METHOD OF AND APPARATUS FOR HYDROGEN ENHANCED DIESEL ENGINE PERFORMANCE
A system includes an electrolysis unit capable of producing hydrogen and oxygen gases and interoperably connected to a diesel engine. The amount of amount of hydrogen and oxygen gases produced by the electrolysis unit is proportionally correlated to the stroke type and stroke displacement of the diesel engine. The system also includes a power supply system that is interoperably connected to the electrolysis unit. The power supplied by the power supply system is proportional to an amount of hydrogen and oxygen to be supplied to the diesel engine. The system also includes a safety mechanism interoperably connected to the power supply system so as to terminate power to the electrolysis unit in response to cessation of operation of the diesel engine.
This application is a continuation of U.S. patent application Ser. No. 11/800,388, filed May 4, 2007. U.S. patent application Ser. No. 11/800,388 claims priority from U.S. patent application Ser. No. 60/797,468, filed May 4, 2006. U.S. patent application Ser. Nos. 11/800,388 and 60/797,468 are incorporated by reference.
BACKGROUND1. Field of Invention
The invention relates to a method and apparatus for hydrogen-enhanced performance of diesel engines through the injection of hydrogen and oxygen and, more particularly, but not way of limitation, to an onboard system adapted to generate oxygen and hydrogen by electrolysis for delivery to a diesel engine.
2. History of Related Art
The generation of hydrogen and oxygen by the way of electrolysis has been known for many decades. Likewise, the combustibility of the combination of gaseous oxygen and hydrogen is known. Through the years, internal combustion engines have been the subject of performance enhancing designs by way of injecting additives to the engine to improve efficiency. One such way is to inject hydrogen and oxygen into the feed of an engine. For example, U.S. Pat. No. 5,733,421, which teaches a hydrogen-oxygen fuel cell, describes the major problems in the operation of convention fossil fueled vehicles and details the advantages of utilizing the electrolysis products in engines. Much attention has been placed on gasoline engines operating under the “Otto cycle”, which uses a spark to ignite a compressed fuel.
Diesel engines are also in widespread use. They operate under the “Diesel cycle”, which relies on shear compression and latent heat of the engine block to ignite the compressed fuels. Not the least of the problems associated with the diesel engine are the emissions produced by the diesel oil combustion due to incomplete combustion in the engine cylinder. This is, indeed, a predominant issue in the utilization of the conventional diesel engine. Since the diesel engine is a compression-based ignition system, various parameters of the engine performance differ from that of the gasoline engine. The Diesel cycle does not require spark plugs as compared to the Otto cycle. This difference in combustion ignition subsequently results in markedly different performance characteristics as well as the resultant products of combustion. Byproducts of combustion engines have become a major focal point for both gasoline and diesel engines. Many performance enhancement systems and methods have received careful review, including electrolysis unit product enrichment.
Among the disadvantages of diesel engines is the discharge of pollutants due to poor combustion efficiency. The reasons for such pollution vary; however, one issue is the burning rate of the diesel fuel within the engine cylinders. Often the diesel fuel mixtures are exhausted through the exhaust manifold while still burning. This is the result of incomplete combustion in the cylinders. The discharge of under combusted hydrocarbons and other byproducts can be hazardous to the health of exposed populations as well as the overall environment.
It has been found that the introduction of hydrogen and oxygen of the type generated by an electrolysis unit can enhance the performance of internal combustion engines. For this reason, numerous designs address the introduction of hydrogen and oxygen gases into an internal combustion engine prior to ignition. U.S. Pat. No. 5,733,421 describes some of these designs and steps taken to address many problems associated with such systems.
There are multiple concerns when designing electrolysis units for onboard service near an internal combustion engine. Safety, reliability, required maintenance, hydrogen volume and the like have generally been key to commercial acceptance of such systems. Unfortunately, these same factors have limited various design aspects with regard to creating a reliable onboard system for internal combustion engines such as diesel engines. It is well known, as set forth above, that the combustion cycle of diesel engine varies from that of an internal combustion gasoline engine. For example, spark plugs are not used in diesel engines and are instead replaced by glow plugs. The glow plugs are electrically charged to heat the initial gases compressed in a “cold” cylinder of a diesel engine to the point of ignition and are subsequently deactivated to allow the natural heat of the engine block and the pressure of compression of the air fuel mixture within the diesel system to provide the requisite combustion in accordance with established diesel cycle technology.
With a gasoline engine, most the products of hydrolysis are fully combustible and may be combusted in place of fuel. This is true of “Otto cycle” internal combustion engines where it is difficult to put too much pure hydrogen-oxygen “the products of electrolysis” into the internal combustion engine. The hydrogen-oxygen gas basically replaces the fuel oxygen mixture and the performance is maintained. However, to produce a sufficient supply of oxygen and hydrogen through electrolysis to run an Otto cycle engine is quite difficult with a relatively small electrolysis unit. The volume of hydrogen-oxygen gas that would be consumed in a conventional Otto cycle engine of the type utilized in automobiles today would require a much larger electrolysis unit than described herein. In a diesel engine, if too much oxygen and hydrogen is injected into the engine, the free oxygen needed for combustion would be displaced. Any excess oxygen and hydrogen is not a solution in a diesel cycle engine unless the quantities are controlled and optimized for diesel engine enhancement.
SUMMARY OF THE INVENTIONA system includes an electrolysis unit capable of producing hydrogen and oxygen gases and interoperably connected to a diesel engine. The amount of amount of hydrogen and oxygen gases produced by the electrolysis unit is proportionally correlated to the stroke type and stroke displacement of the diesel engine. The system also includes a power supply system that is interoperably connected to the electrolysis unit. The power supplied by the power supply system is proportional to an amount of hydrogen and oxygen to be supplied to the diesel engine. The system also includes a safety mechanism interoperably connected to the power supply system so as to terminate power to the electrolysis unit in response to cessation of operation of the diesel engine.
A method includes a step of providing power to an electrolysis unit. The power provided is proportional to an amount of hydrogen gas and oxygen gas to be produced by the electrolysis unit. The method also includes the step of producing, by the electrolysis unit, hydrogen gas and oxygen gas. The method also includes the step of transmitting at least some of the produced hydrogen gas and oxygen gas to a diesel engine. The method also includes the step of obtaining information regarding the transmitted hydrogen gas and oxygen gas. The method also includes the step of determining, based on the obtained information, whether the amount of power provided to the electrolysis unit should be adjusted.
The summary of the invention is not intended to represent each embodiment or every aspect of the invention.
A more complete understanding of the method and apparatus of the invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
Various embodiment(s) of the invention will now be described more fully with reference to the accompanying Drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiment(s) set forth herein. The invention should only be considered limited by the claims as they now exist and the equivalents thereof.
It would be an advantage to provide a safe and reliable in operation for delivering select quantities of hydrogen and oxygen gases from an onboard electrolysis unit in a manner affording increased engine performance and reduction of hydrocarbon emission in a diesel engine. Embodiments of the invention as described provide such a system by generating hydrogen and oxygen through an electrolysis unit particularly adapted for onboard applications in conjunction with internal combustion of diesel engines.
It would be an advantage to make such a system virtually maintenance-free and cost-effective to encourage use by an operator and owner of equipment employing an onboard diesel engine that can improve in performance by use of hydrogen and oxygen feed supplementation.
It would be an advantage to offer a system that is optimized to particular types of diesel engines. It would also be an advantage to offer a system where operational optimization could occur based upon inlet or outlet characterization, flows, temperatures, and engine operational status.
Referring now to the Figures, it is shown how in various embodiments of the invention of an electrolysis unit may be utilized in an onboard mounted configuration to enhance the performance of a diesel engine. In certain embodiments, it can be predetermined what the necessary oxygen and hydrogen gas feed rate is to improve the performance of a diesel engine of a given size. Various embodiments of the invention provide for such a determination of the volume of an electrolysis unit to allow the creation and discharge of hydrogen and oxygen from the electrolysis unit at a volumetric level that matches the operation of the engine.
Various embodiments of the invention relate to methods of and systems for improving diesel engine performance by utilizing hydrogen and oxygen produced by an electrolysis unit to enrich the fuel feed to a diesel engine. More particularly, various embodiments of the invention relate to a method of generating oxygen and hydrogen through electrolysis within an electrolysis unit adapted for onboard vehicle mounting in conjunction with a diesel engine. Various embodiments include an electrolysis unit that is a self-contained, sealed unit adapted for pressurization and reliable on/off operation at pre-selected voltages for generating a pre-determined quantity of both hydrogen and oxygen gas for feeding into the combustion chamber of an associated diesel engine.
Various embodiments of the invention also relate to methods of controlling the output from the electrolysis unit to the inlet of the engine. In some embodiments, the amount of hydrogen and oxygen gas produced by the electrolysis unit is correlated to the size and type of a diesel engine. In some embodiments, the amount of hydrogen and oxygen gas produced from the electrolysis unit is correlated to the stroke type, specifically “short” or “long”. In some embodiments, the amount of hydrogen and oxygen gas produced from the electrolysis unit is correlated to the stroke displacement of the engine. In some embodiments, the electrolysis unit output corresponds to the amount of voltage sent to the electrolysis unit by a variable voltage control unit. In some embodiments, the electrolysis unit output is correlated to the temperature of the electrolysis unit. In some embodiments, the temperature of the electrolysis unit is controlled using a thermal wrapping. In some embodiments, the temperature of the cell is used to “feed back” information to the variable voltage control unit to control gas output from the electrolysis unit. In some embodiments, information regarding the flow rate of gas from the output of the electrolysis unit is fed back to the variable voltage control unit to control gas output from the electrolysis unit. In some embodiments, information regarding the hydrogen or oxygen composition from the output of the electrolysis unit is fed back to the variable voltage control unit to control gas output from the electrolysis unit. In some embodiments, information regarding hydrocarbon composition in the exhaust gas from the diesel engine is fed back to the variable voltage control unit to control gas output from the electrolysis unit.
Various embodiments of the invention also relate to an electrolysis unit powered and controlled by the electrical systems of a diesel engine. Various embodiments of the invention also relate to the automatic disabling of the electrical system used to transmit power to the electrolysis unit by opening the circuit when the engine is not operational. In this way the flammable products of electrolysis—hydrogen and oxygen gas—are not allowed to be generated when the engine is not running. For the safety of the operator, onboard electrolysis should cease upon termination of engine operation so to avoid excess flammable hydrogen gas from being produced and put into a hot, enclosed environment with available oxygen. In one embodiment, a solenoid is directly connected to a select portion of the engine alternator. In this embodiment, the termination of engine terminates the discharge of electricity from the alternator—a “fail safe” solenoid response to the engine stopping. In this embodiment, the solenoid is connected “in line” with the electrical system of the engine—voltage is provided to the cell(s) of the electrolysis unit only when the engine is operating. In another embodiment, an oil pressure sensor is used to ascertain a minimum operating oil pressure (indicating the engine is running) before closing the circuit and supplying energy to the electrolysis unit. Upon loss of oil pressure, a circuit is opened by the same sensor. In another embodiment, a solenoid supplies power to a thermal blanket used to heat the cells and encourage electrolysis, and thereby hydrogen and oxygen gas production, so that heat is only supplied when the alternator is active. As can be seen, a number of variations can be devised to ensure that production of hydrogen and oxygen only occurs when the diesel engine is in operation.
Various embodiments of the invention also relate to a system for providing electrolysis for a diesel engine in an onboard mounted configuration. A system includes a modular electrolysis unit design affording select mounting of electrolysis plates within a pre-defined quantity of electrolysis cells designed to generate a determined amount of hydrogen and oxygen gas for injection into the diesel engine based upon known operational characteristics of the diesel engine system. In one embodiment, a range of five to nine plates is provided in each cell of the electrolysis unit, wherein the number of cells is modifiable given the characteristics of the diesel engine system. In another embodiment, an increase in combustible liters of engine stroke displacement will be met with an increase in a proportional manner by an increase in size of the onboard electrolysis unit to provide an optimal amount of hydrogen and oxygen gas to the air inlet of the diesel engine system. In another embodiment, the type of engine stroke will determine an appropriate amount of hydrogen and oxygen gas to produce.
Various embodiments of the invention also relate to an electrolysis unit configuration with an internal electrical network that provides the separation of positive and negative power nodes on opposite ends of individual electrolysis cells. In such embodiments, the contiguous chambers allows “reverse polarity” so as to eliminate known problems that may occur between separate electrolysis cells housed in the same electrolysis unit.
The voltage in some embodiments may be varied across the plates of an electrolysis unit to effect different cell output production rates in relation to the phase of operation of the engine. In other embodiments, the temperature of the electrolysis unit may be manipulated to increase or decrease gas production during certain operations. In some embodiments, the voltage or temperature may be varied between two different stages: 1) start up and 2) ongoing engine operations. In the startup phase, one skilled in the art would assume that the engine is at an ambient temperature and that the electrolysis unit is likewise quiescent. The generation of hydrogen and oxygen at that point is, in accordance with principles of the invention, increased from such a state by either additional voltage or increased temperature, or both. During the second stage, the goal of gas production would typically be to maintain a steady flow at an optimal performance level.
Various embodiments of the invention also relates to the application of an internal combustion engine operating on the diesel cycle. The products of electrolysis are provided in a configuration that improves performance rather than replacing the normal fuel to the engine. For example, it has been found that for short stroke diesel engines, the average amount of gas production from a electrolysis unit should be about 0.06 L/minute of hydrogen per liter of stroke displacement. In another example, it has been determined that for long stroke diesel engines, the amount of gas production should be about 0.11 L/minute of hydrogen per liter of stroke displacement. Enriching the inlet gas with too much hydrogen and oxygen will result in the system becoming oxygen-depleted due to hydrogen using up more inlet oxygen that desired. Using too little hydrogen and oxygen causes the full benefit of enriching the system to be under-exploited. The range of variation in the amount of hydrogen or oxygen to feed the diesel engine will typically vary by about ±10%. For the purposes of this patent application, the term “about” means ±10% of the stated value.
Those having skill in the art will appreciate that an electrolysis unit such as that illustrated and described in this application is not the only way that an appropriate amount of hydrogen or oxygen gases can be transmitted to a diesel engine for combustion. Other sources of hydrogen or oxygen may be utilized without departing from principles of the invention. For example, separate tanks containing hydrogen and oxygen gases may be fed into a diesel engine. Another example is that each component is generated separately using a different mechanism. For example, hydrogen gas may be generated using a system that strips hydrogen catalytically from a hydrocarbon feed source. In another example, oxygen gas may be generated as a product of a thermal decomposition reaction, such as by decomposing potassium chlorate or sodium chlorate. Other mechanisms for providing free hydrogen and oxygen gases for later feed to the air inlet of a diesel engine could be employed.
Referring now to
Referring now to
Still referring to the system 100 of
Still referring to the embodiment described in
Referring now to
Still referring to
Because the engine 110 is tied to the vehicle battery 160, if there is a failure to disengage the electrolysis unit 105 from the electrical system, the electrolysis unit 105 could potentially continue to manufacture hydrogen and oxygen gases in a hot, enclosed engine inlet. Various embodiments of the invention are designed to deal with the safety issue associated with the generation of combustible gases. For example, in the embodiment shown in
Additional safety factors may also be designed into various embodiments of the invention. For example, the electrolysis unit 105 may be sized for a particular diesel engine system so that it can provide only the predetermined amount of gases necessary to give an optimal performance enhancement. The size of the electrolysis unit 105 may have a maximum limit of hydrogen and oxygen it can produce at a certain voltage. Other embodiments may contain other features, such as sensors or analyzers, to initiate and cut power to the electrolysis unit 105. Other embodiments may also manipulate physical characteristics such as temperature of the electrolysis unit before and during product gas production.
There are several terms used to describe the operational parameters of a diesel engine. One is by classifying the diesel engine as being a “short stroke” or a “long stroke” engine. By definition, a “short stroke” engine has a bore (i.e., diameter of the cylinder) that is greater than the stroke (i.e., the maximal distance the piston travels within the cylinder in a single direction during operation). A “long stroke” engine has a stroke that is greater in length than the diameter of the bore. Another parameter that can be defined is the “stroke displacement”. By definition, the “stroke displacement” is the total sum volume of the working space of all the cylinders together in a diesel engine where fuel and air are mixed.
In generating the data necessary for correlation between a the type of engine, the stroke displacement of the engine, and the size of an electrolysis unit needed to provide a proper amount of hydrogen and oxygen gas, it has been found that measurements of exhaust emissions in conjunction with specific quantities of oxygen and hydrogen injected into the engine will provide improvements in operational parameters of the engine by allowing a mating configuration for the quantity of electrolysis byproducts in conjunction with a given engine type and size. In some embodiments containing a short stroke diesel engine, enhanced performance may be obtained if the engine is fed at about 0.06 L/minute of hydrogen per liter of stroke displacement. In some embodiments of systems containing a long stroke diesel engine, enhanced performance may be obtained if the engine is fed about 0.11 L/minute of hydrogen per liter of stroke displacement. In context of enhancing the performance of either type of engine, it has been found that the hydrogen feed values may vary in a range from the amount given by 10%. For example, a short stroke diesel engine that has 5.9 liters of stroke displacement will typically use about 0.354 L/minute of hydrogen gas.
Referring now to
Referring now to
Still referring to
The embodiment shown in
The embodiment shown in
The embodiment shown in
It will be understood by one skilled in the art that there are various ways to effect a control scheme that allows real-time engine performance optimization and improvement of environmental emission attributes. It will also be understood that these ways may be combined with one another without departing from principles of the invention.
Referring now to
The size and operational parameters of the electrolysis unit 105 are specified and designed to maintain the temperature of the electrolysis solution within an operational range to prevent evaporation or boiling. It is well known in the art that the electrolytic solution needs to be maintained at a relatively cool temperature to ensure that the electrolysis cells are immersed to an appropriate level so as to permit the proper electrolysis reaction to occur. In a typical embodiment, a set of cooling fins may be utilized to provide for heat removal from the electrolysis unit 105. Other heat sinks or cooling features may be included in the electrolysis unit 105 design.
Still referring to the embodiment in
It may further be seen that various embodiments of the invention may be constructed with a configuration maximizing the number of plates exposed to the electrolytic solution. It has been found that an optimum number of plates per cell is most often in the range of five to nine plates. The spacing between plates for this number of plates in a cell may be, for example, about a quarter of an inch. In a typical embodiment, a cell might contain seven plates and be spaced at a distance of a quarter inch apart.
The dielectric mounting allows each plate to be electrically separated from other plates and to maximize efficiency, each plate is of maximum polished surface configuration. The higher the polished configuration of the plate, the less likely the plate is to accumulate deleterious particles, thereby comparatively lasting longer and providing a higher efficiency than plates without a high finish. In some embodiments, the plates will be made from 316 L stainless steel. In some embodiments, a 2B or higher plate finish is used that reduces the surface area of any type of metallic accumulation and improves longevity.
In addition to the plates used in various embodiments of the invention, the electrolytic solution also should be relatively free of impurities. The water used as the aqueous phase of the solution in some embodiments is steam-distilled and reverse-osmosis filtered. The electrolyte may be one of several substances. In some embodiments, an acid is used as the electrolyte. In such embodiments, diluted sulfuric acid may be acid used. In other embodiments, sodium chloride is the electrolyte. In other embodiments, potassium hydroxide is used as the electrolyte. In such embodiments, a solution density of potassium hydroxide in an aqueous phase may be about 11 grams per liter of solution.
Referring now to
Referring now to
Still referring to
Construction of the container 16 is achieved, in one embodiment, via a polypropylene heat welder. Those in the art have found welding of a polypropylene lid to a polypropylene housing creates a sealed unit capable of containing the pressures and chemical reactions consistent with the principles of the invention. It may be noted that electrical battery cases are often constructed in a similar manner.
Various embodiments of the invention provide for a self-contained electrolysis unit 105 that an operator can monitor on a routine basis that is sufficiently self-contained and reliable so as to prevent any type of needed maintenance from individuals not familiar with the system. Special instructions may be given to the owner during installation for non-specific types of service, so that the owner does not take it to a service station and have anyone working on it that is unfamiliar. Accordingly, built-in warning labels can be provided indicating for someone to not disconnect the components.
Referring back to
In accordance with principles of the invention, the power to the electrolysis unit may be regulated depending upon the voltage output necessary and in direct correlation with a pre-existing program for when the power is decreased which will eventually occur after the temperature and the solution has increased to a point where maximum output is provided. The output then flows into the diesel engine through a connection at the air intake to the engine. This allow for embodiments of the system to increase engine performance with a variable voltage input scenario at a relatively constant level electrolyte solution wherein the temperature of the solution is maintained at level low enough to prevent vaporization. The increased performance of a diesel engine may be provided by the injection of a relatively substantially controlled volume of hydrogen and oxygen produced within the vicinity of the engine for the purpose of minimization of various negative fuel combustion by-products typical of diesel engines.
The introduction of the hydrogen and oxygen gases in the combustion chamber causes the fuel in the combustion chamber to burn more cleanly, producing less carbon deposits within the engine, the injectors, the heads, and the valves as well as producing less carbon in the oil which gives your oil longer engine life because there is less carbon in the oil. This further results in less friction wear on the mechanical parts so that there is less trace minerals in the engine oil thereby contributing to less wear on the engine.
In various embodiments, the pyrometer temperature (i.e., the measure of how hot the gas in the exhaust stack is) has been shown to decrease relative to a non-supplemented diesel engine by a range of about 50-150° F. In a typical diesel engine, most of the heat in the exhaust track is raw diesel fuel still burning in the exhaust pipe. When the exhaust valve opens, because there is not complete combustion in the engine cylinder, the diesel fuel that is still burning exits out the exhaust stack. Unburned raw hydrocarbon that is in the exhaust stack is one of the contributors to soot out the exhaust.
Various embodiments of the invention provide for cooler exhaust temperatures because the amount of unburned fuel in the exhaust track is reduced. The cooler exhaust temperatures provided by typical embodiments of the invention give longer life to the exhaust manifold. In many markets, for example, desert markets, exhaust gases are what powers turbines, so the decrease in exhaust temperatures provides an increase in exhaust manifold and turbine life.
Although various embodiments of the method and apparatus of the invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth herein.
Claims
1-20. (canceled)
21. An electrolysis unit comprising:
- a container comprising a plurality of cells;
- an electrolytic solution disposed within each of the plurality of cells;
- a plurality of electrolysis plates located within the plurality of cells, the plurality of electrolysis plates at least partly submerged in the electrolytic solution; and
- wherein the plurality of cells are electrically connected so as to separate adjacent cells in a reverse-polarity configuration.
22. The electrolysis unit of claim 21, wherein a number of electrolysis plates in each cell is in the range of about 5 to about 9.
23. The electrolysis unit of claim 21, wherein the electrolysis plates are spaced from each other by approximately one quarter inch.
24. The electrolysis unit of claim 21, wherein the electrolysis plates are mounted in a dielectric mounting configuration.
25. The electrolysis unit of claim 24, comprising a spreader plate disposed between a pair of adjacent eletrolysis plates of the plurality of electrolysis plates.
26. The electrolysis unit of claim 24, comprising a dispersion plate mounted toward the top of each cell of the plurality of cells.
27. The electrolysis unit of claim 21, wherein the electrolytic solution is an acid.
28. The electrolysis unit of claim 27, wherein the electrolytic solution is sulfuric acid.
29. The electrolysis unit of claim 21, wherein the electrolytic solution is selected from the group consisting of sodium chloride and potassium hydroxide.
30. The electrolysis unit of claim 21, wherein the container comprises polypropylene.
31. The electrolysis unit of claim 21, comprising a cooling feature attached to the container.
32. The electrolysis unit of claim 31, wherein the cooling feature comprises a heat sink.
33. The electrolysis unit of claim 31, wherein the cooling feature comprises a plurality of fins.
Type: Application
Filed: Sep 8, 2008
Publication Date: Jan 29, 2009
Inventors: Tom M. VanHoose (Highwood, MT), Michael D. Goens (Girdwood, AK)
Application Number: 12/206,343
International Classification: F02B 43/12 (20060101); F02B 43/10 (20060101);