MEDIA RETURN SYSTEM

A remote control provides a return to channel feature for use with a media device adapted to play media but not itself equipped with a return to channel feature. The remote control stores a primary channel in memory and is programmed such that, in direct response to a first input being manually provided to a remote control, a timer in the remote control is caused to commence a timing of a predetermined interval such that, in response to expiration of the predetermined interval timed by the timer, the remote control is caused to transmit a command signal corresponding to the primary channel stored in memory to the media device.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATION INFORMATION

This application is a continuation of and claims the benefit of U.S. application Ser. No. 09/718,931, filed Nov. 21, 2000, which application is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to media systems, hand-held electronics and control modules. Specific exemplary embodiments discussed relate to remote controls and televisions.

BACKGROUND OF THE INVENTION

The description of art in this section is not intended to constitute an admission that any patent, publication, or other information referred to herein is prior art with respect to this invention, unless specifically designated as such.

Recently, cable television and broadcast television has become rife with commercials and other interruptions to the primary programming, or feature (referred to herein, separately and collectively, as commercials). While some commercials are amusing, they lose their appeal very soon. Changing channels during a commercial break, so-called “channel surfing” or simply “surfing” is at least as old as the first known remote control. With more and more channels to surf, a user is prone to become engrossed in the process of surfing itself and miss the primary feature he was viewing on the primary channel.

The prior art teaches a method of detecting commercials in a television to avoid video taping the commercials. During a television broadcast, when the program changes to a commercial, both the video and audio components of the composite television signal fade to a low amplitude level. Momentary loss of both the video and audio components at the beginning of each commercial may be used as an indicator of a commercial. U.S. Pat. No. 4,319,286, issued to Hanpachern describes in more detail a system for detecting fades in television signals to avoid recording from a commercial television broadcast. U.S. Pat. No. 4,319,286 is hereby incorporated by reference.

U.S. patents and applications relevant to remote control technology include U.S. Pat. Nos. 5,515,052; 5,255,313; U.S. patent application Ser. No. 09/418,091, filed Oct. 14, 1999, and U.S. patent application Ser. No. 09/611,620, filed Jul. 6, 2000, all of which are incorporated herein by reference. U.S. Pat. No. '052 discloses a universal remote control with function syntheses. The remote control comprises driver circuitry for communicating code signal generation sequences, including a code generated command system, powered by a code setting signal; and memory for storing information therein. U.S. Pat. No. '313 discloses a universal remote control system having a signal generator to transmit signals which will cause specific functions to occur in specific control devices. Patent application Ser. Nos. '091 and '620 disclose means and methods, inter alia, for operating a remote control. U.S. Pat. No. '620 discloses means and methods for interfacing, and navigating with secondary material on a removable digitally encoded medium. The '620 also teaches means and methods for monitoring keystroke navigation sequences and other processes related to remote control technology.

Other U.S. patents related to remote control technology, and in particular relating to learning technology, include U.S. Pat. Nos. 4,959,810; 5,288,077; and 5,537,463, which are incorporated herein by reference. U.S. Pat. No. '810 discloses means for transferring instruction to RAM wherein the instructions and/or data are transferred from a source external to the RAM. U.S. Pat. No. '077 discloses a remotely upgradable universal remote control. U.S. Pat. No. '463 discloses means in the remote control for picking up an electromagnetic signal for an electromagnetic signal source and storing output signal data in memory. The output signal data stored in memory may correspond to control function data, which may be transmitted to a device to be controlled.

U.S. Pat. No. 6,029,239 describes a remote control in which the user first enters one or more digits of channel number information and then presses a SEND key to transfer the channel change information to a TV set or Cable/satellite decoder box.

While the present invention relates to a wide variety of electronics and media systems, discussion of exemplary embodiments directed towards remote controls and televisions will facilitate understanding.

SUMMARY OF THE INVENTION

An object of the invention is to provide a television viewer who “channel surfs” during commercials with a mechanism to automatically return to the original channel at the conclusion of the commercial break. Thus, even if the viewer becomes engrossed in the alternate program content, he is still assured that his television will return to the original program at the appropriate time.

One possible implementation of this return to channel feature would be to build it into the television set in conjunction with a system capable of detecting advertising content (e.g., the system disclosed by Hanpachern in U.S. Pat. No. 4,319,286). An alternate implementation, for use in conjunction with existing TVs not so equipped, uses a timer in the remote control to approximate this feature. Other alternatives will be apparent from the teachings of this application.

For one application the present invention is directed toward a media system comprising a television with a tuner connected to receive a media transmission and to select a channel. A signal monitor is operably connected to monitor the transmission. Channel data may be stored in memory. A primary timer connected to the signal monitor may be reset to time predetermined intervals, e.g., 32 seconds, upon receipt of a predetermined signal indicator, e.g., a black frame or a generated signal from the signal monitor. Upon expiration of the predetermined interval, the tuner returns the system to the primary channel, i.e. it selects a channel corresponding to the channel data stored in memory.

The invention also comprises an embodiment directed towards a media system adapted to return to a user-selected channel. A signal monitor connected to a tuner of a television monitors a media signal (also referred to as media transmission) for a predetermined event. In response to the occurrence of the predetermined event, the timer begins timing a predetermined interval, or/and may be reset to time the predetermined interval. Stored in memory is programming that, in response to a user-initiated signal, initiates monitoring of the media signal for the predetermined event. In general, contemporaneously with the onset of the signal monitoring, the current channel is stored in memory. Upon expiration of the predetermined event, the programming provides for the return to the stored current channel. Preferably the user may initiate signal monitoring via a remote control. Such user-initiated signal may be, e.g., in response to a user depressing a button, or key, etc., on the remote control.

An object of the present invention is also to provide a remote control adapted to provide a return to channel feature for a television not equipped for a return to channel feature. Such a remote control may, e.g., comprise programming steps stored in memory for storing a primary channel indicator in memory in response to a user-predetermined action, e.g., such as selecting a key. Programming also includes timing a predetermined interval in response to a second predetermined user action; and upon expiration of a predetermined interval, transmitting a signal that corresponds to an indicator of the primary channel to a media device. It will be understood that the second predetermined user action may be the same as the first predetermined user action, or it may be different yet similar, such as depressing the same key but for a longer duration, or it may be entirely different.

A method of effecting a return to a primary channel in a media device is taught herein. In one embodiment a primary channel, e.g., the channel or an indicator, is stored in device readable memory in response to the input of a user. The primary channel is monitored for a predetermined event indicative of a change in programming sources. Upon occurrence of, i.e., in response to, the predetermined event, a timer is initiated, or reset or both. Upon expiration of a predetermined interval, timed by the timer, the system is returned to the stored primary channel.

One method of monitoring the media channel comprises monitoring the primary channel for a predetermined event and notifying the user upon expiration of a predetermined interval. The predetermined interval was preferably initiated upon the occurrence of a predetermined event. Such notification may be achieved by exposing the user to either the audio or video component of the primary channel, or both. Other means for notification, such as a blinking light on the remote, as well as other audio and visual indicators may be used. It will be appreciated that although this document describes a method that results in an automatic return to the primary channel, it is also possible to implement either system to offer only an audible or visible reminder signal rather than an actual channel change.

Various embodiments directed toward a device readable medium are taught in the present invention. The device readable medium, depending on the application, may be located in the television, the remote control, a separate adapter, or a combination thereof. Such a device readable medium typically comprises programming steps for carrying out the desired application.

Other objects and advantages in accordance with the present invention will be apparent to those of skill in the art from the teachings disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In the interest of enabling one of skill in the art to practice the invention, exemplary embodiments are shown and described. For clarity, details apparent to those of skill in the art without undue experimentation are generally omitted from the drawings and description.

FIG. 1 is a flowchart depicting one method for implementing a television-based embodiment of the invention.

FIG. 2 is a flowchart depicting one method for implementing a remote control-based embodiment of the invention.

FIG. 3 depicts a media system comprising a television without 2-way remote wireless communication.

FIG. 4 depicts a media system with a television and a remote control adapted for bi-directional communication with each other.

FIG. 5 shows a block diagram of a television according to an embodiment of the invention.

FIG. 6 shows a remote control according to an embodiment of the invention.

FIG. 7 shows a block diagram of a remote control according to an embodiment of the invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

The present invention is discussed in relation to remote controls and televisions; however, other uses will be apparent from the teachings disclosed herein. The present invention will be better understood from the following detailed description of exemplary embodiments with reference to the attached drawings, wherein like reference numerals and characters refer to like parts, and by reference to the following claims.

Television Set-Based Implementation

Hanpachern (U.S. Pat. No. 4,319,286) teaches a method of detecting the start of a commercial by monitoring the received video and audio signals for a momentary absence of both picture and sound, the so-called “black frame” that typically results when the signal is switched from one program source to another.

When detected, this black frame occurrence is used to start a timer set to expire 32 seconds later. Since most TV commercials are 30 seconds or less, each new commercial restarts the timer before it expires. Finally, 32 seconds after the end of the last commercial, the timer will expire. The period the timer is active can thus be used to signal the duration of a commercial break plus 32 seconds. An additional override timer of a 2 minute duration (or other value deemed typical of a standard commercial break) can optionally be implemented to ensure that this “commercial active” signal does not extend beyond that period, even if the program material itself contains black frames.

The Hanpachern invention then proposes use of this commercial active signal to automatically pause a VCR during taping of a show or sporting event, thereby eliminating commercials from the final recording of the feature. The television system is not, however, effected—one must still endure the commercials if the broadcast is being viewed contemporaneously with the recording.

The present invention proposes, e.g. use of such a signal generated as described above, or in any other suitable manner, to facilitate “channel surfing” during commercials by providing an automatic return to the original, i.e. primary, program at the end of the commercial break.

In one embodiment, the remote control is equipped with a button labeled, e.g., “Surf.” FIG. 1 is a logic flowchart for carrying out one embodiment of the TV-based invention. The use of the term “step” herein is not intended to imply a required order to carry out the steps. The designated numbers are for convenience. At the commencement of a commercial break, the viewer simply presses this surf button before starting to channel-surf. Upon receipt of this surf command (step 2), the TV set: stores its current channel number (step 4); initiates a background process to monitor that primary channel for black frames in the manner described above (step 6); and starts 32-second-and-two-minute timers (step 8), again as described above. It should be noted that the background process, generally, requires an independent tuner in order to monitor the current channel while the viewer surfs alternative channels. Due to this two-tuner reason, this embodiment is especially suited to TV models that incorporate picture-in-picture capability. The existing secondary PIP tuner can be used for these surfing or monitoring purposes.

With the surf feature thus activated, the viewer is now free to issue other remote control commands as needed. However, as soon as either of the two timers expires (steps 10 or 12), the TV set will automatically tune itself back to the saved channel number (step 14), returning the viewer to the program of primary interest at the appropriate time. Additionally, the viewer can cancel the so-called surf timers and immediately return to the primary channel at any time by pressing the surf key a second time (step 16).

FIG. 3 shows a media system 20 comprising a remote control 22 in communication with a plurality of electronic devices 24. Preferably the communication link between the remote control 22 and the electronic devices 24 is wireless and may include a unidirectional IR or RF link 28. The TV 32 in FIG. 3 does not include two-way IR capability. By contrast the media system 34 shown in FIG. 4, the TV 36 comprises two-way IR or RF capability 30 for bi-directional communication with the remote control 22′. For convenience the invention will be described by reference to TV 32, though it will be understood that a two-way interface may be used in certain applications.

FIG. 5 shows a block diagram of a TV 32 according to an embodiment of the present invention. The TV 32 includes a first tuner 38 connected to receive a media transmission 40 and to select a channel. A signal monitor 42 is connected to the first tuner 38 to monitor the media transmission 40, and memory 44 is used for storing channel data. A primary timer 46, associated with the control logic 53, is reset, or begins timing, or restarts timing a predetermined interval upon receipt of (i.e. in response to) a predetermined signal indicator from the signal monitor 42. In one preferred embodiment, the predetermined interval is 32 seconds and the predetermined signal indicator is a, or corresponds to a, so-called “black frame.” As discussed above, the TV 32 preferably includes a second tuner 48 for channel selecting, connected to the picture decoding and display circuitry of the TV set (not shown). This allows the first tuner 38 to continue to monitor a specific channel of the media transmission 40 while the second tuner 48 is used to surf various other channels. Upon (i.e., in response to) expiration of the predetermined interval, the tuner 48 is directed by the control logic 53 to select (e.g., tune to) a channel corresponding to the channel data stored in memory 44. FIG. 6 depicts a remote control 23 such as may be used with the media system 24. The remote control 23 comprises a signal generator 49 (see FIG. 7), adapted to transmit a control signal, e.g. signal 28, compatible with the television 32. In response to a predetermined user action, such as operation of a surf key 50, the signal generator 49 transmits a signal to the television 32. Receipt of this signal via the TV's IR receiver 45 (see FIG. 5) causes the control logic 53 to initiate monitoring of the media transmission 40 by the signal monitor 42. The media transmission 40 is also referred to herein as a media signal 40 or program signal 40.

Preferably programming 51 is stored in memory 44 to control monitoring of the media signal 40 for the occurrence of a predetermined event. Monitoring may be initiated in response to a user-initiated signal (such as IR transmission 28 generated by depressing surf key 50). Contemporaneously, or subsequently, the current channel may be stored in memory 44. Again, upon expiration of the predetermined interval, the system will return to the stored current channel. It should be noted that the predetermined interval may be an override interval timed by an override timer 52 (see FIG. 5). However, preferably, the system reconfigures upon expiration of the first of the predetermined interval, as timed by timer 46, or the override interval, as timed by override timer 52.

Remote Control-Based Implementation

In an alternate implementation contained entirely, or substantially, within the remote control 23, or preferably 23′, the received program signals 40 are not available to be monitored, so a simple timer 54 set for the typical duration of a commercial break is used instead. In a media system such as 34 in which the television set 36 is capable of two-way communication with the remote control 22, it may be possible for the remote control to automatically determine the active channel number at the moment the surf button 50 is activated. However, in general the remote 23 is not able to automatically determine the active channel number at the moment the surf button 50 is activated. In a media system such as 24, a means must thus be provided for the user to indicate his desired primary viewing channel ahead of time. Such indication may, however, be performed only once at the outset of each show or sporting event watched, rather than prior to each commercial break. In an alternative embodiment, the remote control may determine the current channel by monitoring direct channel inputs and Up/Down channel changes. This embodiment is discussed in more detail later.

Referring to FIG. 2, when the user initially begins viewing a program or event, he indicates to the remote 23′ which channel is of primary interest as follows:

    • Press and hold the surf button 50 for approximately three seconds (step 60) until the visible LED blinks twice (step 62), signaling that the remote 23′ is ready to accept channel information.
    • Enter whatever sequence of keystrokes is necessary to tune the TV set to the channel in question. Depending on the particular model of TV, this will usually consist of one or more digits, possibly in conjunction with an “enter” or similar key (step 64). The remote may, however, be programmed to accept and store any sequence of up to three keystrokes (step 66). Also, the three keystroke limit imposed at step 66 is implementation specific and in practice any reasonable limit up to the maximum keystroke storage capacity available in the unit may be used. To signal the end of key entry, the user presses the surf key 50 once again (step 68). The causes the remote to exit this channel entry state and return to normal operation, with the keystroke sequence stored for future use. (In addition, if at any time during the entry process no key is pressed for, e.g., 10 seconds, the remote will automatically exit this channel entry state (step 70).)

Whenever a commercial begins and the user wishes to “channel surf” he first briefly presses the surf button 50 (step 72). This starts a timer 54 running within the remote control 23′ (step 74). The timer 54 is nominally set for a two-minute interval (but configurable by the user for shorter or longer times if desired). During the timing period (i.e. the commercial break), the remote 23′ operates in the usual manner (steps 76a-76b) to allow the user to switch channels and view other material. When the timer expires (step 78), the remote 23′ retrieves the previously stored keystroke sequence, the channel data (step 80), and plays it back, thereby automatically returning the TV to the desired primary channel (step 82).

While the user is actively surfing (i.e. the timer in remote control 23′ is running), he can, at any time, cancel the timer 54 and return immediately to the original channel by pressing the surf button 50 a second time (step 84).

In one embodiment the remote control 23′ comprises programming steps stored in memory 88 of the remote 23′. The programming may, for example, comprise storing a primary channel indicator in memory 88 in response to a user predetermined action, and starting the timer 54 in response to a second predetermined user action. Note, however, the second predetermined action may be identical with the first predetermined user action and may be, for example, depressing the surf key 50.

The memory 88 also includes programming steps for transmitting a signal 28 to a media device 24, such as television 32, wherein the signal 28 corresponds to a primary channel indicator. The transmission may preferably occur upon expiration of a predetermined interval, upon expiration of an override interval, or upon cancellation of the surf mode, for example.

The predetermined user action for storing the primary channel in memory 88 may comprise performing the secondary predetermined action. In response to the user action, the programming may also determine if the media system is tuned to the primary channel, and if the system is not tuned to the primary channel, tuning it to the primary channel. The channel store operation may occur contemporaneous with, or subsequent to a user action, where such action may for example comprise depressing the surf key 50.

From the foregoing, it should be apparent that the present invention teaches a method of effecting, or bringing about, a return to a primary channel in a media device 24, such as a television 36. In one embodiment, the method comprises, in response to a user input, storing a primary channel in device readable memory (such as memory 88 or 44, for instance). The primary channel is monitored for a predetermined event indicative of a change in programming sources. The aforementioned black frame is one example of such an indicative event. A timer 54 of a predetermined interval is initiated, either based upon the user input or upon the predetermined event. The timer 54 is preferably reset upon occurrence of the predetermined event. Finally, the system is returned to the stored primary channel upon expiration of the predetermined interval.

An override timer, for timing an override timed interval, may also be initiated based upon the predetermined event. If the predetermined interval has not expired, the system may be returned to the stored current channel upon expiration of the override time interval. Preferably, the timing of the predetermined interval is terminated upon expiration of the override timer and the return to the stored current channel.

In another embodiment, a signal corresponding the primary channel stored in memory 88 is transmitted to a media device 24 adapted to receive the primary channel. For example, the remote control 22 may transmit a signal 28 to the television 36 to return to channel 2. The television 36 then receives the transmission 28 and changes to channel 2.

Embodiments of the invention may comprise monitoring a media channel for a predetermined event, and notifying the user upon expiration of (i.e. in response to) a predetermined interval. Such notification may include exposing the user to either the audio component of the primary channel, the video component of the primary channel, or both.

A more general objective of the present invention is to provide a device readable medium adapted for use in a media system to facilitate providing a notification feature. The medium, in a preferred embodiment, comprises programming steps for storing, in response to the user input, a primary media channel of the media system in device readable memory. More generally, the state of the media system is stored in device readable memory. The media system state typically comprises the status of a plurality of features, parameters and the like. Such parameters include, inter alia, channel status, volume status, and picture control status; and may apply to one or more of the devices comprising the overall media system. For example, in system 24 the volume function may be performed by the audio amplifier, and the channel selection may be performed by a combination of the TV set and the Cable Box. In such a case a return to channel function may involve switching of TV inputs as a well as changing channel numbers on one or both of the TV and Cable box. The state of the media system is frequently and easily altered, typically by a user, from a first state to a second state. Generally, the system is altered most often as a result of channel surfing, or other parameter changes such as the muting of the audible portion of a program.

Prior to altering the media system, the user would, generally, actuate the surf key 50 to store the first state of the media system, which includes storing the primary channel and any other desired parameters. Such actuation also sets a timer for a predetermined interval. Upon expiration of the predetermined interval, the user may be notified via visible or audible indicators. Such notification may comprise disengaging the mute button, returning the system back to its first state, or displaying the first channel visual component within a visual display of the second channel, such as picture-in-picture, or any sufficiently notable change such that the user is notified. Preferably the primary media channel is monitored while the secondary media channels are altered. For example, channel 2, as the primary channel, would be monitored while the user surfs through the other available channels, i.e., the secondary media channels.

In systems where the signal for the current channel is not available, the remote control 23 may be programmed with the available channels through known means. As it is desirable to know the current channel for some applications of this event, it is useful to monitor an identifier of the media channel. This may be done, for example, by updating to a current channel register the identifier of the current channel, preferably using a channel entry method such as described in U.S. Pat. No. 6,029,239 or alternatively by monitoring number button presses and the intervals between them in order to derive channel information. In such an example, direct entry of the channel digits could be transferred to the register, and channel up/down controls would likewise effect the identifier stored in the current channel register. Preferably, however, the television 36 could transmit the current channel to the remote.

To reduce processing, the current register may preferably be updated after a delay of several seconds or longer. Thus, for example, changing through the channel would not update the current register because the user is just traversing the available channels to arrive at the soon-to-be-current channel. After the user has paused at the now current channel, the current channel register may update with the current channel information read from the available channel cue in the current pointer location. Then, if the user wants to surf, or alter the system but return to the primary, stored channel, the user presses the surf button 50. Depressing the surf button 50 records the media system's current state and starts available timers. If monitoring is available, that may be initiated as well. Upon occurrence of a predetermined event, the system may return to the first state, or merely notify the user. In an alternative embodiment, the remote 23′ plays, in reverse order, all of the commands entered between selecting the surf key 50 and either selecting the surf key 50 again, or the expiration of one of the timers. If desired, non-channel control and non-audio commands can be filtered out such that only the channel and audio status are reset.

While the invention has been particularly shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. The scope of the claimed invention is intended to be defined by following claims as they would be understood by one of ordinary skill in the art with appropriate reference to the specification, including the drawings as warranted.

Claims

1. A remote control adapted to provide a return to channel feature for a media device adapted to play media and not equipped with a return to channel feature, the remote control comprising:

a timer for timing a predetermined interval;
a keypad;
a wireless transmitter;
memory; and
programming stored in memory for performing steps comprising: storing a primary channel indicator in memory in response to a first predetermined user interaction with the keypad, causing the timer to start timing the predetermined interval in direct response to a second predetermined user interaction with the keypad, and in response to expiration of the predetermined interval and without regard to a current state of any media being received by the media device, causing the wireless transmitter of the remote control to transmit to the media device a command signal corresponding to the primary channel indicator to cause the media device to return to the primary channel;
wherein the command signal is selected from a library of command signals pre-established within the remote control as being appropriate for commanding various operations of the media device.

2. The remote control of claim 1, wherein the programming further comprises instructions for causing the wireless transmitter of the remote control to transmit the command signal corresponding to the primary channel indicator to the media device in response to the user repeating the second predetermined interaction with the keypad prior to the predetermined interval expiring.

3. The remote control of claim 1, wherein the second predetermined interaction with the keypad comprises a user operating a predetermined key of the keypad.

4. The remote control of claim 1, wherein the first predetermined user interaction with the keypad is the same as the second predetermined user interaction with the keypad whereby the primary channel is stored in memory and the timer is started in response to the same predetermined user interaction with the keypad.

5. A method for effecting a return to a primary channel in a media device adapted to play media and not equipped with a return to channel feature, the method comprising:

in direct response to a first input being manually provided to a remote control, causing a timer in the remote control to commence timing of a predetermined interval;
storing a primary channel in memory in response to second input being provided to the remote control; and
in response to expiration of the predetermined interval timed by the timer and without regard to a current state of any media being received by the media device, causing a wireless transmitter of the remote control to transmit a command signal corresponding to the primary channel stored in memory to the media device adapted to receive the primary channel;
wherein the command signal is selected from a library of command signals pre-established within the remote control as being appropriate for commanding various operations of the media device.

6. The method of claim 5, comprising, in response to a third input being provided to the remote control, readying the remote control to receive the primary channel data in memory.

7. The method of claim 6, wherein the first input comprises a user operating a key of a keypad of the remote control and the second user input comprises the user operating the key of the keypad of the remote control.

8. The method of claim 7, wherein the third input comprises the user operating the key of the keypad of the remote control and further includes the user operating the key of the keypad of the remote control for a duration greater then a duration required to effect one of the first input or the second input.

9. The method of claim 5, comprising, in direct response to the first input being again manually provided to the remote control at a time prior to the expiration of the predetermined interval, causing the wireless transmitter of the remote control to transmit the command signal corresponding to the primary channel stored in memory.

Patent History
Publication number: 20090102984
Type: Application
Filed: Dec 18, 2008
Publication Date: Apr 23, 2009
Applicant: UNIVERSAL ELECTRONICS INC. (Cypress, CA)
Inventors: Paul D. Arling (Irvine, CA), Patrick H. Hayes (Mission Viejo, CA)
Application Number: 12/338,249
Classifications
Current U.S. Class: Remote Control (348/734); 348/E05.096
International Classification: H04N 5/44 (20060101);