AUTOMOTIVE ARMREST WITH SOFT FEEL AND METHOD OF MAKING THE SAME

The present invention provides for an improved armrest with a soft feel for use in a trim assembly, and to a continuous two-shot molding operation that may be continuously performed utilizing a single mold assembly. In an exemplary embodiment, a trim assembly includes an integrated armrest formed by injecting a first material into a first shot mold cavity in a first shot of a molding operation. An armrest cover is molded to at least a portion of the armrest by injecting into a mold chamber a second foamed material in a second shot of the molding operation to provide the armrest with a soft feel. The second foamed material includes a foamed material that produces a soft, outer skin and a light, cellular inner core such that when a force is applied to the cover, the skin will deform and compress the inner core, providing a soft-touch feel to the armrest.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a divisional of U.S. Ser. No. 10/904,008 filed on Oct. 19, 2004 (pending), the disclosure of which is hereby fully incorporated by reference herein.

The present invention is also related to U.S. Ser. No. 10/708,312, filed Feb. 24, 2004 (abandoned); U.S. Ser. No. 10/708,315, filed Feb. 24, 2004 (abandoned); U.S. Ser. No. 10/708,500, filed Mar. 8, 2004 (now U.S. Pat. No. 7,070,221); U.S. Ser. No. 10/709,382, filed Apr. 30, 2004 (pending); U.S. Ser. No. 10/710,305, filed Jul. 1, 2004 (now U.S. Pat. No. 7,104,590); U.S. Ser. No. 10/904,007, filed Oct. 19, 2004 (now U.S. Pat. No. 7,156,437); U.S. Ser. No. 10/904,010, filed Oct. 19, 2004 (pending); U.S. Ser. No. 10/904,011, filed Oct. 19, 2004 (pending); U.S. Ser. No. 10/904,015, filed Oct. 19, 2004 (abandoned); U.S. Ser. No. 10/904,032, filed Oct. 20, 2004 (pending); U.S. Ser. No. 10/711,692, filed Sep. 30, 2004 (abandoned); U.S. Ser. No. 10/904,033, filed Oct. 20, 2004 (pending); U.S. Ser. No. 10/904,408, filed Nov. 9, 2004 (pending); U.S. Ser. No. 10/904,407, filed Nov. 9, 2004 (pending); U.S. Ser. No. 10/904,433, filed Nov. 10, 2004 (now U.S. Pat. No. 7,192,074); and U.S. Ser. No. 10/904,409, filed Nov. 9, 2004 (now U.S. Pat. No. 7,108,312).

FIELD OF THE INVENTION

The present invention pertains generally to trim assemblies for automotive interiors and, more particularly, to automotive armrests with a soft feel for use in trim assemblies, and to a method of making the same.

BACKGROUND OF THE INVENTION

It is known to provide automotive interiors with various trim assemblies to enhance the aesthetic appearance of the automotive interior and to provide comfort, as well as convenience, to vehicle occupants. Examples of these interior trim assemblies include instrument panels, door panels, and consoles. To increase the aesthetic appearance of the trim assemblies and to improve the comfort to vehicle occupants, it is often desired to provide at least portions, such as the armrests, of the trim assemblies with areas that are cushy or soft to the touch.

One primary drawback with current armrests is in the manufacturing and assembly thereof. Armrests having a soft feel, typically, have been formed by insertion of a resilient soft padding material beneath a pliable surface layer of leather, vinyl, or fabric material. The preformed, soft, resilient pad also may be secured to a rigid plastic shell and a pliable skin layer stretched over the pad and secured to the shell to form the trim assembly with soft feel armrest. In another conventional method of forming trim assemblies with padded armrests, a foam material may be injected between a rigid substrate and a skin layer joined to the substrate.

In addition, skin layers having bumps or nibs formed on the B-side, or back surface, thereof have been applied over rigid substrates in an effort to improve the feel of non-padded armrests. The nibs raise the skin layer slightly away from the rigid substrate to create “soft” areas that deform when a force is applied to the trim assembly. As such, it is the nib design, not the skin layer per se, that provides these soft areas. Also, while these nibbed trim assemblies offer a compromise between padded trim assemblies, they are still costly due to the fact that the skin layer must be manufactured separately in order to create the bumps or nibs. Consequently, the above noted methods are generally costly due to the multiple components and manufacturing steps required to make these trim assemblies.

There is thus a need for an improved armrest with a soft feel for use in a trim assembly, and a method for making the same, that reduces the number of parts and the labor required for assembly thereof thereby reducing overall manufacturing costs.

SUMMARY OF THE INVENTION

The present invention provides for an improved armrest with a soft feel for use in a trim assembly, e.g. a door trim panel or console panel.

To this end, the trim assembly includes a substrate including an armrest, advantageously an integrated armrest. The armrest can be made from a first material that may include a thermoplastic polymer such as a thermoplastic olefin, e.g. polypropylene, or polycarbonate/acrylonitrile butadiene styrene. An armrest cover is integrally molded to at least a portion of the armrest and is composed of a second foamed material to provide an armrest having a soft, cushy feel for a user, such as a vehicle driver or occupant. The second foamed material may be a foamed thermoplastic polymer such as a foamed thermoplastic elastomer or foamed polypropylene. The foamed material produces a lightweight cover that includes an outer skin and a cellular inner core such that when a force is applied to the cover, the outer skin will deform and compress the inner core, providing a soft-touch feel to the armrest. The second foamed material is activated, or foamed, by a blowing agent, such as sodium bicarbonate, nitrogen, or any other commonly known blowing agent.

The automotive armrest with soft feel is formed in a continuous two-shot molding process. In this operation, a mold assembly is provided in which the armrest, advantageously a door trim panel having an integrated armrest, is formed by injecting the first material into a first shot mold cavity in a first shot of the molding operation. A core of the mold assembly is used, advantageously rotated, to move the armrest from the first shot mold cavity to a second shot mold cavity, and a mold chamber is formed about at least a portion of the armrest within the second shot mold cavity. The lightweight armrest cover then is integrally molded thereover by injecting into the mold chamber the second foamed material in a second shot of the molding operation, the cover being molded to the portion of the armrest to provide the armrest with a soft feel. In an exemplary embodiment, the mold assembly for forming the armrest with soft feel includes first and second shot mold cavities and a rotatable core having first and second male portions adapted to mate with each cavity for forming a plurality thereof in a continuous manner.

By virtue of the foregoing, there is thus provided an improved armrest with a soft feel for use in a trim assembly, and a method of making the same, that reduces the number of parts and the labor required for assembly thereof thereby reducing overall manufacturing costs.

The features and objectives of the present invention will become more readily apparent from the following Detailed Description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.

FIG. 1 is a perspective view of an automotive interior trim assembly having an armrest with soft feel according to the present invention;

FIG. 2 is a perspective view of a mold assembly used to form the armrest with soft feel of the present invention;

FIG. 2A is a cross-sectional view of the mold of FIG. 2 taken along the line 2A-2A illustrating the first shot of the molding operation;

FIG. 3 is a perspective view of the mold assembly of FIG. 2 depicting the movement from the first shot mold cavity to the second shot mold cavity of the formed armrest of FIG. 2A;

FIG. 3A is a cross-sectional view of the mold of FIG. 3 taken along the line 3A-3A illustrating the second shot of the molding operation; and

FIG. 4 is a cross-sectional view of the formed armrest with soft feel of FIG. 3A removed from the mold.

DETAILED DESCRIPTION OF THE DRAWINGS

In FIG. 1, an embodiment of an automotive interior trim assembly, i.e. a door trim panel 10, for an automobile (not shown) includes an integrated armrest 12 with soft feel. It should be understood that the armrest 12 with soft feel, although illustrated and described herein below as being integrated, may be molded by the methods disclosed below and provided as a separate part for attachment to the door trim panel 10. In addition, other various trim assemblies incorporating armrests, such as consoles, generally may be constructed in a similar fashion. Thus, while the following detailed description focuses on the door trim panel 10 having the integrated armrest 12 with soft feel, those having ordinary skill in the art will recognize that the armrest 12 with soft feel may equally be incorporated in other automotive trim assemblies.

With continuing reference to FIG. 1, the door trim panel 10 covers a portion of the interior of the automobile to provide a more aesthetically pleasing environment. Notably, the soft feel of the armrest 12 provides added comfort to the vehicle's occupants such as when the occupant chooses to rest an arm thereon. In addition, the armrest 12 further may include a handle portion 16 configured for grasping by a vehicle occupant to facilitate, for example, closing of a car door 18. A variety of openings, additionally, can be included in the trim panel 10 so as to accommodate the placement of hardware components 20 such as a speaker(s), door handle, window controls, etc.

With continued reference to FIGS. 1 and 4, the door panel 10 includes a substrate 24 provided with the integrated armrest 12 that is made from a first material 26. The first material 26 may include a thermoplastic polymer such as a thermoplastic olefin, e.g. polypropylene, or polycarbonate/ acrylonitrile butadiene styrene. The armrest 12 includes an armrest cover 28 that is bonded, i.e. integrally molded, to at least a portion thereof to provide the soft, cushy feel for a vehicle driver or occupant. It should be understood that the cover 28 may be provided over the entire armrest 12, as well as a portion of the armrest 12 that is more or less than shown, to provide the armrest 12 with a soft feel. In addition, as indicated above, the armrest 12 with molded cover 28 may be provided as a separate part from the door panel 10 for attachment thereto.

Notably, the cover 28 is composed of a second foamed material 30 that may include a foamed thermoplastic polymer such as a foamed thermoplastic elastomer or foamed polypropylene. The foamed material 30 produces an outer skin 34 and a light, cellular inner core 36 such that when a force is applied to the cover 28, the skin 34 will deform and compress the inner core 36, providing a soft-touch feel to the armrest 12. The second foamed material 30 may be activated, or foamed, by a blowing agent, such as sodium bicarbonate and the like, any gas such as nitrogen, or any other commonly known blowing agent. More specifically, the blowing agent is combined, or mixed, with a thermoplastic polymer, such as a thermoplastic elastomer or polypropylene, advantageously a thermoplastic elastomer available from Kraiburg TPE, Corp. of Duluth, Ga., to produce the second foamed material 30. The blowing agent advantageously is present in an amount from 0.1% to 5% by weight of the mixture, more advantageously from 0.5% to 3% by weight. The feel of the armrest 12 may also be selectively tuned to a desired softness by varying the thickness of the cover 28.

With reference to FIGS. 2-3A, a method of making the automotive armrest 12 with soft-feel of the present invention will now be described. A single mold assembly 42 is shown in FIG. 2 including spaced apart first and second shot mold cavities 44 and 46 and a central core 48 having first and second male portions 50 and 52 adapted to mate with each cavity 44, 46. The core is 48 situated between the mold cavities 44, 46 and is adapted to rotate about a central axis, i.e. a horizontal axis 56, so that the first and second male portions 50, 52 can mate, in turn, with the mold cavities 44, 46 to mold, in sequence, first the armrest 12, advantageously the substrate 24, such as the door trim panel 10, with integrated armrest 12, then the armrest cover 28 in a continuous manner. It should be understood by the artisan that variations of the mold assembly 42 may be provided and still fall within the scope of this invention. For example, any number of core male portions 50, 52 (i.e. more or less than shown) may be provided, in conjunction with the necessary number of corresponding first and second shot mold cavities 44, 46, for molding the armrest 12 with soft feel.

While the first and second shots of the molding operation are further described below with respect to the first male portion 50 by utilizing the cross-sectional views of FIGS. 2 and 3, it is understood that the first and second shot molding process occurs in the same fashion with respect to the second male portion 52. Accordingly, as best shown in FIGS. 2 and 2A, the first male portion 50 of the core 48 mates with the first shot mold cavity 44 and, more specifically, the first shot mold cavity 44 is adapted to move toward the first male portion 50, as is commonly known in the art, to form a first shot chamber 60.

In a first shot of the molding operation, the first material 26, which may be a thermoplastic polymer such as a thermoplastic olefin, e.g. polypropylene, or polycarbonate/acrylonitrile butadiene styrene, is injected through a channel 62 into the chamber 60 to form the substrate 24 having the integrated armrest 12. Specifically, the molded substrate 24 is molded over the first male portion 50 such that the first male portion 50 retains the substrate 24. It should be understood, as indicated above, that the armrest 12 may be molded by the methods disclosed herein as a separate part for later attachment to the door panel 10, or any other desired trim assembly, e.g. a console panel. A movable slide 64, as known in the art, is provided within the first shot mold cavity 44 to produce the handle 16, or pull-cup, portion for grasping by a vehicle occupant to facilitate the closing of the vehicle door 18. In addition, a variety of openings may be formed therein, by means known in the art, so as to accommodate the placement of hardware components 20 such as a speaker(s), door handle, window controls, etc.

With further reference to FIGS. 3 and 3A, the first shot mold cavity 44 is retracted, or moved away from, the first male portion 50, and the core 48 having the first male portion 50 provided with the substrate 24 then is rotated about the horizontal axis 56 to move the substrate 24 from the first shot mold cavity 44 to the second shot mold cavity 46. It should be understood that the core 48 also may rotate about a vertical axis or be adapted to move, or slide, sideways to a second shot mold cavity. Next, the first male portion 50 of the core 48 mates with the second shot mold cavity 46 and, more specifically, the second shot mold cavity 46 is adapted to move toward the first male portion 50, as is commonly known in the art, to form a second shot chamber 66 about at least a portion of the integrated armrest 12.

In a second shot of the molding operation, the second foamed material 30, which may be a foamed thermoplastic polymer such as a foamed thermoplastic elastomer or foamed polypropylene, is injected through a channel 70 into the second shot chamber 66 to form the armrest cover 28. Notably, the cover 28 is bonded, or integrally molded, to at least the portion of the armrest 12 to provide the armrest 12 with a soft feel. As indicated above, the second foamed material 30 is activated, or foamed, by a blowing agent that can include sodium bicarbonate and the like, any gas such as nitrogen, or any other known blowing agent. More specifically, the blowing agent is combined, or pre-mixed, with a thermoplastic polymer, such as a thermoplastic elastomer or polypropylene, to form the second foamed material 30.

The second foamed material 30 produces the cover 28, which advantageously includes an outer skin 34 and a light, cellular inner core 36 such that when a force is applied to the cover 28, the skin 34 will deform and compress the inner core 36, providing the soft-touch feel to the armrest 12. In addition, the feel of the armrest 12 may be adjusted to any desired softness by varying the thickness of the cover 28, such as by altering the depth of the second shot chamber 66.

After the second foamed material 30 has been allowed time sufficient to cure, the second shot mold cavity 46 is retracted, or moved away from, the first male portion 50, and the automotive interior trim assembly, i.e. the door trim panel 10, having the integrated armrest 12 with soft feel is ejected from the first male portion 50, such as by ejector pins (not shown), so that the process may begin anew. Although not illustrated, it is understood that the second male portion 52 also is adapted to mate with the first shot cavity 44, during the mating of the first male portion 50 with the second shot mold cavity 46, to form a second substrate (not shown) that may be identical to the first substrate 24 by injecting the first material 26 into the first shot mold cavity 44 in the first shot of the molding operation. After injection, the core 48 with the second male portion 52 similarly rotates the second substrate to the second shot mold cavity 46 for the second shot of the molding operation while the first male portion 50 returns to the first shot mold cavity 44 to repeat the first shot of the molding operation. In this fashion, a plurality of automotive interior trim assemblies having integrated armrests with soft feel may be formed in a continuous and efficient manner.

With further reference to FIGS. 1 and 4, the molded trim panel assembly 10 includes the substrate 24 with integrated armrest 12 and the cover 28 integrally molded thereto thereby forming the armrest 12 with soft feel. The trim assembly 10 now may be coupled, by means known in the art, to a doorframe 76 structure of a motor vehicle. Accordingly, the molding operation of the present invention may be continuously performed utilizing a single mold assembly 42 to provide an improved trim assembly 10 having an armrest 12 with a soft feel.

Although, the method of making utilizes a single mold assembly for a continuous, integrated process, it still should be understood that the molding process may be performed in more than one mold assembly such that the trim part may be moved from the first shot mold cavity after the first shot to a second shot mold cavity provided in a second, separate mold assembly for the second shot of the molding operation. Movement can be manually or by other means commonly known in the art, e.g. robotically.

While the present invention has been illustrated by the description of the various embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of Applicant's general inventive concept.

Claims

1. A method of forming an automotive armrest with soft feel in a: continuous two-shot molding operation, comprising:

providing a mold assembly having first and second shot mold cavities;
molding an armrest by injecting a first material into the first shot mold cavity of the mold assembly in a first shot of the molding operation;
moving the armrest from the first shot mold cavity to the second shot mold cavity by using at least a portion of the mold assembly;
forming a mold chamber about at least a portion of the armrest within the second shot mold cavity of the mold assembly; and
molding an armrest cover by injecting into the mold chamber a second foamed material in a second shot of the molding operation, the cover being molded to the at least a portion of the armrest to provide the armrest with a soft feel.

2. The method of claim 1, wherein the step of molding an armrest comprises molding a substrate having an integrated armrest by injecting the first material in the first shot of the molding operation, and wherein the step of moving the armrest comprises moving the substrate having the integrated armrest from the first shot mold cavity to the second shot mold cavity by using the at least a portion of the mold assembly to mold the cover to the at least a portion of the armrest to provide the armrest with the soft feel.

3. The method of claim 2, wherein the step of molding the substrate having an integrated armrest comprises molding a door trim panel having the integrated armrest.

4. The method of claim 1, wherein the first material includes a thermoplastic polymer and the second foamed material includes a foamed thermoplastic polymer.

5. The method of claim 4, wherein the foamed thermoplastic polymer includes one of a foamed thermoplastic elastomer and foamed polypropylene.

6. The method of claim 1, wherein the step of providing a mold assembly having first and second shot mold cavities comprises providing a mold assembly having first and second shot mold cavities and a core having at least one male portion adapted to mate with each cavity, the core further being adapted to rotate;

wherein the step of molding an armrest comprises molding the armrest by mating the at least one male portion with the first shot mold cavity and injecting the first material into the first shot mold cavity in the first shot of the molding operation;
wherein the step of moving the armrest from the first shot mold cavity to the second shot mold cavity by using at least a portion of the mold assembly comprises rotating the armrest on the at least one male portion of the core from the first mold cavity to the second mold cavity; and
wherein the step of forming a mold chamber comprises forming the mold chamber about the at least a portion of the armrest within the second shot mold cavity of the mold assembly by mating the at least one male portion with the second shot mold cavity to mold the armrest cover in the second shot of the molding operation.

7. The method of claim 6, wherein the step of rotating the armrest comprises rotating the armrest about a horizontal axis to move the armrest from the first mold cavity to the second mold cavity.

8. A method of forming an automotive armrest with soft feel in a continuous two-shot molding operation, comprising:

molding an armrest by injecting a first material in a first shot of the molding operation;
forming a mold chamber about at least a portion of the armrest; and
molding an armrest cover by injecting into the mold chamber a second foamed material in a second shot of the molding operation, the cover being molded to the at least a portion of the armrest to provide the armrest with a soft feel.

9. The method of claim 8, wherein the first material includes a thermoplastic polymer and the second foamed material includes a foamed thermoplastic polymer.

10. The method of claim 9, wherein the foamed thermoplastic polymer includes one of a foamed thermoplastic elastomer and foamed polypropylene.

11. The method of claim 8, wherein the step of molding an armrest comprises molding a substrate having an integrated armrest by injecting the first material in the first shot of the molding operation.

12. The method of claim 11, wherein the step of molding the substrate having the integrated armrest comprises molding a door trim panel having the integrated armrest.

Patent History
Publication number: 20090051066
Type: Application
Filed: Oct 21, 2008
Publication Date: Feb 26, 2009
Applicant: International Automotive Components Group North America, Inc. (Dearborn, MI)
Inventors: Glenn A. Cowelchuk (Chesterfield Township, MI), Todd L. DePue (Brighton, MI), David Dooley (Troy, MI), Michael J. Hier (Royal Oak, MI), Randy S. Reed (Fair Haven, MI)
Application Number: 12/255,023
Classifications
Current U.S. Class: Uniting Spaced Preforms Or Solidified Layers By Introducing Foamable Material Therebetween (264/46.5)
International Classification: B29C 65/70 (20060101);