them around the drill floor.
Current methods for handling power tongs include telescoping arms as well as hydraulically powered linkage mechanisms. These types of mechanisms are complicated and often contain highly loaded components. Such mechanisms are often restricted in their range of motion and travel.
Additionally, linkage mechanisms often do not operate in a linear fashion throughout the extension and retraction travel and are difficult for the operator to become skilled at operating. In some instances, the level of expertise required is so great that the designers have incorporated expensive computerized controls.
SUMMARY OF THE INVENTIONThe present invention provides for an economical and versatile alternative method for controlling the movement of rig tools about the rig floor. The central entity in the invention is a boom of substantially fixed length supported by an attached support structure. The boom is moveable axially with respect to the support structure and is fully or partially supported by bearing means incorporated within said support structure. Incorporated within said support structure is a means for linearly moving the arm with respect to the support structure. The support structure may be mounted on a fixed post or on an existing portion of the rig structure.
The preferred embodiment of a manipulator of the present invention has a boom of a box-beam configuration supported by flanged rollers incorporated into a bearing housing. The bearing housing is supported by a slewing housing below it. The slewing housing is supported by a cylindrically tubular post and is pivotable about the vertical axis of the post. The tubular post is removable and supported at its lower end by a socket affixed to the rig structure. The bearing housing is pivotable in a vertical direction with respect to the slewing housing using one or more hydraulic cylinders. The power tong is supported at the outermost end of the boom using a gimble suspension and may also incorporate a swivel means to allow rotation of the power tong below the gimble. The boom is moveable in a horizontally axial direction with respect to the bearing housing by means of one or more rack and pinion gear drives. The action of the gear drive causes the boom and, thereby, the power tong to be moved toward and away from the fixed post location toward and away from well center and other locations about the rig floor. When the stewing motion allowed by the slewing housing is added to the linear motion caused by the gear drive, it is possible to position the power tong over a large area of the rig floor. The action of the hydraulic cylinders causes the bearing housing to tilt vertically with respect to the slewing housing, thereby causing the end of the boom to rise, thus raising the level of the power tong.
In alternate embodiments of manipulators of the present invention, the power tong may be suspended by a cable attached to the rig structure well above the rig floor. In these cases, a manipulator of the present invention would be similar in its basic configuration but required to react different and, generally lesser, loadings. In these alternative embodiments, the bearing and slewing housings and the related post or other support structures provide support predominately in lateral directions only and react the side loads imposed by the non-vertical components of the cable loading. This arrangement would decrease the vertical loads imposed on the boom and other structures, allowing them to be made lighter and/or increase the range of motion of the arm in one or more directions. The gear drive would move the boom as described above and such configurations may also provide a slewing capability, either manually or powered, to allow rotation of the boom about a fixed vertical axis. The external supporting structure may be allowed to be rotated manually but be provided with fixed stops for the particular locations such as well center or the mousehole. In the case of tools suspended from a cable, provisions must be made to either allow the power tong to move vertically with respect to the boom or to allow the boom and bearing housing to pivot vertically to follow such vertical motion of the power tong.
The manipulators of the present invention are used to move around rig tools such as power tongs to different locations about the rig floor.
The manipulators of the present invention have a boom of a substantially fixed length. The power tong is attached to one end of the boom. The boom is supported along a portion of its length by bearings incorporated into a bearing housing. The boom is moveable with respect to the bearing housing allowing the attached power tong to be moved to various locations on the rig floor.
The invention is not limited to the specific embodiments as described above, but rather is applicable to all variations within the scope of the claims.
Claims
1. A manipulator for positioning power tongs comprising:
- a boom of fixed length supported by a bearing means and axially moveable with respect thereto,
- a means to linearly drive said boom with respect to said bearing means,
- a means of attaching a power tong to one end of said boom,
- a stewing means allowing said bearing housing and, thereby, said boom to rotate about a vertical axis,
- a means for supporting said manipulator.
2. A manipulator of claim 1 further comprising a means of tilting said boom and thereby changing the elevation of said power tong.
3. A manipulator of claim 2 further comprising a gimble means at the end of said boom to allow the power tong to remain vertical as the boom is tilted.
4. A manipulator of claim 3 further comprising a swivel means to enable the power tong to be rotated about the axis of the gimble.
5. A manipulator of claim 2 wherein the tilting means is one or more hydraulic cylinders attached to the bearing means.
6. A manipulator of claim 2 wherein the tilting means is a hydraulic cylinder attached to a suspension cable that is attached to the derrick structure on one end and the end of the boom at the other.
7. A manipulator of claim 6 further comprising a gimble means at the end of said boom to allow the power tong to remain vertical as the boom is tilted.
8. A manipulator of claim 7 further comprising a swivel means to enable the power tong to swivel about the axis of the gimble means.
9. A manipulator of claim 1 wherein the power tong is supported by a hanging cable and hydraulic cylinder arrangement,
- a means to apply lateral forces from the boom to the hanging cable.
10. A manipulator of claim 9 wherein the means to apply lateral forces to the hanging cable is a roller means allowing the cable to move vertically with respect to the boom.
11. A manipulator of claim 1 wherein the power tong is supported by a hanging cable and hydraulic cylinder arrangement,
- a means to apply lateral forces from the boom to the hydraulic cylinder.
12. A manipulator of claim 1 wherein the power tong is supported by a hanging cable and hydraulic cylinder arrangement,
- A means to apply lateral forces from the boom to the power tong itself.
13. A manipulator of claim 1 wherein the linear drive means is one or more pinion gears powered by hydraulic motors and acting upon one or more gear racks.
14. A manipulator of claim 1 wherein the linear drive means is one or more pinion gears powered by pneumatic motors and acting upon gear one or more gear racks.
15. A manipulator of claim 1 wherein the linear drive means is one or more pinion sprockets powered by one or more hydraulic motors and acting upon one or more roller chains affixed to said boom.
16. A manipulator of claim 1 wherein the linear drive means is one or more cable on sheave arrangements powered by one or more hydraulic cylinders.
Type: Application
Filed: Apr 5, 2007
Publication Date: Oct 9, 2008
Inventor: William R. Hamilton (Conroe, TX)
Application Number: 11/732,813
International Classification: E21B 19/00 (20060101);