OCCUPANT CONTROLLED ENERGY MANAGEMENT SYSTEM AND METHOD FOR MANAGING ENERGY CONSUMPTION IN A MULTI-UNIT BUILDING

A system and a method for allowing an occupant of a single unit of a multi-unit building to select an operating state of the unit which consumes less energy than a normal operating state.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History

Description

FIELD OF THE INVENTION

The disclosure relates generally to an energy management system for a multi-unit building, and more particularly to an occupant controlled energy management system for an individual unit of the building.

BACKGROUND OF THE INVENTION

Over the last couple of decades, the world population has become increasingly aware of the threat of global warming, and the impact it may have on our planet. In response to this awareness, individuals have become more conscious of their personal “carbon footprint,” and have looked for ways to minimize their individual negative effects on the environment. It has been well established that these effects can be reduced by decreasing carbon-based energy or power consumption associated with, for example, transportation, industry, and also the occupation and usage of various buildings and residences.

Multi-unit buildings, such as hotels, motels, inns, dormitories, offices, etc., typically require significant carbon-based energy consumption in order to provide for the needs of their occupants. This energy consumption is associated primarily with heating, ventilation, and air conditioning (herein, “HVAC”), lighting, and other appliance operation (e.g., television, computers, etc.). In these multi-unit buildings it can be difficult for management to set building-wide reduced energy consumption parameters for the HVAC and/or various appliances because not all of the building occupants may find comfort and/or convenience at such settings.

Some multi-unit buildings, particularly in the lodging industry, provide an occupant accessible thermostat in each of the rooms of the building. Some of these thermostats include controls by which the occupant may adjust HVAC operation to attain a desired room temperature. However, without prior knowledge of the specifications of the particular multi-unit building, it is not possible for the occupant to set the thermostat to maximize energy conservation in the room. Moreover, these existing thermostats do not typically provide for adjustment or regulation of other in-room energy consuming appliances such as lighting, etc. Thus, convenient in-room occupant controlled energy conservation within a multi-unit building is not possible.

Accordingly, a temperature/appliance management system capable of allowing an individual occupant of a multi-unit building to conveniently set and maintain room conditions at a level that is both comfortable and minimally consumptive of power would be desirable.

SUMMARY OF THE INVENTION

A system is generally described herein for allowing an occupant of a single unit of a multi-unit building to select an operating state of the unit which consumes less energy than a normal operating state.

The invention provides an occupant controlled energy management system for a unit of a multi-unit building, the system including at least one appliance disposed in the unit and configured to effect a change in a condition within the unit, and an appliance control device in operable communication with the at least one appliance, the appliance control device being accessible to an occupant of the unit, where the appliance control device is configured to include an energy conserving setting that limits energy consumption by the at least one appliance, and wherein the energy conserving setting is actuatable by the occupant by one touch of an actuator disposed on the appliance control device.

The invention further provides a method for managing energy in a multi-unit building, the method including providing an appliance control device in an area accessible to an occupant of a unit of the building, operably connecting the appliance control device, by any wired or wireless means, with at least one appliance disposed to effect a change in a condition within the unit, configuring the appliance control device to include an energy conserving setting that limits energy consumption by the at least one appliance, and implementing the energy conserving setting within the unit upon the occupant's actuation of the an actuator disposed on the appliance control device.

The invention also provides a method of operating or managing a multi-unit building, including informing an occupant upon arrival at the multi-unit building of an environmental effect of an occupant controlled energy management system provided in each unit of the building, encouraging the occupant to select an energy conservation setting of the energy management system by maneuvering an actuator disposed in the unit, providing reduced energy consumption within the unit upon the occupant's actuation of the actuator, and optionally providing further information and/or benefits to the occupant having selected and utilized the reduced energy consumption setting.

BRIEF DESCRIPTION OF THE FIGURES

The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:

FIG. 1 is a schematic representation of a unit of a multi-unit building where the unit includes an occupant controlled energy management system;

FIG. 2 is a schematic representation of an appliance control device of the occupant controlled energy management system of FIG. 1;

FIG. 3 is a graph illustrating a temperature range;

FIG. 4 is a schematic representation of a covering means of the occupant controlled energy management system of FIG. 1; the covering means being illustrated in a light blocking position;

FIG. 5 is a schematic representation of a covering means of the occupant controlled energy management system of FIG. 1; the covering means being illustrated in a light entering position; and

FIG. 6 is a block diagram illustrating a method for managing energy in a multi-unit building.

DETAILED DESCRIPTION

FIG. 1 shows an exemplary individual unit or room 10 of a multi-unit building including an occupant controlled energy management system 12. The system 12 includes a room appliance control device 14 that is accessible to an occupant of the room 10 and which is operably communicated with at least one appliance 16. The appliances 16 illustrated in the exemplary embodiment of FIG. 1 include a heating, ventilation, and air conditioning (HVAC) unit 18 and a lighting system 20. However, it should be appreciated that any appliance (such as a TV, VCR, stereo, phone, computer, or DVD player) used in an individual unit of a multi-unit building may be associated with the system 12. These appliances 16 are configured and disposed within the room 10 so as to be capable of effecting a change in condition (such as a change in temperature and lighting conditions) within the unit 10.

The appliance control device 14 is configured to include an energy conserving setting that limits energy consumption by one or more of the appliances 16. As is shown in FIG. 2, the unit occupant activates the energy conserving setting via an actuator 22 disposed on a surface 24 of the appliance control device 14. In the exemplary embodiment of FIG. 2, this actuator 22 is a button that may be a shade of green in order to indicate the reduced energy consumption setting and also, generally, environmental awareness. The green button 22 need only be depressed once to activate the energy conserving setting. Activation of the energy conserving setting is indicated to the occupant via an indicator 26 that is also disposed on the surface 24 of the appliance control device 14. This indicator 26 may be a light emitting diode (LED) arrangement and may additionally be a shade of green.

Of course, the button configuration of the actuator 22 discussed herein is merely exemplary. The actuator 22 may comprise a dial, switch, knob, touch pad, or any mechanism or means suitable for communicating the desired reduced energy setting to the appliance control device 14. Similarly, in addition to or alternatively from the LED, the indicator 26 may comprise an auditory signal, such as a chime, or may comprise a green portion of the surface 24 of the control device 14 made visible by maneuvering the actuator 22, etc. The indicator 26 is shown by way of example in FIG. 2 as being disposed on the surface 24 of the control device 14 in a position adjacent to the actuator 22. In another embodiment, the indicator 26 may form a part of the actuator 22. That is, the indicator 26 may be disposed upon or within the actuator 22. For example, the indicator 26 may comprise an LED (or similar lighting means) which is located within the green button actuator 22 such that when the button is pressed, it becomes illuminated in a green color.

Referring again to FIG. 1, the appliance control device 14 includes a temperature control device 28. This temperature control device 28 is operably communicated with the HVAC 18 introduced above. The temperature control device 28 is configured to place the HVAC 18 into an energy conserving setting when the occupant maneuvers the actuator 22. This energy conserving setting results in the HVAC 18 producing a room temperature range which is both comfortable for the occupant and less consumptive of energy than normal operating conditions. In an exemplary embodiment, this temperature range is delimited by a high temperature of 80 degrees and a low temperature of 60 degree Fahrenheit (as shown in the graph of FIG. 3), though other ranges may be used, e.g., 50 to 90 degrees Fahrenheit.

The temperature control device 28 is also operably in communication with one or more temperature sensors 30 disposed on and/or about the control device 14, and configured to sense temperature conditions (i.e. unit temperature) within the unit 10. Once sensed, the sensor 30 transmits temperature data to the temperature control device 28. These sensors 30 may be any suitable temperature sensor known in the art and may communicate with the temperature control device 14 via any wireless/non-wireless means 32, such as cabling, IR transceivers, or RF transceivers.

Essentially, when the actuator 22 is maneuvered, the temperature control device 28 places the HVAC 18 into an offset mode in which the temperature of the room is allowed to move naturally within the predetermined temperature range (e.g., 50 F-80 F). If the room temperature wanders outside of this range, the HVAC 18 is activated in order to return the temperature to within the range.

In other words, when the energy conserving setting is activated and the temperature control device 28 receives temperature data from the sensors 30 indicating that the room temperature is above the high end of the temperature range, the temperature control device 28 will signal the HVAC 18 to only lower the room temperature to the acceptable, high temperature of 80° F., and no lower. Similarly, when the temperature control device 28 receives temperature data from the sensors 30 indicating that the room temperature is below the low temperature, the temperature control device 28 will signal the HVAC 18 to only raise the unit temperature to the acceptable, low temperature of 50° F., and no higher. In addition, when the temperature control device 28 receives temperature data from the sensors 30 indicating that the room temperature is within the acceptable temperature range, the temperature control device 28 will shut down the HVAC 18 until the unit reaches either the high temperature or the low temperature. With the HVAC 18 shut down, once the room temperature reaches either the high temperature or low temperature, the temperature control device signals the temperature actuator to re-start, and maintain the room temperature at whichever of the high or low temperature the unit temperature reaches.

By controlling the room temperature in the above described manner, the occupant is able to maintain a prescribed temperature comfort level while conserving energy.

It should be appreciated that the temperature control device 28, and the appliance control device 14 in general, are preferably included within a thermostat disposed within the room 10. It should also be appreciated that the HVAC 18 may include a Fan Coil Unit (FCU), a Packaged Terminal Air Conditioner (PTAC) or other Heating, Ventilation, and Air Conditioning system components. The Packaged Terminal Air Conditioner (PTAC) is an air conditioner/heater unit that extends through an exterior wall of the building. The Fan Coil Unit (FCU) controls ventilation for heating and cooling the room.

The system 12 may also include or be associable with an Energy Management System (EMS) device, a Direct Digital Control (DDC) system device, and/or other electronic devices typically found in rooms or units of a multi-unit building. If present, the Energy Management System (EMS) device is a component in the system 12 that allows digital control of the appliance control device 14. One example of an EMS is the e4™ Energy Management System commercially available from Inncom International, Inc. of Niantic, Conn. A direct digital control (DDC) system device is a component that allows an occupant to remotely control devices or appliances such as the system 12, wherein the energy conserving setting may be activated via a button on a remote control that is in communication with the appliance control device 14.

As is also shown in the exemplary embodiment of FIG. 1, the appliance control device 14 is accessible to the occupant of the room 10, and the HVAC 18 is disposed in a ceiling 34 of the room 10, so as to be capable of actuating temperature change in the unit 10 (i.e. through a vent). The temperature control device 28 of the appliance control device 14 is in operable communication with the HVAC 18 via a connection 36, such as wiring, infrared or RF transceivers, or other wireless communication devices. The HVAC 18 includes additional venting and ducting as needed.

As is mentioned above, the appliance control device 14 may optionally be operably communicated with the lighting system 20 of the room 10. In this embodiment, the appliance control device 14 controls the lighting system 20 via a lighting control device 40 included therewithin. The lighting control device 40 portion of the appliance control device 14 is in operable communication with the lighting system 20 via a lighting connection 41, such as wiring, infrared or RF transceivers, or other wired or wireless communication devices. The light control device 40 is configured to reduce lighting in the room 10 to a pre-determined illumination level when the energy conserving setting is activated at the appliance control device 14. This reduced lighting may include a complete shut down/deactivation and/or dimming of all, some, or one of the lights in the unit 10. In one embodiment the reduced lighting effected by actuation of the actuator 22 may comprise a time-out period for turning off lights when the particular room goes unoccupied for a designated time period. Here, the room further includes an occupant sensor which detects the presence of a person in the room and communicates such to the control device 16 and/or to a building network (as discussed further herein). When the actuator 22 is selected by the occupant, the sensor monitors the room and signals the control device 14 to shut off or dim some or all of the room lights after a predetermined period of non-occupancy (e.g., five minutes). Alternatively, actuation of the actuator 22 may reduce a previously established time-out period. For example, maneuvering the actuator may change the room lighting time-out period from five minutes to two minutes. By automatically reducing lighting in these various manners, the unit occupant conserves energy consumption.

Additionally and/or alternatively, the appliance control device 14 may also be operably communicated with an automated shade or other window treatment control device 42. The automated shade control device 42 controls a window covering mechanism 44 (such as blinds, shades, curtains, automatic window tinting, etc.) for at least one window 44 in the room 10. The appliance control device 14 is in operable communication with the automated shade control device 42 via shade connection 43, such as wiring, infrared or RF transceivers, or other wired or wireless communication devices. The covering mechanism 44 is disposable between a light blocking position 46 and light entering position 48, as shown in FIGS. 4 and 5. The appliance control device 14 is configured to signal the automated shade control device 42 to move the covering mechanism during daytime hours into the light blocking position 46 when the unit is above the high temperature (of the acceptable temperature range discussed above) and the energy conserving setting is activated. Similarly, the appliance control device 14 is also configured to signal the automated shade control device 42 to move the covering mechanism 42 into the light entering position 48 during daylight hours when the room 10 is below the low temperature (of the acceptable temperature range discussed above) and the energy conserving setting is activated. This automatic adjustment of the shades or curtains in accordance with room temperature either allows the room to be heated via entrance of sunlight when the unit 10 is cold, or prevents the room 10 from being heated by sunlight when the room 10 is hot. In this manner, a non-power consuming, temperature-controlling mechanism (i.e. sunlight) can be manipulated to keep the room 10 at an acceptable temperature.

When the energy conserving setting is activated via a pressing maneuvering of the actuator 22, the setting may be then de-activated by again maneuvering the actuator 22. This second actuation of the actuator 22 returns the appliance control device 14 (and/or thermostat disposed therewith) to normal appliance settings that consume a normal amount of energy consumption. This normal amount of energy consumption may be the energy consumption being used prior to activating the energy conserving setting, wherein the normal amount of energy consumption is more than the energy consumed when the energy conserving setting is activated.

The appliance control device 14 may be configured such that multiple consecutive depressions of the actuator 22 (such as three consecutive depressions) over a pre-determined period of time will result in a full shut down of all appliances included in the system 12.

Referring to FIG. 6, there is disclosed a block diagram illustrating a method 100 for managing energy in a multi-unit building, the method including providing an appliance control device in an area accessible to an occupant of a unit of the building, as shown in operational block 102. The method 100 also includes operably communicating the appliance control device with at least one appliance disposed to effect a change in a condition within the unit (e.g., a change in room temperature), and configuring the appliance control device to include an energy conserving setting that limits energy consumption by the at least one appliance, as shown in operational blocks 104 and 106. The method 100 further includes actuating the energy conserving setting via an actuator disposed on the appliance control device, as shown in operational block 108. The actuator, as discussed above, is preferably a green push-button.

Herein, the appliance control device 14 is described as being configured to control the HVAC 18, the lighting 20, and/or the window covering mechanism 44 in order to provide reduced energy consumption within the exemplary room 10. The invention provides that the control device 14 may control one, some, or all of these room appliances. Additionally and/or alternatively, the control device 14 may be configured to control additional energy consuming arrangements within or associated with the room 10. For example, the control device 14 can control televisions, computers, monitor associated therewith, water pressure, water temperature. In this way, by selecting to maneuver the actuator 22, the occupant can experience energy conservation across numerous and varied in-room systems and arrangements.

The control device 14 may further be configured to alert the management of the multi-unit building when the occupant selects the energy conserving room settings. This alert may be provided by any suitable wired or wireless arrangement. Particularly, the control device can be disposed in communication with a network of the building. In this way, the management of the multi-unit building may monitor the energy usage within the room. Incentives or benefits may be given to the occupant by the management based upon the occupant's selected energy conservation settings. For example, the occupant may be provided with a reduced room rate or a credit at a local or in-building restaurant, spa, etc. Additionally and/or alternatively, based upon the occupant's in-room energy conservation, the management may provide information or data to the occupant concerning general or specific conservation efforts of the hotel, or the management may notify other hotel conservation programs with regard to the occupant's chosen reduced energy usage. For example, housekeeping may be notified with respect to common towel and linen recycling programs.

As mentioned, the control device 14 can be connected to and disposed in communication with a network of the multi-unit building. This may be achieved by any suitable wired or wireless means. This building network includes a controller for central monitoring and management of the multiple units. In addition to the benefits discussed in the previous paragraph, this type of centrally controlled environment allows the building management to reset the actuator 22 upon departure of the occupant such that the appliances 16 function in the normal operating mode. Also, via the central control arrangement, the building management may remotely adjust or disable the energy conserving settings based upon management requirements or based upon occupant requests, etc. For example, the building management may adjust the temperature range of the energy conserving setting of one or more rooms from the front desk or from an office within the building.

The system of the invention may further include one or more outdoor temperature sensors disposed in communication with the control device 14 and/or with the building network and controller. In this way, when the energy conserving setting is selected by the unit occupant, the control device 14 may further optimize energy conservation within the room by appropriately adjusting the window treatments, the room temperature, etc. based upon the detected outdoor temperature.

As mentioned, the units of the multi-unit building may include occupant sensors. These sensors may be disposed in communication with the control device 14 by wired or wireless means. Additionally and/or alternatively, the occupancy sensors may be disposed in communication with the building network and controller in order to facilitate the above-discussed centrally controlled environment functions.

While the control device 14 has been described herein as comprising a single actuator 22 (preferably a green push-button) for controlling one or more room appliances 16, the control device 14 may optionally include a plurality of actuators 22 each configured to allow occupant control of one or more room appliances 16. For example, the control device may include a first actuator related to the HVAC 18 and lighting 20, and a second actuator related to the window covering mechanism 44. The first and second actuators may be distinguishable having different colors, shapes, sizes, or by being labeled with text or numbers. In one embodiment, the first and second actuators are both green in color and are distinguished by shape, size, or labeling. Alternatively, a unit of the multi-unit building may include multiple control devices 14 where each device 14 is configured to communicate with and control common room appliances 16. For example, a first green button actuator 22 (as described above) may be disposed on a room thermostat (i.e., a first control device 16) and a second green button actuator 22 may be disposed on an in-room control panel such as the “IR3035 Table-Top Control Panel” provided by Inncom, Inc. (i.e., a second control device 16). Actuation of either the first or second green buttons would activate the applicable energy conservation room settings to regulate the operation of the room appliances.

Herein, the multi-unit building has primarily been described as a dwelling building such as a hotel, inn, dormitory, etc. However, the multi-unit building further comprises an office building with individual offices or units therein, each having a applicant control device as discussed herein. The multi-unit building may alternatively comprise a retail center with individual shops or units, each including the appliance control device. It will be understood that the unit 10 discussed herein comprises any definable section of a building including a room, an office, a wing of a building, a bank of offices, common space, seating area, a retail shop or shops, etc., or anywhere where indoor energy conservation is desired.

Generally, this disclosure provides a system for allowing an occupant of a single unit of a multi-unit building to select an operating state of the unit which consumes less energy than a normal operating state. The disclosure also pertains to a method of operating or managing a multi-unit building which involves informing an occupant upon arrival at the multi-unit building of an environmental effect of the occupant controlled energy management system provided in each of the individual units, encouraging the occupant to maneuver the actuator described above to accept the energy conservation room settings, providing reduced energy consumption within the unit upon the occupant's actuation of the actuator, and then optionally providing further information and/or benefits to the occupant having selected and utilized the reduced energy consumption setting.

While the invention has been described with reference to an exemplary embodiment, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or substance to the teachings of the invention without departing from the scope thereof. Therefore, it is important that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the apportioned claims. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.

Claims

1. An occupant controlled energy management system for a unit of a multi-unit building, the system comprising:

at least one appliance disposed in the unit and configured to effect a change in a condition within the unit; and
an appliance control device in operable communication with said at least one appliance, said appliance control device being accessible to an occupant of the unit;
wherein said appliance control device is configured to include an energy conserving setting that limits energy consumption by said at least one appliance, and wherein said energy conserving setting is actuatable by said occupant by one touch of an actuator disposed on said appliance control device.

2. The system of claim 1, wherein said actuator is a button including a green color.

3. The system of claim 1, wherein said at least one appliance is an HVAC appliance, and wherein said appliance control device includes a temperature control device configured to communicate with the HVAC appliance.

4. The system of claim 3, wherein said energy conserving setting includes an acceptable temperature range for the unit, wherein said acceptable temperature range is delimited by a high temperature and a low temperature.

5. The system of claim 4, wherein said temperature control device is configured to signal said HVAC appliance to only heat the unit to said low temperature when a temperature of the unit is below said low temperature and said energy conserving setting is actuated, wherein said temperature control device is configured to signal said HVAC appliance to only cool the unit to said high temperature when unit temperature is above said high temperature and said energy conserving setting is actuated, and wherein said temperature control device is configured to signal a reduction in an operation of said HVAC appliance until the unit reaches at least one of said high temperature and said low temperature when said temperature is within said acceptable temperature range and said energy conserving setting is actuated.

6. The system of claim 5, wherein said temperature controlling device is configured to signal said HVAC appliance to maintain the unit at at least one of said high temperature and said low temperature when said unit temperature is within said acceptable range and allowed to reach at least one of said high temperature and said low temperature, and said energy conserving setting is actuated.

7. The system of claim 4, wherein'said acceptable temperature range is from about 50 to about 90 degrees Fahrenheit.

8. The system of claim 5, wherein said temperature control device is communicable with a temperature sensor disposed to sense temperature conditions within the unit.

9. The system of claim 1, wherein said energy consumption by said at least one appliance is less following a first actuation of said actuator than a normal amount of energy consumption present before said first actuation of said button.

10. The system of claim 9, wherein a second actuation of said actuator actuates said appliance control device to return to normal setting present before said first actuation of said actuator.

11. The system of claim 9, wherein multiple consecutive actuations of said actuator over a predetermined period of time actuates said appliance control device to cut energy to each appliance.

12. The system of claim 3, wherein said HVAC appliance includes at least one of a packaged terminal air conditioner (PTAC), a fan coil unit (FCU), and other heating ventilation and air conditioning units and equipment.

13. The system of claim 1, wherein said appliance control device is configured to indicate to said occupant whether said energy conserving setting has been actuated.

14. The system of claim 1, wherein said appliance control device indicates whether said energy conserving setting has been actuated via a light emitting diode (LED) disposed on said appliance control device that is visible to said occupant.

15. The system of claim 1, wherein said at least one appliance is a unit lighting system and said appliance control device includes a lighting control device.

16. The system of claim 15, wherein actuation of said energy conserving setting reduces light produced by said unit lighting system to a pre-determined illumination level.

17. The system of claim 8, wherein said appliance control device is operably communicable with an automated shade or other window treatment control device that controls a window covering mechanism for at least one window in the unit, said covering mechanism being disposable between a light blocking position and light entering position, wherein said appliance control device is configured to signal said automated shade or other window treatment control device to move said covering mechanism into said light blocking position when said unit is above said high temperature and said energy conserving setting is actuated, and said appliance control device is configured to signal said automated shade or other window treatment control device to move said covering means into said light entering position when the unit is below said low temperature and said energy conserving setting is actuated.

18. A method for managing energy in a multi-unit building, the method comprising:

providing an appliance control device in an area accessible to an occupant of a unit of the building;
operably communicating said appliance control device with at least one appliance disposed to effect a change in a condition within the unit;
configuring said appliance control device to include an energy conserving setting that limits energy consumption by said at least one appliance; and
implementing said energy conserving setting within the unit upon the occupant's actuation of the an actuator disposed on said appliance control device.

19. The method of claim 18, wherein said actuating includes depressing a button disposed on said temperature control device where the button includes a green color.

20. The method of claim 18, wherein said energy consumption after said actuating is less than a normal amount of energy consumption prior to said actuating.

21. A method of operating or managing a multi-unit building, comprising:

informing an occupant upon arrival at the multi-unit building of an environmental effect of an occupant controlled energy management system provided in each unit of the building;
encouraging the occupant to select an energy conservation setting of the energy management system by maneuvering an actuator disposed in the unit;
providing reduced energy consumption within the unit upon the occupant's actuation of the actuator; and
optionally providing further information and/or benefits to the occupant having selected and utilized the reduced energy consumption setting.

Patent History

Publication number: 20080283621
Type: Application
Filed: May 16, 2007
Publication Date: Nov 20, 2008
Applicant: INNCOM INTERNATIONAL, INC. (Niantic, CT)
Inventors: RICHARD N. QUIRINO (EAST LYME, CT), GREGORY F. SCHUERER (MYSTIC, CT), PHILIPP A. ROOSLI (NIANTIC, CT), DUANE W. BUCKINGHAM (OLD LYME, CT)
Application Number: 11/749,321

Classifications

Current U.S. Class: 236/1.0C
International Classification: F24F 11/053 (20060101);