Building Element and a Building Structure Comprising the Building Element

The invention relates to a building element for a building structure such as a floor structure, comprising a member (10, 21, 40), said member having a planar portion (10d, 40d), and at least a part (11, 12, 43, 44, 45) of a mould (111) provided at an edge (10a, 21a, 40a) of the member (10, 21, 40).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to a building element for a building structure such as a floor structure according to the preamble of claim 1.

BACKGROUND OF THE INVENTION

In known building construction procedures, e.g. concerning multi-storey buildings, floor structures are usually made in situ and are cast into homogenous reinforced concrete structures, having acceptable sound dampening and fire safety characteristics. However, this traditional construction method demands a relatively large amount of man-hours at the construction site, which increases the construction time and/or the number of workers needed.

A number of methods exist that increase the degree of prefabrication. Complete pre-fabrication of floor structures is not feasible, since problems with heavy transportation and meeting tolerance requirements, in turn requiring additional casting in situ, create obstacles. Many prefabrication methods include manufacturing a lower ceiling of the floor structure in concrete, which, with or without supports, forms a mould for upper casting with reinforcements. However, problems with heavy transportation remain in such methods as well. Overall, the economic gain is too small for known prefabrication solutions to become an attractive alternative to traditional floor structure construction.

With increasing requirements on the sound characteristics of buildings, traditional methods require the use of more concrete or separate upper layers, which in turn makes the construction process more expensive. Additionally, large amounts of concrete create the need for special considerations concerning humidity and longer periods for the concrete to dry, which extends the time needed for the construction. Also, the large amount of concrete in traditional floor structures requires stronger building foundation structures, which increases construction costs, and is also reason why some earth quakes create so much material damage, human injuries and loss of life.

Additional known solutions include the use beams made of thin sheet. WO00/34599 describes a pre-made concrete upper floor of a floor structure supported by I-beams made of thin steel sheet. There are similar solutions with C- and Z-beam sections. However, over large spans the concrete floor often becomes too heavy to be supported by the steel sheet beams. Also, fire safety considerations require complicated measures, such as providing lining on the steel sheet beams. Finally, as with other prefabrication solutions additional casting in situ is required due to problems with meeting tolerance requirements.

GB 572522 discloses a preformed beam made of concrete and having its side portions shaped to constitute side faces. A portion of the reinforcement projects through said side faces from the tension flange or web of the beam so as to constitute a shear reinforcement, external to the beam in a manner such that, when two adjacent beams abut side-by-side and a grouting material is placed in the groove formed by their side faces, the grouting will flow around the projecting shear reinforcements.

A disadvantage with the beam according to GB 572522 is that it is heavy, and that it during hardening tends to creep and shrink, i.e. the concrete is anisotropic, which causes actual deviations. When mounted on the site the dead weight causes irregular deflection, increasing the actual deviations. In order to achieve a flat ceiling a separate ceiling is required. The casting process in the grooves create an uneven floor surface, and thus there is a need to fill the floor surface with a self-levelling layer of concrete in order to be suitable for carpets and flooring material. Such self-levelling layers of concrete contain a substantial amount of water. The thickness of such a layer needs to be sufficient in order to be reliable, i.e. at least 10 mm thickness, i.e. a substantial amount of additional special concrete or the like is needed. Due to the high amount of water damp problems occur, and it takes a long time to dry this additional layer. In addition the junctions need to be sealed such that no leaks occur at the cast.

SUMMARY OF THE INVENTION

An object of the invention is to present a building element for a building structure such as a floor structure, which decreases the amount of work having to be performed at the construction site.

Another object of the invention is to present a building structure which comprises less material compared to building structures for the same structural requirements and produced according to known solutions.

The first and second objects are reached with a building element for a building structure such as a floor structure, comprising a member, said member having a planar portion, comprising at least a part of a mould provided at an edge of the member.

Thereby, at the construction site, such building elements can be placed adjacent to each other. Whether mould parts or complete moulds are provided fixed to the members, these can be used to cast in situ floor beams between the planar elements. Thereby, essential structural components can be easily made at the construction site in correct positions with the aid of the moulds or mould parts provided on the building elements, which can be prefabricated. The possibility of easily producing essential load carrying members at the constructions site, makes it possible to provide prefabricated building elements that are substantially lighter than those of known methods, and therefore transportation is facilitated. Also, since the moulds or mould parts allow easy fabrication of reinforced concrete floor beams with a high flexural rigidity, a light strong floor structure, with a finished floor surface, can be obtained without the use of large quantities of concrete which result in very heavy floor structures.

Preferably, the member comprises high performance concrete. Preferably said concrete has a water-cement ratio equal to or lower than 0.39. Preferably said concrete comprises ballast material comprising an open pore structure material for receiving during heating water vapour from water in the concrete, said ballast preferably being non-combustible material. Preferably, the high performance concrete is of the type described in PCT/SE2004/000148, filed by the applicant and incorporated herein by reference. This type of concrete is very durable in a case of fire, since it does not split, as described in said PCT application. This, together with the high strength of this concrete allows for a relatively thin layer of concrete, which reduces weight, and allows the building element to be used for relatively high structural requirements. It further facilitates providing floor structures with a high flexural rigidity, a light strong floor structure, with a finished floor surface, without the use of large quantities of concrete which result in very heavy floor structures. As this type of concrete does not have the problem of creep and shrinking during hardening, does not transform due to torsional effects etc. an even or smooth surface is achieved when joining the building elements. Therefore, as a smooth floor surface is achieved, there is no need for an additional self-levelling layer of concrete, and thus there is no problem with damp. Thus there is no longer a need for drying for a long period of time. The construction process thus becomes more rapid, and cheaper due to less material used and time, i.e. work hours saved.

Preferably the member comprises reinforcement means. By having reinforcement means the structural strength is increased.

Preferably the reinforcement means comprises fibres mixed within the member. By using fibres there is no need for conventional reinforcement bars which makes the building element easier to manufacture, cheaper and lighter, and therefore transportation and handling is facilitated. The construction time is thus reduced.

Preferably the reinforcement means comprises local reinforcement units protruding out of the planar portion at the edge. This provides for, when two building elements are joined together, improved strength of the cast as the protruding reinforcement units become part of the cast beam or sealing. The units may also be attached, e.g. welded, to further improve the bond. By this, rigidity between the elements which is in the order of the rigidity of the elements themselves is obtained, thus avoiding discontinuous rigidity across element joints.

Preferably the member further comprises at least one beam portion extending from the plane of said planar portion. This further increases the prefabrication and thus decreases the amount of work having to be performed at the construction site in that less casting needs to be performed at the construction site. The amount of concrete needed at the construction site is also reduced.

Preferably the at least one beam portion extends laterally essentially perpendicular to the planar portion.

Preferably the at least one beam portion is provided at a region between the edges of the planar portion, said beam portion constituting an intermediate beam portion. This further increases the bearing strength lifting power and stability of the building element. This also facilitates making wider building elements. It further has the advantage that fixation of mould parts such as sheet profiles, if used, during assembly is simplified.

Preferably the at least one beam portion is provided at, at least one of the edges of the planar portion.

Preferably the at least a part of a mould is constituted by the beam portion. As the part of the mould is a portion of the member no fixation of the part of the mould is needed and thus workload is reduced. When two building elements are joined together to form a mould by means of respective edge beam portions, the risk of leakage due to pressure caused by concrete during casing which may be the case with conventional mould such as a steel sheet profiles joined together not entirely withstanding said pressure, is reduced. In addition, the amount of concrete needed at the construction site for casting the mould is reduced further, as this facilitates providing very small moulds. The mould is only needed for casting a sealing and stabilization of the building structure, and thus there is no need to cast a supporting beam at the construction site.

Preferably, the reinforcement means comprises at least one reinforcement member, a part of which protrudes out of the member at the edge at which the part of a mould is fixed. Thereby, if material of the member formed at the construction site by use of the mould is allowed to surround the protruding part of reinforcement members, an effective structural joining between the member and the member formed at the construction site is accomplished.

Preferably, the edge at which the part of the mould is fixed forms at least partly an additional part of the mould. Thereby, material of the member formed at the construction site by use of the mould is allowed to contact the edge of the member, and as a result of this the bond between the member and the member formed at the construction site is further strengthened.

Preferably, the part of the mould has an elongated shape. Thereby, the mould can be used to form an extended structural member, such as a floor beam, between the members.

Preferably, the member has an elongated shape, and the part of the mould extends alongside the member. Thereby, the building element can be used to span openings in a construction to form a floor structure, whereby the mould can be used to provide a structural member extending across the floor to carry loads to vertical members in the periphery of the opening.

Preferably, the part of the mould extends at least partly out of the plane of the member. Thereby, the mould can be used to form a member which has a thickness, or height, being considerably larger than the thickness of the member, as a result of which a building structure with a large flexural rigidity can be obtained.

Preferably, at least one reinforcement member is located, in relation to the part of the mould, in a position which it is intended to assume after a casting process involving the part of the mould. Thereby, reinforcement members, e.g. in the form of reinforcement bars, will be in their final position when the building element arrives at the construction site, so that the construction time can be accelerated.

BRIEF DESCRIPTION OF THE DRAWINGS

Below, embodiments of the invention and their advantages will be described in greater detail with reference to the drawings, in which

FIG. 1 is a front section view of a building element according to one embodiment of the invention,

FIG. 2 is a front section view of a building element according to another embodiment of the invention,

FIG. 3 is a front section view of a building element according to yet another embodiment of the invention,

FIG. 4 is a front section view of a building element according to yet another embodiment of the invention,

FIG. 5 is a front section view of a building element according to yet another embodiment of the invention,

FIG. 6 is a front section view of a building element according to yet another embodiment of the invention,

FIG. 7 is a front section view of parts of two joined building elements according to FIG. 1,

FIG. 8 is a front section view of parts of two joined building elements according to FIG. 3,

FIG. 9 is a front section view of parts of two joined building elements according to FIG. 6,

FIG. 10 is a front section view of a building element according to FIG. 18 with a mounted lower ceiling,

FIG. 11 is a front section view of parts of two joined building elements according to FIG. 6 with a mounted lower ceiling,

FIG. 12 is a front section view of parts of two joined building elements according to FIG. 5 with a mounted lower ceiling,

FIG. 13 is a front section view of a building element according to yet another embodiment of the invention,

FIG. 14 is a front section view of a building element according to an additional embodiment of the invention,

FIG. 15 is a front section view of parts of two joined building elements according to FIG. 14 prior to casting, and

FIG. 16 is a front section view of parts of two joined building elements according to FIG. 14 with a cast mould.

DETAILED DESCRIPTION

FIG. 1 shows a building element 1 according to one embodiment of the invention. The building element 1 can have a number of alternative shapes, but in this embodiment it has an extended shape, and in FIG. 1 one of its short sides can be seen.

The building element 1 comprises a member 10 having planar portion 10d, in this embodiment in the form of a rectangular upper plate portion 10d, and an intermediate beam portion 42a extending from a central region of the planar portion 10d. The member 10 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference. The beam portion 42a preferably has an I-section extending laterally essentially perpendicular to the planar portion 10d. Alternatively the member 10 may comprise more than one beam portion, preferably each beam having essentially the same configuration, i.e. extending laterally essentially perpendicular to the planar portion. Mould parts 11, 12 are fixed to the planar portion 10d at a respective longitudinal edge 10a thereof. Reinforcement means 10c in the form of reinforcement wire mesh are received in the planar portion 10d. At each edge 10a, ends 10b of reinforcement wire mesh 10c protrude. The beam portion also comprises reinforcement bars 121.

The reinforcement wire mesh 10c, 121 could be part of a fabric reinforcement cast into the planar portion 10d, as shown in FIG. 1.

The mould parts 11, 12 are suitably made of thin sheet section beams, preferably of a standardised type, extending along the longitudinal edges of the planar portion 10d. Each mould part 11, 12 can be fixed to the planar portion 10d by an edge region thereof being cast into the planar portion 10d. For this the mould part is preferably provided with a shoulder that can be used to secure the former until casting is finalised. Each mould part 11, 12 can also be mounted to the planar portion 10d by some kind of suitable fastening arrangement, by means of for example braces or welds.

As can be seen in FIG. 1 the thin sheet section beams 11, 12 have a Z-section. The thin sheet section beams 11, 12 each have a portion 11a, 12a extending laterally essentially perpendicular to the planar portion 10d, and an end portion 11b, 12b extending laterally essentially parallel to the planar portion 10a at a distance therefrom, and a fixing portion 11c, 12c extending laterally essentially parallel to the planar portion 10d and cast into the planar portion 10d. At a lateral free end region of each end portion 11b, 12b, the respective thin sheet section beam 11a presents a shoulder 11d, 12d.

FIG. 2 is a front section view of a building element according to another embodiment of the invention. The building element 1 according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 1. It differs in that instead of having reinforcement bars being part of a fabric reinforcement cast into the planar portion 10d and the beam 42a, as in the embodiment shown in FIG. 1, FIG. 2 shows an alternative, where the reinforcement means constituted by specially formed fibres 43c mixed within the member are used to reinforce a planar portion 40d, and an intermediate beam portion 42b said planar portion and beam portion constituting a member 40, where the member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference. Local reinforcement units 103 with protruding ends are provided at the edges 40a of the planar portion, said reinforcement units 103 e.g. being plates, wires or the like, preferably of steel such that they may be welded together if required. Preferably a wire mesh 121 is provided in the beam portion 42b.

FIG. 3 is a front section view of a building element according to yet another embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 2. It differs in that instead of having mould parts fixed to the planar portion 40d at a respective longitudinal edge thereof, a mould part 11 is fixed to the planar portion at one longitudinal edge 40a. The member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference. The member 40 comprises an edge beam portion 43 extending laterally essentially perpendicular to the planar portion 40d constituting the other longitudinal edge, the edge beam portion 43 preferably having an I-section.

FIG. 4 is a front section view of a building element according to yet another embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 3. It differs in that the mould part 11 is replaced by a mould part 11′ having essentially the same shape, and in that the edge beam portion 43 is replaced by an edge beam portion 44 having a slightly different shape in section, i.e. an L-section, the edge beam portion 44 having a first portion 44a extending laterally essentially perpendicular to the planar portion 10d, and a free end portion 44b extending laterally essentially parallel to the planar portion 40d at a distance therefrom. The distance h measured from the upper portion of the planar portion to the upper portion of the end portion 44b of the edge beam portion 44 is essentially equal to the distance h measured from the upper portion of the planar portion 40d to a lower portion 11b of the mould part 11′, the mould part 11′ and the edge beam portion 44 of the member 40 being configured such that, when joining two elements 1 they may be joined together to form a mould. The member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference.

FIG. 5 is a front section view of a building element according to yet another embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 4. It differs in that the mould part 11′ is replaced by a mould part 11″ having a shape, in section, of a mirror inverted “S”, and in that the edge beam portion 44 is replaced by an edge beam portion 45 having an L-section. Local reinforcement units with protruding ends 103 are preferably provided at the edges of the planar portion 40a, in order to cooperate by end assembly. The member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference.

FIG. 6 is a front section view of a building element according to yet another embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 4. It differs in that the mould part 11′ is removed. The member 40 comprises a respective edge beam portion 44 extending from the respective edge portion 40a of the planar portion laterally essentially perpendicular to the planar portion 40d constituting the respective longitudinal edge, each edge beam portion 44 having an L-section. Each edge beam portion 44 constitutes a mould part 44. The member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference.

FIG. 7 is a front section view of parts of two joined building elements according to the embodiment of FIG. 1. Part of the building element 1 is shown in a suitable position in relation to a similar building element, also shown in part, the mould parts 11, 12, being fixed at respective longitudinal edges of the planar portions 40d of the building elements 1. Each mould part 11, 12 present a shoulder 11d, 12d at their respective free edge region, and shoulders 11d, 12d of adjacent mould parts 11, 12 have been brought to abut against each other, so that a mould 111 is formed. One or more reinforcement bars 121 have been placed in the mould before casting. As can be seen in FIG. 24 the mould has subsequently been filled with material in order to form a supporting beam 50. The ends 10b of the reinforcement bars 10c protruding at the respective edge of the planar portion are cast and connected such that they contribute to the cooperation between the different elements.

FIG. 8 is a front section view of parts of two joined building elements according to the embodiment in FIG. 3. Part of the building element 1 is shown in a suitable position in relation to a similar building element, also shown in part, the mould part 11 of one building element being fixed with the edge beam portion 43 of the other building element at respective longitudinal edges of the planar portions 40a of the building elements. The shoulder of the mould part of one of the building elements have been brought to abut against the lower portion of the edge beam portion, so that a mould 111 is formed. As can be seen in FIG. 8 the mould has subsequently been filled with material in order to form a supporting beam 51.

FIG. 9 is a front section view of parts of two joined building elements according to FIG. 6. Part of the building element 1 is shown in a suitable position in relation to a similar building element, also shown in part, the edge beam portions 44, i.e. the mould parts 44, being fixed at respective longitudinal edges 40a of the planar portions 40d of the building elements. Each edge beam portion 44 present a free end portion 44b having a free edge region 44c, and free end portions of adjacent edge beam portions have been brought to abut against each other at their free edge region, so that a mould 111 is formed. As can be seen in FIG. 9 the mould has subsequently been filled with material in order to form a sealing member 52 such that the building structure formed by the building elements is stabilized.

FIG. 10 is a front section view of a building element according to FIG. 1 with a mounted lower ceiling. The building element is provided with a vibration dampening lower ceiling 20, mounted by means of vibration dampening members 21 on the mould parts 11, 12 and the intermediate beam portion 42a. The building element may also preferably be provided with a sound isolating layer (not shown), e.g. mineral wool, for reduction of noise from foot steps and transfer of sound between apartments. The members 21 may e.g. be replaced by so called sound latches, attached to the lower portion of the mould parts 11, 12 and the intermediate beam portion 42a, to which sound latches the lower sealing 20 may be attached.

FIG. 11 is a front section view of parts of two joined building elements according to FIG. 6 with a mounted lower ceiling. The building element is, as in FIG. 27, provided with a vibration dampening lower ceiling 20, mounted by means of vibration dampening members 21 on the edge beam portions 44 and the intermediate beam portion 42b.

FIG. 12 is a front section view of parts of two joined building elements according to FIG. 5 with a mounted lower ceiling. Part of the building element 1 is shown in a suitable position in relation to a similar building element, also shown in part, the mould part 11″ of one building element being fixed with the edge beam portion of the other building element at respective longitudinal edges of the planar portions 40d of the building elements 1. The portion of the mould part 11″ of one of the building elements extending laterally essentially perpendicular to the planar portion 40d has been brought to abut against the lower portion 45b of the edge beam portion 45, so that a mould 111 is formed. As can be seen in FIG. 12 the mould has subsequently been filled with material in order to form a sealing member 53 such that the building structure formed by the building elements 1 is stabilized. The building element is, as in FIGS. 10 and 11, provided with a vibration dampening lower ceiling 20, mounted by means of vibration dampening members 21 on the edge beam portions 45 and the intermediate beam portion 42b.

FIG. 13 is a front section view of a building element according to yet another embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 21. It differs in that it does not comprise the intermediate beam portion.

FIG. 14 is a front section view of a building element according to an additional embodiment of the invention. The building element according to this embodiment has essentially the same configuration as the building element according to the embodiment shown in FIG. 6. It differs mainly in the shape of the respective edge beam portion 44, in relation to the planar portion. The beam portion extends from the respective edge portion 40a of the planar portion laterally essentially perpendicular to the planar portion 40d, the first portion 44a of the beam portion 44 having essentially the same height as the planar portion, i.e. the portion 44b of the beam portion is extending all the way from the planar portion 40d, i.e. it can be seen as if the member 40 has a recess at the transition region of the planar portion 40d and the edge beam portion. Each edge beam portion 44 constitutes a mould part 44. The member 40 preferably comprises high performance concrete, preferably reinforced high performance concrete of the type described in PCT/SE2004/000148, incorporated herein by reference. Local reinforcement units 103 with protruding ends are provided at the edges 40a of the planar portion, said reinforcement units 103 e.g. being plates, wires or the like, preferably of steel such that they may be welded together if necessary.

FIG. 15 is a front section view of parts of two joined building elements according to FIG. 14 prior to casting. Part of the building element 1 is shown in a suitable position in relation to a similar building element, also shown in part, the edge beam portions 44, i.e. the mould parts 44, being fixed at respective longitudinal edges 40a of the planar portions 40d of the building elements. Each edge beam portion 44 present a free end portion 44b having a free edge region 44c, and free end portions of adjacent edge beam portions have been brought to abut against each other at their free edge region, so that a mould 111 is formed. The respective protruding ends of the local reinforcement units 103 may be joined in order to increase the bond. Due to the configuration of the member 40, a mould of a very small size, e.g. 5×3 cm, is achieved, and thus the amount of concrete needed on site is reduced to a minimum.

FIG. 16 is a front section view of parts of two joined building elements according to FIG. 14 with a cast mould. As can be seen the mould has subsequently been filled with material surrounding the joined ends of the reinforcement units 103, in order to form a sealing member 53 such that the building structure formed by the building elements is stabilized.

Variants of the above embodiments such as combinations, i.e. with or without ceilings, different types of reinforcement means, different shapes of mould parts and beam portions etc. are possible.

Further, in the above embodiments it is referred to high-performance concrete. By high performance concrete is meant any concrete, which satisfies certain criteria, i.e. a concrete having a water-cement ratio equal to or lower than 0.39, when essentially all capillary pores in the cement paste are vanished. High-performance concrete usually comprises a cement paste mixed with fines such as micro silica and plasticizing admixtures, which increase the density and adhesiveness of the cement paste, and is characterised by high strength, waterproofness but diffusion-openness, high durability, and good carbonation and chloride resistance. Due to its improved mechanical properties, high-performance concrete is often called “high-strength concrete”. Preferably, the open pore structure material is a non-combustible material with such mechanical properties that the overall strength of the concrete is not reduced. These requirements are met by, for instance, particles in waste materials from metal production (slag), which in a preferred embodiment of high-performance concrete comprise a porous composite alloy, and exclude e.g. leca, which is weaker than granite and quartz and presents pore dimensions such, that the pores are filled with fine particles during casting.

Claims

1. A building element for a building structure, the building element comprising: a member having a planar portion; and at least a part of a mould provided at an edge of the member.

2. A building element according to claim 1, wherein the member comprises high performance concrete.

3. A building element according to claim 2, wherein said concrete has a water-cement ratio equal to or lower than 0.039.

4. A building element according to claim 2, wherein said concrete comprises ballast material including an open pore structure material for receiving during heating water vapour from water in the concrete.

5. A building element according to claim 4, wherein said ballast material is non-combustible material.

6. A building element according to claim 1, wherein the member includes reinforcement means.

7. A building element according to claim 6, wherein the reinforcement means includes specially formed fibres mixed within the member.

8. A building element according to claim 6, wherein the reinforcement means includes local reinforcement units protruding out of the planar portion at the edge.

9. A building element according to claim 1, wherein the member further comprises includes at least one beam portion extending from the plane of said planar portion.

10. A building element according to claim 9, wherein the at least one beam portion extends laterally essentially perpendicular to the planar portion.

11. A building element according to claim 9, wherein the at least one beam portion is provided at a region between the edges of the planar portion, said beam portion including an intermediate beam portion.

12. A building element according to claim 9, wherein the at least one beam portion is provided at, at least one of the edges of the planar portion.

13. A building element according to claim 9, wherein the at least one beam portion includes the at least a part of the mould.

14. A building element according to claim 6, wherein the reinforcement means comprises at least one reinforcement member, and wherein a part of the at least one reinforcement member protrudes out of the planar portion at the edge at which the part of a mould is fixed.

15. A building element according to claim 1, wherein the edge at which the part of the mould is provided forms at least partly an additional part of the mould.

16. A building element according to claim 1, wherein the part of the mould has an elongate shape.

17. A building element according to claim 1, wherein the member has an elongate shape, and the part of the mould extends alongside the planar portion.

18. A building element according to claim 1, wherein the part of the mould extends at least partly out of the plane of the planar portion.

19. A building element according to claim 14, wherein at least one reinforcement member is located, in relation to the part of the mould, in a position which it is intended to assume after a casting process involving the part of the mould.

20. A building element according to claim 1, wherein the building structure has an essentially horizontal extension.

21. A building element according to claim 20, wherein, in an intended final position of the building element, the part of the mould extends laterally downwards from the planar portion.

22. A building element according to claim 1, further comprising an additional member, the members oriented substantially parallel to each other and located at a distance from each other in a direction perpendicular to their planes, the part of the mould extending laterally from one of the members to the other.

23. A building structure comprising a building element, the building element including a member having a planar portion and at least a part of a mould provided at an edge of the member.

Patent History
Publication number: 20090064615
Type: Application
Filed: Nov 25, 2005
Publication Date: Mar 12, 2009
Inventor: Roger Ericsson (Kalmar)
Application Number: 11/791,066
Classifications
Current U.S. Class: Embedded Projecting Tie (52/295)
International Classification: E04B 5/02 (20060101); E04B 5/17 (20060101); E04B 5/18 (20060101); E04B 5/23 (20060101);