REGENERATIVE BURNER APPARATUS
A baffle for a regenerative burner has a primary reactant port, secondary reactant ports, and internal flow paths. The primary port is centered on an axis. The secondary ports are arranged in an array that is asymmetrical relative to a plane containing the axis. The internal air flow paths convey secondary air streams from the regenerative bed to the secondary ports. A reactant delivery structure for use with the baffle includes a pilot burner, a main fuel conduit, and a primary air conduit. The pilot burner projects a pilot flame toward the primary port. The main fuel conduit has an annular outlet that directs a main fuel stream over the pilot flame and outward from the primary port. The primary air conduit has an annular outlet that directs a primary air stream outward from the primary port over the main fuel stream.
This technology relates to a furnace with regenerative burners.
BACKGROUNDRegenerative burners may be used to heat a process chamber in a furnace. Each regenerative burner has a bed of heat-regenerative material, and is arranged in a pair with another regenerative burner. The two burners are cycled alternately such that one burner is actuated while the other is not. When a burner is actuated, it discharges fuel and combustion air into the process chamber for combustion to proceed in the process chamber. Much of the combustion air is pre-heated by driving it through the regenerative bed. Alternately, when a burner is not actuated, exhaust gases from the process chamber are drawn outward through the regenerative bed at that burner. The exhaust gases heat the regenerative bed to provide the thermal energy that pre-heats the combustion air when the burner is again actuated to fire into the process chamber.
SUMMARYAn apparatus for use with a regenerative bed in a furnace includes a baffle with a primary reactant port, secondary reactant ports, and internal flow paths. The primary reactant port is centered on an axis. The secondary reactant ports are arranged in an array that is asymmetrical relative to a plane containing the axis. The internal air flow paths convey secondary air streams from the regenerative bed to the secondary reactant ports.
A reactant delivery structure for use with the baffle includes a pilot burner, a main fuel conduit, and a primary air conduit. The pilot burner projects a pilot flame toward the primary reactant port. The main fuel conduit has an annular outlet that directs a main fuel stream over the pilot flame and outward from the primary reactant port. The primary air conduit has an annular outlet that directs a primary air stream outward from the primary port over the main fuel stream.
The furnace 10 shown in the drawings has parts that are examples of the elements recited in the claims. The following description thus includes examples of how a person of ordinary skill in the art can make and use the claimed invention. It is presented here to meet the statutory requirements of written description, enablement, and best mode without imposing limitations that are not recited in the claims.
As shown partially in the schematic view of
As shown in
As shown in
A main fuel conduit 50 surrounds the pilot air conduit 40. A primary air conduit 52 surrounds the main fuel conduit 50. These conduits 50 and 52 have inlets 54 and 56 at their rear ends and outlets 58 and 60 at their front ends, respectively. This provides a main burner that is configured to provide a main flame that projects axially forward from the outlets 58 and 60. In the illustrated example, the concentric outlets 44, 58 and 60 are coplanar and radially adjacent. More specifically, the pilot burner outlet 44 is the circular space bounded by the surrounding edge of the pilot air conduit 40. It is spaced radially inward from the main fuel outlet 58 by only the thickness of the conduit 40 that is interposed radially between those two outlets 44 and 58. The main fuel outlet 58 is the annular space bounded by the concentric edges of the pilot air conduit 40 and the main fuel conduit 50. That outlet 58 is spaced radially inward from the surrounding outlet 60 by only the thickness of the main fuel conduit 50. The primary air outlet 60 likewise has an annular configuration defined by and between the concentric edges of the main fuel conduit 50 and the primary air conduit 52.
The cylindrical body 20 in the illustrated example has three major portions. These include a rear portion 70, a central portion 72, and a front portion 74. The rear portion 70 includes a refractory structure 80 within a steel shell 82. Lower portions of those parts 80 and 82 define the base 28 at which the burner assembly 16 is mounted over a regenerative bed. The refractory structure 80 within the steel shell 82 defines a plenum 85 extending upward from a port 87 at the lower end of the base 28. The refractory structure 80 further defines a generally conical pocket 89 (
As shown separately in
The secondary ports 27 also are located on the circular front surface 98 of the baffle 90. Two pairs 104 and 106 of air flow passages extend from the rear of the baffle 90 to the secondary ports 27 at the front surface 98. As shown in
As shown in
Referring again to
The controller 146 has hardware, software, or a combination of hardware and software that is configured to control the valve assembly 148. The controller 146 may thus comprise any suitable programmable logic controller or other control device, or combination of control devices, that is programmed or otherwise configured to perform as recited in the claims. As the controller 146 carries out those instructions, it actuates the valve assembly 148 to initiate, modulate, and terminate independent flows of reactant streams through the burner assembly 16.
In one particular example of a start-up sequence, the controller 146 first directs the valve assembly 148 to supply the reactant delivery structure 26 with streams of pilot fuel, pilot air, and primary air, and also actuates an igniter (not shown). This causes a pilot flame to project axially forward toward the primary port 25 (
The streams of main fuel and primary air begin to mix as they flow together through the tapered bore 101 toward the primary port 25, and continue to mix as they flow outward from the port 25 into the process chamber 15. The mixture surrounds, ignites and begins to combust over the pilot flame. As shown schematically in
Secondary combustion air flows through the secondary air line 170 to the regenerative bed 18. The plenum 85 (
A main flame supervisory device 186 monitors combustion in the primary reaction zone 185. If the main flame supervisory device 186 fails to confirm combustion of the main fuel and primary air, the controller 146 directs the valve assembly 148 to terminate the main fuel stream. If combustion of the main fuel and primary air is confirmed, the controller 146 directs the valve assembly 148 to continue supplying those reactant streams to maintain a regenerative firing condition until the burner assembly 16 is switched to a regenerative exhaust condition.
The patentable scope of the invention is defined by the claims, and may include other examples of how the invention can be made and used. Such other examples, which may be available either before or after the application filing date, are intended to be within the scope of the claims if they have elements that do not differ from the literal language of the claims, or if they have equivalent elements with insubstantial differences from the literal language of the claims.
Claims
1. An apparatus comprising:
- a regenerative bed; and
- a baffle having a primary reactant port centered on an axis, an array of secondary reactant ports that is asymmetrical relative to a plane containing the axis, and internal air flow paths communicating with the regenerative bed to convey secondary air streams from the regenerative bed to the secondary reactant ports.
2. An apparatus as defined in claim 1 further comprising a pilot burner configured to project a pilot flame toward the primary reactant port, a main fuel conduit having an annular outlet arranged to direct a main fuel stream over the pilot flame and outward from the primary reactant port, and a primary air conduit having an annular outlet arranged to direct a primary air stream outward from the primary reactant port over the main fuel stream.
3. An apparatus as defined in claim 2 wherein the pilot burner has an outlet that is coplanar with the outlets of the main fuel conduit and the primary air conduit.
4. An apparatus as defined in claim 3 wherein the baffle defines a bore through which the coplanar outlets of the conduits and the burner face axially toward the primary reactant port.
5. An apparatus for use with a regenerative bed in a furnace, comprising:
- a refractory structure defining a primary reactant port centered on an axis, a secondary reactant port, and an air flow path configured to convey a secondary air stream from a regenerative bed to the secondary reactant port;
- a pilot burner configured to project a pilot flame toward the primary reactant port;
- a main fuel conduit having an annular outlet arranged to direct a main fuel stream over the pilot flame and outward from the primary reactant port; and
- a primary air conduit having an annular outlet arranged to direct a primary air stream outward from the primary reactant port over the main fuel stream.
6. An apparatus as defined in claim 5 further comprising a reactant supply and control system configured to provide the pilot burner with pilot fuel and pilot air streams, and to modulate the pilot fuel and pilot air streams independently of the main fuel and primary air streams.
7. An apparatus as defined in claim 6 wherein the pilot burner has an outlet that is coplanar with the outlets of the main fuel conduit and the primary air conduit.
8. An apparatus as defined in claim 7 wherein the refractory structure defines a bore through which the coplanar outlets of the conduits and the pilot burner face axially toward the primary reactant port.
9. An apparatus for use with a regenerative bed in a furnace, comprising:
- a baffle having a primary reactant port centered on an axis, an array of secondary reactant ports that is asymmetrical relative to a plane containing the axis, and internal air flow paths configured to convey secondary air streams from a regenerative bed to the secondary reactant ports;
- a pilot burner configured to project a pilot flame toward the primary reactant port;
- a main fuel conduit having an annular outlet arranged to direct a main fuel stream over the pilot flame and outward from the primary reactant port; and
- a primary air conduit having an annular outlet arranged to direct a primary air stream outward from the primary reactant port over the main fuel stream.
10. An apparatus as defined in claim 9 wherein the pilot burner has an outlet that is coplanar with the outlets of the main fuel conduit and the primary air conduit.
11. An apparatus as defined in claim 10 wherein the baffle defines a bore through which the coplanar outlets of the conduits and the pilot burner face axially toward the primary reactant port.
Type: Application
Filed: Nov 19, 2007
Publication Date: May 21, 2009
Inventors: Bruce E. Cain (Akron, OH), Brian M. Patrick (Cleveland, OH), Clive D. Lucas (South Euclid, OH)
Application Number: 11/942,232
International Classification: F23D 11/44 (20060101); F23M 9/06 (20060101);