PHOTOCATALYSIS PROCESS TOOTHBRUSH
A photocatalysis process manual light emitting toothbrush comprising a handle with a grip at a proximal end and a replaceable brush head at a distal end thereof. The replaceable brush head has at least one group of bristles permanently affixed to the replaceable brush head and at least one blue light emitter is provided on an upper surface of the replaceable brush head for emitting blue light in a direction generally parallel to the bristles permanently affixed to the replaceable brush head. At least one blue light source is provided for radiating blue light, in a wavelength band between 420 nm to 480 nm, and a power source is provided for energizing the at least one blue light source. The blue light is at least one of modulated emission with an average optical output power level of less than 5 watts.
Latest TECHLIGHT SYSTEMS LLC Patents:
This application is related to and is a continuation-in-part of U.S. patent application Ser. No. 11/946,263 filed on Nov. 28, 2007 which claims the benefit of U.S. Provisional Patent Application No. 60/872,761 filed on Dec. 4, 2006 and such teachings and disclosures are hereby incorporated by reference.
FIELD OF THE INVENTIONThe present invention relates to dental hygiene and, in particular, to a manual light emitting toothbrush which emits radiation, near ultraviolet region of the electromagnetic spectrum, in order to oxidize and destroy potentially harmful bacteria and/or other contaminants or compounds contained within the mouth without harming or destroying human cells and also activate a photo catalyst that may be deposited on the teeth and the gums of the person utilizing the toothbrush during normal brushing.
BACKGROUND OF THE INVENTIONThe use of photocatalysis in dental hygiene processes is well established and stems from processes for purifying gases and liquids and for controlling bacteria and other microorganisms in gases and liquids and on the surfaces of solid objects. In general, photocatalysis methods involve the photoexcitation of photocatalytic compounds, for example, catalytic n-type semiconductor particles such as TiO2 particles, with ultraviolet (UV) light to activate the photocatalyst, which then participates in reduction/oxidation reactions with matter adsorbed to or in the near vicinity of the surface of the particles. The reduction/oxidation reactions produce highly reactive hydroxyl radicals which oxidize and destroy bacteria and organic compounds in the gas or liquid or on the surface(s) being treated, such as bacteria and other organic substances associated with, for example, tooth decay, gum disease, denture stomatitis and halitosis/malodor.
In the past, photocatalysis methods have generally only been performed in a dentist's offices by either a dentist or a dental hygienist using a specialized UV laser(s) or some other optical device(s) which emits a controllable, directed beam of UV light. More recently, however, there have been proposals to manufacture and sell UV photocatalysis devices to the general public, e.g., a toothbrush containing a UV light radiating device, together with toothpastes and/or mouthwashes containing photocatalytic particles, such as TiO2. In such toothbrushes, the UV light emitted by a UV laser diode, for example, passes through a light guide to the end of the toothbrush which brushes the teeth where this light is emitted into the user's mouth by, for example, lenses implanted among the bristles or through fiber optic bristles that form at least part of the brush bristles. The bristles mechanically facilitate removal of plaque and/or other organic materials from the teeth and the gums during brushing, similar to brushing with a conventional toothbrush, while the UV light is emitted directly to illuminate photocatalytic particles distributed on the surfaces of the teeth and the gums, thereby providing both a conventional cleaning mechanism as well as a photocatalytic cleaning mechanism.
The currently UV photocatalytic toothbrushes which are marketed to consumers, however, have a number of significant problems, not the least being the potential hazards associated with such devices. For example, in the generally preferred wavelength range of 280 mm to 400 mm, UV light at any power level is typically capable of damaging human skin including the tissue of human eyes. Compounding this problem is the fact that UV light within this wavelength range is nearly invisible to a user or patient, so that it is difficult to determine where the emitted UV beam is directed or aimed. In addition, the duration of irradiation of the catalytic particles, at any particular location within the mouth, is typically very short during the normal toothbrushing process, thus requiring higher power levels of UV radiation in order to obtain effective catalytic reactions. This problem is further compounded by the normal deterioration of the light transmission capability of the brush end elements, such as the lenses and the fiber optic elements, over time. Higher emitted power levels are generally called for in order to achieve satisfactory performance.
Up until now it is in fact the potential hazards of UV radiation that has limited the use of the UV dental hygiene processes to dentists and oral hygienists and the practical application of these methods to consumer toothbrushes and devices accordingly faces significant hurdles. For example, all medical or dental devices emitting ultraviolet light, and in particular within the wavelength range of 280 mm to 400 mm, are under Food and Drug Administration (FDA) control and licensing. In addition, all laser devices emitting coherent radiation of 1 milliwatt or more in the visible wavelengths, and all devices emitting laser radiation at any power level in the non-visible wavelengths, such as the UV and IR wavelengths, are presently prohibited from being sold to the general public.
Still a further problem with light emitting toothbrushes and other devices employing high power light emitting diodes was that these high power light emitting diodes require very special electronically controlled constant current circuitry. Such control circuitry has only recently been available in the form of an economical integrated circuit. Failure to use electronically controlled constant current circuitry to drive a high power light emitting diodes, will result in uncontrolled light output, degraded high power light emitting diode performance, and possible catastrophic failure.
A further problem with the proposed light emitting electric toothbrushes employing movable bristle segments, while this seems to be a logically sound idea, the electro mechanical requirements necessary to completely seal the light emitting diode and control electronics from any moisture intrusion, make this electric toothbrush idea with movable bristles impossible to economically manufacture and sell as a commercially viable product.
The present invention, however, provides a solution to the above described as well as other related problems associated with the prior art products and methods.
SUMMARY OF THE INVENTIONWherefore, it is an object of the present invention to overcome the above mentioned shortcomings and drawbacks associated with the prior art.
A primary object of the invention is to provide a manual light emitting toothbrush which emits radiation, near ultraviolet region of the electromagnetic spectrum, to oxidize and destroy potentially harmful bacteria and/or other contaminants or compounds contained within the mouth.
Another object of the invention is to provide a manual light emitting toothbrush that will activate a photo catalyst deposited on the teeth and the gums of the person utilizing the manual light emitting toothbrush during normal brushing.
A further object of the invention is to provide a manual light emitting toothbrush which emits blue light within the 420 nm to 480 nm wavelength band, of the electromagnetic spectrum, to avoid the normal hazards associated with using UV radiation as well as the corresponding FDA restrictions.
Yet another object of the invention is to provide a manual light emitting toothbrush in which the radiated blue light emissions may be amplitude modulated from 0% to 100% at a frequency of between about two (2) and about two hundred (200) Hertz, more preferably between about 6 and about 60 Hertz and most preferably between about 10 and about 30 Hertz, with an average optical output power level of less than 5 watts.
A still further object of the invention is to provide a manual light emitting toothbrush which is relatively inexpensive to manufacture which has a power source that is light weight and can be readily recharged or replaced as needed.
Yet another object of the present invention is to provide a toothbrush having a handle with a neck permanently affixed thereto with a light source embedded in an upwardly facing surface of the neck of the toothbrush with a replaceable brush head having an aperture formed therein which is aligned with the light emitting diode once the replaceable brush head is installed on the remote end of the neck.
A further object of the present invention is to ensure that the lighting emitting diode, as well as all the remaining electrical components of the toothbrush, are permanently sealed with respect to the external environment so as to prevent any water, moisture, toothpaste and/or other contaminants from entering into an interior compartment or area of the neck or the toothbrush and causing a malfunction of the toothbrush.
Still a further object of the present invention is to provide a replaceable brush head which has an aperture provided therein with the aperture being designed so that it is slightly larger than the emitting surface of the light emitting source so that, when the replaceable brush head is installed on the remote end of the neck, the aperture is concentric with and aligned with the light emitting diode to allow all of the light to pass through the brush head and interact with the teeth end or gums of the patient during brushing.
As used herein, the term “average optical output power level” means that the optical output power may briefly exceed 5 watts on modulation peeks how ever the total integrated power level over a time period of 1 second will not exceed 5 watts.
The invention will now be described, by way of example, with reference to the accompanying drawings in which:
Turning now to
An important aspect is to always have the bristles 18 affixed to the brush head of the toothbrush. In addition, the light emitting source or diode 26A can be either fixed and sealed to the brush head 16 adjacent the bristles 18, alternatively, the light emitting source or diode can be fixed and sealed with respect to the neck 26 of the handle 12.
In some applications, the blue light output from the emitters 20 may comprise solely a continuous emission of blue light having a combined power level of less than 5 watts, while in other applications the blue light output from the emitters 20 may comprise a modulated blue light emission having a frequency of between about two (2) and about two hundred (200) Hertz, more preferably between about 6 and about 60 Hertz and most preferably between about 10 and about 30 Hertz, having an average combined power level of less than 5 watts. For other applications, the blue light output from the emitters 20 may comprise a first blue light component which is a continuous emission of blue light and a second blue light component which is a pulsed blue light emission at a frequency typically between two (2) and two hundred (200) Hertz a few Hertz and a few hundred Hertz, more preferably between about 6 and about 60 Hertz and most preferably between about 10 and about 30 Hertz. For such combined continuous and pulsed blue light emission, the combined total emission must not exceed an average output which is greater that 5 watts. It is to be appreciated that the 420 nm to 480 nm wavelength band is within the visible “blue light” portion of the electromagnetic spectrum and is, therefore, above the UV light spectrum normally employed during conventional dental hygiene processes conventionally carried out by dentists and dental hygienist, thereby avoiding the normal hazards associated with using UV radiation as well as the corresponding FDA restrictions.
The presently preferred photocatalytic agents, for use with radiation within the 420 nm to 480 nm “blue light” band include, for example, modified TiO2 semiconductor type materials and possibly other catalytic n-type semiconductor particles as well as various organic dyes already known in the art as being photocatalytically responsive to blue light radiation.
As illustrated in
In other embodiments, such as is illustrated in
For example, one or more blue light sources 26A may be located in handle 12 at a position just below a neck 28, formed at a junction between the handle 12 and the head 16. According to one exemplary embodiment, such as illustrated in
As indicated in
It will be recognized that the reflection of the blue light from its arrival path from handle 12 to the direction parallel with the bristles 18 may also be accomplished by curved or flat surfaces, rather than by faceted surfaces.
In an alternate embodiment, as illustrated in
Turning now to the bristles 18, it has been described above that the bristles 18 may comprise either conventional bristles 18, such as found in conventional toothbrushes, and the blue light 22 may be radiated the from blue light emitters 20 located on or in the top surface 24 of the head 16, as was discussed above. In other embodiments, however, the blue light emitters 20 in or on the top surface 24 of the head 16 may comprise wholly, or in part, blue light emitting bristles 18E containing a blue light conductive material. As illustrated in
It will be noted from the above descriptions of the manual light emitting toothbrush 10 that while the blue light emitters 20 are located in or on the head 16, the blue light source or sources 26A may be located either in the head 16 or in the handle 12. In one instance, therefore, blue light 22 must be conducted from the blue light source or sources 26A located within the handle 12 to the head 16 and, in the other instance, electrical power, such as from a battery 32, must be conducted from the handle 12 to the head 16 for supplying electrical power to the blue light source or sources 26A. It must also be noted, however, that in certain implementations, such as those illustrated in
In those instances wherein the blue light source or sources 26A are located in handle 12, the path between the blue light source or sources 26A and the head 16 will include the appropriate blue light optical connectors 34L, at junction 34, to allow the optical path to be repeatedly disconnected and reconnected in a reliable manner. Connectors 34L may, for example, comprise lenses, fiber optic connectors or appropriately shaped ends in those implementations wherein the optical light path comprises the material of the handle 12 and the head 16 or a tunnel passage therethrough.
In those instances wherein the blue light source or sources 26A are located in the head 16, the blue light source(s) 26A will typically be provided with electrical power from one or more batteries 32 located within an internal cavity 36 of the handle 12 and the supply of electrical power to the blue light source or sources 26A will typically be controlled by a switch 38, e.g., a “on/off” switch or an a “on” switch with the toothbrush being turned “off” by the control circuitry 42, located at an appropriate position on the handle 12. The circuitry will further include leads 32L running from the handle 12 and through the neck to the head 16 and the leads 32L will typically include appropriate electrical connectors 34L at junction 34 which facilitate repeated disconnection and reconnection in a reliable manner.
In this regard, it should be noted that batteries 32 may be of any type meeting the power, storage and/or size requirements while still being small enough to reside in within the handle 12 and to provide the necessary levels of current to the blue light sources 20 for the required duration, such a NiCad, NiMiH, lithium ion, or lithium polymer batteries which typically may be rechargeable by electrical current supplied from a wall socket. For this reason, the handle 12 may also include a charging circuit 32C that can be connected to a direct or indirect source of electrical current supplied from a conventional wall socket, such as by a connector or by an induction coupling device. An active and passive interlock system will be employed to prevent normal operation during battery recharge. This interlock system may consist of mechanical keying of electrical connections and or electronic control of the toothbrush electronics by the charging circuit. It should also be noted that advances in battery technology may allow one or more batteries 32 to be located within the handle 12 to facilitate the use of interchangeable heads 16, with the corresponding connections for the switch 38 and the recharging circuits 32C passing through the neck 28 to the handle 12. As an alternative source, the power source or batteries may be AA or AAA alkaline, lithium, or carbon zinc batteries which are commercially available and readily replaceable by the user of the toothbrush.
Turning now to
To facilitate turning the control circuitry 42 “on” for a timed duration, the exterior surface of the handle 12 is provided with an activation switch 38. The end of the handle 12, opposite from the neck 28, has a removable cover 44 which facilitates both replacing the batteries 32, when necessary, as well as installation of the board 43 within a base section of the handle 12 by a fastener 49, such as a screw. One or more seals 45, such as a silicon O-ring, is located on a leading end of the removable cover 44 for preventing any water, moisture, toothpaste or any other contaminant from entering between the handle 12 and the removable cover 44.
As can be seen in
As can be seen in
To facilitate secure attachment as well as replacement of the replaceable brush head 16, a U-shaped annular groove 52 is formed in a sidewall of the receiving surface 46 and this U-shaped annular groove 52 extends around three (3) adjacent sides of the receiving surface 46 of the neck 28 (see
In order to retain the relative locked position, between the replaceable brush head 16 and the neck 28, an end wall 31 of the neck 28 has a passageway 58 which opens to the external environment while a leading end of the replaceable brush head 16 has a spring clip 60 which is positioned to be aligned with and sized to readily pass through the passageway 58 and latch onto a latching surface 62 of the passageway 58 which is formed where the passageway 58 opens to the external environment and, once the clip 60 latches with the latching surface 62 of the passageway 58, such latching engagement captively retains the replaceable brush head 16 on the neck 28 during normal use of the toothbrush. In order to remove the replaceable brush head 16 from the neck 28, the user must bias the remote end of the clip 60 out of engagement with the latching surface 62 while, at the same time, sliding or moving the replaceable brush head 16 away from the end wall of the neck 28 until the clip 60 is clear of the latching surface 62. Once this occurs, the user then continues sliding the replaceable brush head 16 away from the end wall until the U-shaped protrusion 56 completely disengages from the U-shaped annular groove 52. Thereafter, a new replaceable brush head 16 is then secured to the neck 28 by reversing the above procedure.
Each replaceable brush head 16 has an aperture 64 formed in a base surface thereof and this aperture 64, once the replaceable brush head 16 is securely attached to the neck 28 such that the clip 60 engages with the latching surface 62, is properly aligned with the light emitting source 26A secured within the opening 48 in the receiving surface 46 of the neck 28 so that the aperture 64 in the replaceable brush head 16 precisely overlies and is concentric with the light emitting source 26A. Preferably, the aperture 64 is slightly larger in size than the light emitting source 26A so as to permit all of the blue light 22, emitted from the light emitting source 26A, to pass readily through the aperture 64 and treat the teeth, gums and mouth of the individual utilizing the toothbrush during brushing.
The exterior upwardly facing surface of the replaceable brush head 16, which is opposite to the mating flat surface 54, is provided with a plurality of bristles 18 and the base of each of the plurality of bristles 18 is securely embedded and permanently affixed to the replaceable brush head 16 so that the bristles 18 remain permanently attached to the replaceable brush head 16. Preferably, a plurality of bristles 18 are grouped together in a clump and each clump of bristles 18 is spaced from one another and located about the aperture 64 provided in the replaceable brush head 16. As is well known in the art, some or all of the bristles 18 may be coated with a wear indicator which indicates to the end user when it is time to replace the replaceable brush head 16.
Once the bristles 18 of the replaceable brush head 16 become sufficiently worn, the user removes the replaceable brush head 16 by dislodging the clip 60 from its engagement with the latching surface 62 and sliding the replaceable brush head 16 away from the end wall and the handle 12 until the replaceable brush head 16 becomes completely separated from the neck 28. Thereafter, the user inserts a new replaceable brush head 16 onto the neck 28 so that the clip 60 passes through the passageway 58 and engages with the latching surface 62 of the neck 28 and the aperture 64 of the replaceable brush head 16 is aligned with the light emitting source 26A.
It will be noted in the above embodiment of the manual light emitting toothbrush 10 that the blue light emitter 20 is located in the remote end of the neck 28. As a result of this, the electrical power from the power source, such as the batteries 32 and the electrical circuitry 42, to the blue light emitter 20 must be conducted from the handle 12 and through the neck 28 to the blue light emitter 20 located within the neck 28. To facilitate such conduction, a pair of electrical leads 66 are embedded within the neck 28 and each electrical lead is connected to the blue light emitter 20 in a conventional manner. The opposite end of each electrical lead terminates in a respective pin 68. The control circuitry 42 is support by the plug-in board 43 which is accommodated within the handle 12 such that a pair of pin apertures (not shown in detail) are located at the leading end of the board 43 and arranged to receive and mate with a respective one of the pins 68 connected to the blue light emitter 20 when the neck 28 is attached to the handle 12 and thereby complete the electrical circuit for powering the blue light emitter 20. As can be seen in
The manual light emitting toothbrush 10, according to the present invention, will typically further include a control circuitry 42 which will typically be located in the handle 12 and normally include functions such as a timer circuitry, which times the duration(s) of use of the toothbrush 10 while brushing, an on/off duty cycle of the blue light source or sources 26A, a replace battery indicator, and so on. Preferably the driver, for driving the blue light source 26A, is equipped with constant electrical current control electronics and a suitable driver is supplied by Linear Technology, of San Jose Calif., as part no. LTC3454 which is an integrated circuit high current LED driver. The control circuitry 42 may also include blue light source 26A control circuitry, which may be connected with one or more sensors 40S (see
It should also be noted that the toothbrush 10 may further include a motor (not shown) which moves, vibrates and/or rotates the head 16 in the manner of conventional powered toothbrushes, which may, in turn. effect the arrangements for supplying the blue light 22 to the blue light emitters 20 in as much as the mechanical structure between the handle 12 and the head 16 in such toothbrushes includes a moving mechanical joint. In such implementations, therefore, it may be preferable to place the blue light source or sources 26A in the handle 12 and communicate the blue light 22 to the blue light emitters 20 in the head 16 by optical paths that are typically less affected by moving mechanical joints than are electrical conductors.
Lastly, it should be noted that the provision of the replaceable head 16 permits the use of other forms of blue light emitting heads 16 containing blue light emitters 20 as described herein above, but shaped for other purposes than specifically as a toothbrush, such as a wand specifically designed and/or intended for blue light irradiation of a photocatalytic agent distributed on the surfaces of the teeth and the gums. In a further example of an alternate arrangement of the head 16, the head 16 may be designed to hold and manipulate flossing thread or string, thereby allowing flossing to be carried out at the same time as a blue light photocatalytic process.
It will be appreciated that various changes and/or modifications to the present invention may be made by those of ordinary skill in the art without departing from the spirit and scope of the present invention which is set out in more particular detail in the appended claims. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is supplied by way of example only, and is not intended to be limiting of the invention as described in the appended claims.
Claims
1. A manual toothbrush having a light source which facilitates a photocatalysis process while brushing, the manual toothbrush comprising:
- a handle having a grip at a proximal end and a neck at a distal end thereof, the distal end of the neck having an opening therein, and a blue light emitting source being located within the opening for emitting blue light in a direction generally normal to the neck and the handle;
- a completely manual and replaceable brush head having an aperture formed therein and at least one group of bristles being permanently secured to the replaceable brush head, and the aperture of the replaceable brush head, once the replaceable brush head is installed on neck, overlies and is concentric with the blue light emitting source to permit the blue light to pass though the aperture and be emitted generally parallel to the bristles;
- a power source for energizing the blue light emitting source and for radiating blue light in a wavelength band between 420 nm to 480 nm; and
- a perimeter of a blue light emitting surface of the blue light emitting source being sealed with respect to the opening to form a fluid tight seal therewith to prevent any water, moisture, toothpaste or other contaminant from entering therebetween.
2. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the neck has a planar brush head receiving surface and the opening is formed therein, and the emitting surface of the blue light source completely fills the opening and is recessed below receiving surface so as not hinder sliding movement of the replaceable brush head relative to the neck and thereby facilitate replacement of the replaceable brush head.
3. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein a U-shaped annular groove is formed in a sidewall of the receiving surface and the U-shaped annular groove extends around three adjacent sides of the receiving surface of the neck, and the replaceable brush head has a mating flat surface which mates with and slides along the receiving surface of the neck, and the replaceable brush head has a mating U-shaped protrusion which is received by the U-shaped annular groove to secure the replaceable brush head to the neck.
4. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 3, wherein the neck has a passageway while a leading end of the replaceable brush head has a clip which is aligned with and sized to readily pass through the passageway, and the clip latches with a latching surface of the passageway to captively retain the replaceable brush head on the neck during use of the toothbrush.
5. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 4, wherein the aperture of the replaceable brush head is larger in size than the blue light emitting source.
6. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the replaceable brush head supports a plurality of bristles and a base of each of the plurality of bristles is embedded within the replaceable brush head so that the bristles remain permanently attached to the replaceable brush head.
7. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 6, a plurality of bristles are grouped together into a plurality of clumps of bristles and the plurality of clumps of bristles are spaced from one another and located about the aperture of the replaceable brush head.
8. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the blue light radiated by the blue light source has an average power level of less than 1 watt.
9. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 8, wherein the blue light radiated by the blue light source is a continuous blue light emission.
10. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 8, wherein the blue light radiated by the blue light source is a modulated blue light emission.
11. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 10, wherein the modulated blue light emission is at a frequency of between about 6 and about 60 Hertz.
12. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the blue light radiated by the at least one blue light source comprises a combination of a continuous blue light emission and a modulated blue light emission and the combination blue light emission has an average power level of less than 5 watts.
13. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the photocatalytic agent is one of a modified TiO2 semiconductor type materials, a catalytic n-type semiconductor material, and an organic dye which photocatalytically responsive to blue light radiation.
14. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 1, wherein the power source is one of a non-rechargeable battery and a rechargeable battery.
15. A manual toothbrush having a light source which facilitates a photocatalysis process while brushing, the manual toothbrush comprising:
- a handle having a grip at a proximal end and a neck at a distal end thereof, the distal end of the neck having opening therein, and a blue light emitting source being located within the opening for emitting blue light in a direction generally normal to the neck and the handle;
- a completely manual and replaceable brush head having an aperture formed therein and at least one group of bristles being permanently secured to the replaceable brush head, and the aperture of the replaceable brush head, once the replaceable brush head is installed on neck, overlies and is concentric with the blue light emitting source to permit the blue light to pass though the aperture and be emitted generally parallel to the bristles;
- a power source equipped with constant electrical current control electronics for energizing the blue light source and for radiating blue light with the blue light being modulated from 0% to 100% at a frequency of between a two (2) and two hundred (200) Hertz with an average optical output power level of less than 5 watts for radiating blue light in a wavelength band between 420 nm to 480 nm;
- a perimeter surface of the blue light emitting source being sealed with respect to the opening to form a fluid tight seal therewith; and
- the handle at least partially accommodating at least one of control circuitry and a power source for the blue light source.
16. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 15, wherein the neck has a planar brush head receiving surface and the opening is formed therein, and the emitting surface of the blue light source completely fills the opening and is recessed below receiving surface so as not hinder sliding movement of the replaceable brush head relative to the neck and thereby facilitate replacement of the replaceable brush head.
17. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 16, wherein a U-shaped annular groove is formed in a sidewall of the receiving surface and the U-shaped annular groove extends around three adjacent sides of the receiving surface of the neck, and the replaceable brush head has a mating flat surface which mates with and slides along the receiving surface of the neck, and the replaceable brush head has a mating U-shaped protrusion which is received by the U-shaped annular groove to secure the replaceable brush head to the neck.
18. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 15, wherein the neck has a passageway while a leading end of the replaceable brush head has a clip which is aligned with and sized to readily pass through the passageway, and the clip latches with a latching surface of the passageway to captively retain the replaceable brush head on the neck during use of the toothbrush; and
- the aperture of the replaceable brush head is larger in size than the blue light emitting source and the replaceable brush head supports a plurality of bristles and a base of each of the plurality of bristles is embedded within the replaceable brush head so that the bristles remain permanently attached to the replaceable brush head.
19. The manual toothbrush having the light source which facilitates the photocatalysis process while brushing according to claim 15, wherein the blue light radiated by the at blue light source comprises a blue light emission wherein the modulated blue light emission is modulated at a frequency of between about 6 and about 60 Hertz.
20. A method of forming a manual toothbrush having a light source which facilitates a photocatalysis process while brushing, the method comprising the steps of:
- providing a handle having a grip at a proximal end and a neck at a distal end thereof, forming an opening in the distal end of the neck, and locating a blue light emitting source within the opening for emitting blue light in a direction generally normal to the neck and the handle;
- forming an aperture in a completely manual and replaceable brush head and permanently securing at least one group of bristles to the replaceable brush head, and installing the replaceable brush head on the neck so that the aperture overlies and is concentric with the blue light emitting source to permit the blue light to pass though the aperture and be emitted generally parallel to the bristles;
- energizing the blue light source with a power source for radiating blue light which is modulated from 0% to 100% at a frequency of between a two (2) and two hundred (200) Hertz with an average optical output power level of less than 5 watts for radiating blue light in a wavelength band between 420 nm to 480 nm;
- sealing a perimeter surface of the blue light emitting source with respect to the opening to form a fluid tight seal therewith; and
- at least partially accommodating, within the handle, at least one of control circuitry and a power source for the blue light source.
Type: Application
Filed: Oct 16, 2008
Publication Date: Apr 2, 2009
Applicant: TECHLIGHT SYSTEMS LLC (Dunnellon, FL)
Inventors: Benjamin Gregory SHEPHERD (Fruitland Park, FL), Charlene Adele BARNES (Dunnellon, FL)
Application Number: 12/252,876
International Classification: A46B 5/00 (20060101);