ARTICULATING BED FRAME
An articulating bed frame includes a main frame; a back section; first and second linkage assemblies, each being pivotally connected at spaced apart first and third ends to the back section and pivotally connected at opposing, spaced apart and respective second and fourth ends to the main frame; an upper leg section; a third linkage assembly pivotally connected at opposing fifth and sixth ends to the upper leg section and the main frame; a support link assembly connecting the upper leg section for sliding and pivotal movement with the main frame; a seat section pivotally connected at opposing ends to the back section and the upper leg section; a lower leg section pivotally connected to the upper leg section and freely supported atop a forward end of the main frame; a drive assembly connected between the back section and the third linkage assembly and operable to extend and retract to articulate the bed frame between a fully reclined position and a fully inclined position; and, a side rail assembly connected to the main frame and including a handle having a down position and an up position and including connection apparatus for permitting articulation between the down and up positions.
This application is a continuation-in-part of pending U.S. patent application Ser. No. 10/359,087 filed Feb. 5, 2003.
FIELD OF THE INVENTIONThe present invention relates to bed frames, and more particularly to an articulating bed frame for home, nursing home and hospital healthcare.
BACKGROUND OF THE INVENTIONBeds and bed frames constructed for home, nursing and hospital healthcare environments provide for articulation of the frame to tilt one or more sections for the patient's comfort and/or care. With the push of a button or lever, the back section can be made to tilt between a completely flat, reclined position and a forward, inclined position, or one or more leg sections may be made to bend or tilt between a generally flat and horizontal position and a drawn-up, bent position. More particularly, since most beds are positioned against a wall, some beds have back sections that hug the wall when inclined (raised), which provides additional space at the foot end. This also allows patients to stay within reach of bed side cabinets. To accomplish this, the existing designs of such bed frames typically comprise multiple sliding frames that retract with pivoting linkages that are heavy and costly to manufacture. In addition, the movement of such members may define a path that is larger than the underlying mattress footprint, which thus takes up more space unnecessarily.
What is desired is a bed frame that is lighter, cheaper to manufacture, has a smaller operating footprint, and still hugs the wall when inclined.
SUMMARY OF THE INVENTIONThe present invention provides a bed frame that may be articulated between a generally flat and horizontal position and a back-inclined position, all while maintaining a substantially wall-hugging configuration at the head of the bed frame.
Generally speaking, an articulating bed frame includes a main frame; a back section; first and second linkage assemblies, each being pivotally connected at spaced apart first and third ends to the back section and pivotally connected at opposing, spaced apart and respective second and fourth ends to the main frame; an upper leg section; a third linkage assembly pivotally connected at opposing fifth and sixth ends to the upper leg section and the main frame; a support link assembly connecting the upper leg section for sliding and pivotal movement with the main frame; a seat section pivotally connected at opposing ends to the back section and the upper leg section; a lower leg section pivotally connected to the upper leg section and freely supported atop a forward end of the main frame; a drive assembly connected between the back section and the third linkage assembly and operable to extend and retract to articulate the bed frame between a fully reclined position and a fully inclined position; and, a side rail assembly connected to the main frame and including a handle having a down position and an up position and including connection apparatus for permitting articulation between the down and up positions.
It is an object of the present invention to provide an improved bed with articulating side rail for hospital, home and nursing care applications.
Further objects and advantages will become apparent from the following description of the preferred embodiment.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and any alterations or modifications in the illustrated device, and any further applications of the principles of the invention as illustrated therein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring to
The fully reclined position, as used herein, refers to the condition where all the bed sections members (back 12, seat 13, upper leg 14 and lower leg 15) are juxtaposed in a generally horizontal and co-planar position, as shown in
Referring to
Back section 12 is a generally rectangular frame of tubular metal construction and includes upper, middle and lower crossbars 38, 39 and 40 extending between opposing side arms 41 and 42, respectively. A pair of pivot head braces 43 and 44 extend rigidly between middle and lower crossbars 39 and 40, and braces 43 and 44 are spaced inwardly from side arms 41 and 42, respectively. First and second linkage assemblies 47 and 48 connect back section 12 with main frame 11. First linkage assembly 47 includes a pair of linkages 49 and 50, which are pivotally connected at their upper ends at pins 51 and 52, respectively, to an upper region of braces 43 and 44, as shown. Linkages 49 and 50 are pivotally connected at their opposing, lower ends to linkage brackets 27 and 28 by pins 53 and 54, respectively. Second linkage assembly 48 includes upper and lower pivot tubes 55 and 56 that are rigidly connected to each other by a pair of opposing connector tubes 57 and 58. Upper pivot tube 55 is pivotally connected to, between and at the lower portions of braces 43 and 44 by appropriate means such as pins 59 and 60. Lower pivot tube 56 is pivotally connected to and between the side rails 24 and 25 of main frame 11 by appropriate means such as pins 61 and 62. Main frame 11, back section 12 and linkage assemblies 47 and 48 thus form a closed quadrilateral linkage assembly that is limited to articulate between the fully reclined position 5 of
A back section cover plate 63 is fixedly secured to and atop crossbars 38, 39 and 40 and side arms 41 and 42, cover plate 63 providing additional structural support for back section 12. A plurality of holes with grommets 64 are provided in cover plate 63 for ventilation.
Also connected with back section 12 is a first drive linkage assembly 65 (
Like back section 12, lower leg section 15 is a generally rectangular frame of tubular metal construction and includes upper, middle and lower crossbars 70, 71 and 72 extending between opposing side rails 73 and 74, respectively. A pair of roller bars 75 and 76 are connected at their forward ends to connector brackets 77 and 78, which are fixedly connected to lower crossbar 72. At their rearward ends, roller bars 75 and 76 are connected to the lower ends of hanger links 79 and 80. Links 79 and 80 are connected at their upper ends to connector brackets 81 and 82, which are connected to middle crossbar 71. Forwardly, lower leg section 15, and more particularly, roller bars 75 and 76, ride upon rollers 33 and 34. Roller bars 75 and 76, hanger links 79 and 80 and rollers 33 and 34 together form a track and guide assembly 85. Alternative embodiments are contemplated wherein track and guide assembly 85 includes low friction slides instead of rollers 33 and 34 to permit roller bars 75 and 76 to slide thereon. Alternatively, rollers or sliding elements are contemplated to be mounted to lower leg section 15 with track members mounted to or made as a part of main frame 11. Other embodiments contemplate any suitable complementary track and guide arrangement to permit lower leg section 15 to ride along the forward end of main frame 11 either freely (as shown in herein) or with some releasable restriction to permit lower leg section to be easily folded over at axis 21 for transport, as described herein. Rearwardly, lower leg section 15 is pivotally connected to upper leg section 14 by pins 83 and 84. As with cover plate 63, a lower section cover plate 86 with holes and grommets 64 is fixedly secured to crossbars 71 and 72 and side rails 73 and 74.
Upper leg section 14 comprises a rear crossbar 87 extending between opposing side rails 88 and 89, respectively. A third linkage assembly 90 connects the front end of upper leg section 14 to main frame 11 and includes upper and lower pivot tubes 91 an 92 that are rigidly connected to each other by a pair of opposing connector tubes 94 and 95. Upper pivot tube 91 is pivotally connected to and between side rails 88 and 89 by pins 96 and 97, respectively. Lower pivot tube 92 is pivotally connected to and between main frame side rails 24 and 25 by pins 98 and 99, respectively. A support link assembly 101 includes a pair of opposing support links 102 and 103 that are rigidly connected to and extend downwardly from rear crossbar 87. At the bottom of each support link 102 and 103 is rotatably connected a roller (one shown at 104), each roller being received to ride within a corresponding one of roller channels 35 and 36. In the present embodiment, roller channels 35 and 36 are straight, which produces substantially straight movement for the lower ends of links 102 and 103. Alternative embodiments are contemplated wherein roller channels 35 and 36 are at least partially non-linear to produce an alternative path for the seat and upper leg sections 13 and 14, as desired. Rearwardly, upper leg section 14 is pivotally connected to seat section 13 by pins 106 and 107, respectively. An upper leg section cover plate 109 has a generally C-shaped cross-section and is fixedly secured to crossbar 87 and side rails 89 and 90 by appropriate means such as welding.
Referring to
Referring to
Drive assembly 16 includes any apparatus suitable for providing linear motion to drive links 66 and 67 of drive linkage assembly 65. In the embodiment of
In operation from the fully inclined position 7 (
Of particular importance in the configuration and assembly of bed frame 10 is the location of upper crossbar 38 of back section 12 relative to the rear rail 23 of main frame 11. As bed frame 11 is articulated between the fully reclined and fully inclined positions, the rearward end of back section 12 (which is upper crossbar 38) stays substantially vertically aligned with the rear end of main frame 11 (which is rear rail 23). Bed frame 10 thus exhibits a significant wall-hugging feature whereby, during articulation toward the fully inclined position (
Alternative embodiments are contemplated wherein the lengths and positionment of the various linkages are modified slightly, the result of which is that, during articulation from the fully reclined to the fully inclined position, the rearward end (38) of back section 12 moves horizontally forward slightly greater than 25% of what the forward end (40) of back section 12 moves horizontally rearward. While the configuration of the present invention permits such adjustment, it is preferred that the ratio of forward movement of the rearward end (38) to the rearward movement of forward end (40) be maintained at about 1 to 4 or less than 1 to 4.
With support link assembly 101 mounted at its bottom end for substantially horizontally linear travel in roller channels 35 and 36, and mounted at its top end proximal to pivot axis 20, and thus substantially adjacent to the forward end of seat section 13, the forward end of seat section 13 moves in a substantially horizontal path. Likewise, the bottom end of first drive linkage assembly 65 moves in a substantially horizontally linear path, and the top end is mounted substantially adjacent to the rear end of seat section 13. Consequently, as bed frame 10 is articulated between the fully reclined and fully inclined positions, seat section 13 remains substantially horizontal. Also, as shown in
An easily removable headboard (not shown) and foot board 149 are provided as desired to maintain the position of a mattress (not shown) that is positioned atop articulating bed frame 10. Side rails (not shown) are also provided in a known manner, as appropriate. Vertically adjustable caster sleeves 148 are connected to main frame 11 and are sized and shaped to receive casters (not shown).
Referring to
Referring to
Linear actuator 175 may be any device that is connectable at opposing ends between first and second drive linkage assemblies 163 and 169 and operable to pull and push the distal ends of the drive linkage assemblies 163 and 169 together and apart to articulate bed frame 150 between the fully reclined and fully inclined positions described and shown herein.
The leg section 154 of bed frame 150 also differs from bed frame 10 in that there are no roller bars 75 and 76 nor hangar links 79 and 80. Instead, front roller mounting brackets 176 and 177 (
Bed frame 150 is also provided with a vertical adjustment apparatus for raising and lowering main frame 157 relative to the ground 188, the apparatus generally including a bed lift drive assembly 190 and four identical castor assemblies, one at each corner of main frame 157 (two shown at 191 and 192). Castor assemblies such as those shown at 191 and 192 are well known and each generally includes a support arm 194 and a control arm 195 pivotally mounted at a proximal end to main frame 157 by separate axles 196 and 197. At their distal ends, each arm 194 and 195 is pivotally mounted at separate pivot points 199 and 200 to a single castor leg 201. This configuration permits castor leg 201 to maintain a constant vertical angle as it rises and falls relative to main frame 157. The pivotal connection of support arm 194 to main frame 157 is achieved by support arm 194 being fixedly connected to axle 196. Axle 196 generally extends between opposing bed frame side rails (one of two opposing and parallel rails shown at 202) and is held for rotation at each such side rail by a bracket (one of two brackets shown at 203) that is fixed to its respective side rail (202). There are thus two such axles—a rear axle 196 and a front axle 207—extending between the opposing side rails of bed frame 157. Rear axle 196 connects the left, rear support arm 194 of bed lift castor assembly 191 with the right, rear support arm (not shown) of the right, rear castor assembly (not shown), the two rear support arms thus rotating as a unit about the axis of axle 196. Likewise, at the front of bed frame 10, the support arms (one of two shown at 208) of front bed lift castor assemblies (one of two shown at 192) are fixedly tied together to rotate as a unit by and with axle 207.
A radial arm 209 extends rigidly and radially from axle 196, between opposing side rails (one shown at 202). Referring to
Bed lift drive assembly 190 has a mounting end 231 that is mounted to a bracket 232 that is fixed to a crossbar 233 that extends between the opposing side rails (one shown at 202) of main frame 157. Drive assembly 190 has an output spindle 235 that is operable to extend and retract relative to the mounting end 231, and the distal, output end 236 of spindle 235 is pivotally mounted to pin 215, which is connected to the distal ends of radial arms 211 and 212. In one embodiment, like articulation drive assembly 168, bed lift drive assembly 190 comprises a suitable linear actuator available from Linak U.S. Inc of Louisville, Ky., but may comprise any device capable of extendable and retractable connection between a point on main frame 157 and at least one of radial arms 211 or 212. Actuation of bed lift drive assembly 190 is controlled by a user with a suitable keypad or similar device (not shown) electrically connected with bed lift drive assembly 190 in a known manner.
The operation of the vertical adjustment apparatus of bed frame 150 will now be described. Reference to clockwise and counterclockwise rotations and other movement and positional movements relative to bed frame 150 are as viewed in
Extension actuation of bed lift drive assembly 190 rotates all of radial arms 209, 211 and 212 clockwise. If limit catch 222 was not engaged, both the front and rear portions of main frame 157 will rise equally. If limit catch 222 was engaged, the front will begin to raise as soon as radial arms 211 and 212 rotate clockwise to engage limit pin 220 at which point rocker arms will be rotated clockwise, as well, which will move limit pin out of engagement with hook 228. Limit catch 222 is configured and mounted to bracket 224 to be biased toward a rest position, disengaged from limit pin 220 (as shown in
Referring to
Linkage arms 261 and 262 are each freely, pivotally connected at one end to mounting plate 271 by pins 273 and 274, which constitutes first and second pivot axes, respectively. As with any of the “pins” referred to herein for pivotal connection of one element to another, such pin is contemplated to comprise any appropriate means that securely permits relative pivotal movement between the connected elements including, but not limited to some combination of bolts, nuts, washers, wear rings, rivets, pins, and/or lock rings. The mounting of linkage arms 261 and 262 to mounting plate 271 is such that the pivot axes of pins 273 and 274 are spaced apart and along a line 277 that is preferably at between about 40° and 50° to horizontal, which arrangement provides sufficient clearance and range for side rail assembly 255 to pivot between its down position 278 (
Handle 265 is a generally C-shaped tubular member with angled, top, front and bottom sections 286, 287, 288 and 289, respectively. A generally C-shaped auxiliary handle 292 is rigidly connected to and extends upwardly from bottom section 289, as shown. Likewise, control unit 267 is rigidly connected to and extends upwardly from bottom section 289, as shown. Control unit 267 replaces the drive actuator assembly 120 of bed frame 10 and electronically connects with and controls drive assembly 16 or any similar suitable device employed for articulating bed frame 10 between its fully reclined and fully inclined positions. Control unit 267 includes at least two buttons 293 (incline) and 294 (recline). Auxiliary handle 292 extends up toward top section 287, but is sufficiently spaced down from top section 287 to enable a person on bed frame 250 to easily reach between auxiliary handle 292 and top section 287 and access control unit 267 which, concordantly, extends up from bottom section 289 enough to position buttons 293 and 294 generally in alignment with the gap between top section 287 and auxiliary handle 292. Further, because control unit 267 and auxiliary handle 292 are connected only with bottom section 289, a person gripping side rail assembly 255 can grasp handle 265 at generally any position along angle, top or front sections 286, 287 or 288 without encountering another structural element connected thereto. That is, such person can wrap his hand completely around the tubular rail and can easily slide it along angle, top and front sections 286, 287 and 288, unimpeded by a structural bar that, for example, might tee into top section 287.
Because handle 265 is generally C-shaped, a friction grip 296 of rubber or similar grip-friendly material can be slid on from the angled section end and into position covering much of top section 287 and front section 288. Grip 296 may be smooth, ribbed or of any desired surface configuration or material to provide a comfortable and grip-enhancing surface for the bed user. Grip 296 may be sized longer or shorter than shown in
Handle 265 is immovably connected at the inboard ends of its angle section 286 and bottom section 289 to connector brackets 263 and 264 at upper pin 297 and lower pins 298 and 299, with such inboard ends of angled section 286 and bottom section 289 being sandwiched between brackets 263 and 264 (
Side rail position control assembly 266 includes a set link 305 pivotally connected at one end by a pin 306 to and sandwiched between brackets 263 and 264. At its opposite end, set link 305 defines a closed-ended slot 307 with two notches 308 and 309. Notch 308 is at the inboard end of slot 307. There is no notch at the outboard end 310 (
In operation, from the down position 278 (
As described with reference to bed frame 10 of
Notches 308 and 309 of set link 305 are angled relative to the main, generally linear portion of slot 307 so that set pin 313 will automatically enter and stay in notches 308 and 309 as side rail is articulated between the up and down positions. Entry into notches 308 and 309 will generally be gravity assisted, but alternative embodiments are contemplated wherein an appropriate biasing means is provided to urge set link 305 to rotate counterclockwise (as viewed in
Alternative embodiments are contemplated where set link 305 has more or fewer notches than the two notches 308 and 309 to provide more or less than the three set positions for side rail assembly 255 described herein.
It is noted that linkage arms 261 and 262, brackets 263 and 264 and mounting plate 271 are sized and configured so that pins 273, 274, 283 and 284 generally define a parallelogram. Referring to the diagram of
It is noted that side rail assembly 255 provides mounting at one narrowly dimensioned location near the rear of bed frame 10, and the components of side rail assembly 255 may thus be moved out of the way of other elements of bed frame 10 when side rail assembly 255 is articulated to its up position 279. This is accomplished, in part, because the pivotal mounting points of linkage arms 261 and 262 at pins 273 and 274 are closely spaced together and in the angled configuration, that is, between about 40 degrees and 50 degrees from horizontal. Further, in the down position, handle assembly 259 is entirely lateral of the first and second pivot axes (pins 273 and 274). That is, as viewed in
Another embodiment is shown in
Alternative embodiments are contemplated wherein side rail position control assembly 266 is configured alternatively, the principal operation of which is to provide releasable setting of side rail assembly 255 at and between the up and down positions, 279 and 278, respectively. Such alternative configurations include, but are not limited to a base plate and set bar configuration (as shown in
Other alternative configurations are contemplated to include active connections devices such as, but not limited to, a powered actuator similar to linear actuator 175, such actuator being connected between pins 306 and 313. Control of such actuator would be provided at control unit 267 to enable access by the person in the bed to remotely articulate side rail assembly 255.
The present embodiment is shown with just one side rail assembly 255, which is mounted to the right side of bed frame 10. A similar, but mirror-image side rail assembly (not shown) is contemplated to be directly connected to main frame 11 on the left side of bed frame 10. Such left-side side rail assembly may carry no control unit, the only control unit 267, or a second control unit (not shown). In the latter case, such second control unit could be configured and wired to control the vertical adjustment apparatus (e.g. the bed lift drive assembly 190 of
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrated and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims
1. A bed frame, comprising:
- a main frame;
- a back section;
- a seat section pivotally connected to said back section;
- an upper leg section pivotally connected to said seat section;
- a lower leg section pivotally connected to said upper leg section;
- a first linkage assembly pivotally connected at an upper end to said back section and pivotally connected at an opposite lower end to said main frame;
- a second linkage assembly pivotally connected at an upper end to said back section and pivotally connected at an opposite lower end to said main frame;
- a third linkage assembly pivotally connected at an upper end to said upper leg section and pivotally connected at an opposite lower end to said main frame;
- a support link assembly connecting said upper leg section for sliding and pivoting movement relative to said main frame;
- first means for movably supporting said lower leg section atop said main frame;
- a drive assembly connected between said back section and one of said main frame and said third linkage assembly for articulating said bed frame between a fully reclined position and a fully inclined position; and,
- a side rail assembly connected to said main frame and including a handle having a down position and an up position and including connection means for permitting articulation between the down and up positions.
2. The bed frame of claim 1 wherein said drive assembly is connected at a first end with said back section and at a second end to said main frame.
3. The bed frame of claim 1 wherein said drive assembly is connected at a first end with said back section and is connected at a second end to said third linkage assembly.
4. The bed frame of claim 3 wherein said drive assembly is a linear actuator operable to selectively retract and extend its first and second ends toward and away from each other to articulate said bed frame.
5. The bed frame of claim 1 wherein said main frame includes at least one roller channel, and said support link assembly includes at least one support link rigidly connected at a first end to said upper leg section and extending generally downwardly therefrom to an opposing distal second end that is sized and configured to engage with and follow in the roller channel.
6. The bed frame of claim 1 wherein said first means is a track and guide assembly connected with said lower leg section and said main frame to permit said lower leg section to ride freely along the forward end of main frame.
7. The bed frame of claim 1 further including a transport position wherein said lower leg section is folded about 180 degrees and from the fully reclined position, and rests substantially flat against said upper leg frame.
8. An articulating bed frame, comprising:
- a main frame;
- a back section, an upper leg section, a seat section pivotally connected at opposing ends to said back section and said upper leg section, and a lower leg section pivotally connected to said upper leg section;
- a first linkage assembly being pivotally connected at opposing first and second ends to said back section and said main frame;
- a second linkage assembly being pivotally connected at opposing third and fourth ends to said back section and said main frame;
- a third linkage assembly being pivotally connected at opposing fifth and sixth ends to said upper leg section and said main frame, respectively;
- a support link assembly connecting said upper leg section for sliding and pivotal movement with said main frame;
- a drive assembly connected between said back section and one of said main frame and said third linkage assembly, said drive assembly being operable to articulate said bed frame between a fully reclined position and a fully inclined position; and,
- a side rail assembly connected to said main frame and including a handle having a down position and an up position and including connection means connecting the handle with said main frame for permitting articulation between the down and up positions.
9. The bed frame of claim 8 wherein said drive assembly is connected at a first connection end to said back section and at a second connection end to said main frame.
10. The bed frame of claim 8 wherein said drive assembly is connected at a first end with said back section and at a second, opposing end with said third linkage assembly.
11. The bed frame of claim 8 wherein said main frame includes at least one roller channel and said support link assembly includes at least one support link that is rigidly connected at a first end to said upper leg section and that extends generally downwardly therefrom to an opposing distal second end that is sized and configured to engage with and follow in the roller channel.
12. The bed frame of claim 8 further including a track and guide assembly connected with said lower leg section and said main frame to permit said lower leg section to ride freely along the forward end of main frame.
13. The bed frame of claim 8 further including a transport position wherein said lower leg section is folded about 180 degrees and from the fully reclined position, and substantially rests flat against said upper leg frame.
14. An articulating bed frame, comprising:
- a main frame;
- a back section;
- first and second linkage assemblies, each being pivotally connected at spaced apart first and third ends to said back section and pivotally connected at opposing, spaced apart and respective second and fourth ends to said main frame;
- an upper leg section;
- a third linkage assembly pivotally connected at opposing fifth and sixth ends to said upper leg section and said main frame;
- a support link assembly connecting said upper leg section for sliding and pivotal movement with said main frame;
- a seat section pivotally connected at opposing ends to said back section and said upper leg section;
- a lower leg section pivotally connected to said upper leg section and freely supported atop a forward end of said main frame;
- a drive assembly connected between said back section and said third linkage assembly and operable to extend and retract to articulate said bed frame between a fully reclined position and a fully inclined position; and,
- a side rail assembly connected to said main frame and including a handle having a down position and an up position and including connection means for permitting articulation between the down and up positions.
15. A method for articulating a bed frame between fully reclined and fully inclined positions, comprising the steps of:
- providing a bed frame including: a main frame,
- a back section connected to the main frame by first and second linkage assemblies, each of the first and second linkage assemblies being pivotally connected at first and third ends to said back section and pivotally connected at opposing respective second and fourth ends to said main frame, an upper leg section connected to the main frame by a third linkage assembly and a support link assembly, the third linkage assembly being pivotally connected at opposing fifth and sixth ends to the upper leg section and the main frame, respectively, and the support link assembly being rigidly connected at a seventh end to the upper leg section and being slidably and pivotably connected at an opposing eighth end to said main frame, a seat section pivotally connected at opposing ends to the back section and said upper leg section, a lower leg section pivotally connected to said upper leg section and freely supported atop a forward end of said main frame, a drive assembly connected at first and second connection ends to and between the back section and one of the main frame and the third linkage assembly, the drive assembly being operable to extend and retract to move the first and second connection ends away and toward each other, and a side rail assembly connected to said main frame and including a handle having a down position and an up position and including connection means for permitting articulation between the down and up positions; and,
- from the fully reclined position, actuating the drive assembly to move the first and second connection ends away from each other to articulate the bed frame toward the fully inclined position, and from the fully inclined position, actuating the drive assembly to move the first and second connection ends toward each other to articulate the bed frame toward the fully reclined position.
16. The method for articulating a bed frame of claim 15 wherein the step of providing a bed frame includes the drive assembly being connected at its first connection end to the back section and at its second connection end to the third linkage assembly.
17. The method for articulating a bed frame of claim 16 wherein the step of providing a bed frame includes the drive assembly being pivotally connected at its second connection end to the third linkage assembly.
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. The articulating side rail assembly for a bed of claim 18 wherein said position control assembly includes a plate connected with one of said handle assembly and said first and second linkage aims, the plate defining at least one hole, said control assembly further including a pin releasably extendable through the hole of the plate and into a locking hole defined in the other of said one of said handle assembly and said first and second linkage alms to releasably lock said side rail assembly in one of the down position, the up position and an intermediate position between the down and up positions.
35. The articulating side rail assembly for a bed of claim 34 wherein the plate is a protractor plate connected with the handle assembly and the locking hole is defined in one of said first and second linkage arms.
36. The articulating side rail assembly for a bed of claim 35 wherein there are at least three locking holes defined in the protractor plate to define the down, intermediate and up positions.
37. (canceled)
38. (canceled)
39. (canceled)
40. (canceled)
41. (canceled)
42. The articulating side rail assembly for a bed of claim 18 wherein at least one of said first and second linkage arms is adjustable so that at least one of a and b are selectively variable.
43. The articulating side rail assembly for a bed of claim 18 wherein at least one of said mounting plate and handle assembly is adjustable so that at least one of c and d are selectively variable.
44. (canceled)
45. (canceled)
Type: Application
Filed: Aug 21, 2007
Publication Date: Oct 16, 2008
Inventor: Daniel R. Tekulve (Batesville, IN)
Application Number: 11/842,593
International Classification: A47C 19/12 (20060101); A47C 19/02 (20060101);