Transportation System
A mass transit system includes a plurality of pedestal-mounted rings which provide a support through which a vehicle travels. The pedestals are spaced apart on the ground, but no rail or connecting structure on or above ground is required. An underground conduit carries electrical and communications cable that connects the pedestals together. The rings include a plurality of rollers to drive, guide and stabilize the vehicle at lower speeds. For higher speeds flywheels are mounted on the pedestals. The flywheels are preferably driven by an electrical motor, which engages a friction or clutch plate on the vehicle separate from the rings. The friction plate or linear clutch is mounted separate from the rings on the vehicle and is lowered to engage and disengage the flywheel. The flywheel is also mounted on a shock absorber to smooth the travel of the vehicle.
Latest TUBULAR RAIL, INC. Patents:
This is a continuing application of pending U.S. patent application Ser. No. 10/950,949, filed Sep. 27, 2004 and further claims the benefit of 35 U.S.C. 111(b) U.S. Provisional Application Ser. No. 60/506,896, filed Sep. 29, 2003, both hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to the field of transportation systems and, more particularly, to a mass-transit system including a plurality of pedestal mounted rings to guide and propel an elongated vehicle carrying passengers, cargo, and the like.
2. Background of the Invention
Transportation of people and cargo has become increasingly important in our modern lives. In the United States, modes of travel between cities offer few options, typically by air, bus, personal automobile, and to a limited extent by conventional rail. Other countries in the world, most notably Japan and France, have developed high speed rail systems between major destinations, but these systems rely for the most part on conventional rail infrastructure with some technological improvements in the rails and the locomotives.
A major drawback in such conventional rail systems lies in the exorbitant costs of building, maintaining, and operating such systems. The initial cost of building a high-speed, conventional rail system can run into literally billions of U.S. dollars, depending on the size of the rail system, the geographical obstacles that have to be overcome, and many other factors. In fact, there is a real need for mass transit between cities, where the initial cost is the overriding barrier to the installation of such a system.
Another drawback to conventional rail systems is the problem of the environmental impact of such systems. Typically, rail systems include a right of way which must be cleared and on which the rails and various support systems are installed. Also, the locomotives are most often diesel powered, which contributes to air born pollution. For electric systems, the amount of electrical power that is consumed must be provided by power generation systems, which throughout the world are principally hydrocarbon fueled, again contributing to the pollution loading of the world's environment. The environmental impact of such systems also includes the man-made barriers of the rails and the right of ways.
Another important innovation in recent times was the magnetic levitation (MagLev) system. While such systems have improved the speed of travel, such systems also rely on continuous rail, whether on the ground or suspended in the air.
Thus, there remains a need for a transportation system for which rails are not required. Such a system should be relatively inexpensive to build and operate, and should not create the man-made barriers so common in conventional rail systems. The present invention is directed to such a system.
SUMMARY OF THE INVENTIONThe present invention solves these and other needs in the art by providing a plurality of pedestal mounted rings through which a vehicle travels. The pedestals are spaced apart on the ground, but no rail or connecting structure on or above ground is required. Power is made available from a source which may be an underground conduit carrying electrical and communications cable that connects the pedestals together.
The rings include a plurality of rollers to guide and stabilize the vehicle. The rollers in the rings engage the rails and also provide motive force to move the vehicle at lower speed levels. The rollers are driven by electrical motors for lower speed transportation systems. Also, mounted on each pedestal is a flywheel, preferably driven by an electrical motor, which engages a friction plate on the vehicle. The friction plate or linear clutch is lowered to engage and disengage the flywheel on the pedestal. The flywheel is also mounted on a shock absorber to smooth the travel of the vehicle.
For lower speed transportation systems, the friction plate serves as a friction clutch and is used for vehicle braking purposes. For higher speed transportation systems, the flywheel transfers motive force to the friction plate to propel the vehicle through the supports of the system, while the action of the rollers and rails is used primarily for steering or guidance purposes.
The rings are large enough to enclose the diameter of the vehicle, about 20 feet in diameter in the preferred embodiment. The pedestal is preferably about 16 feet high, or more, to provide adequate clearance for any automobile or other wheeled vehicle traveling on a roadway underneath the line of travel of the vehicle of the present invention. The pedestal is mounted to a robust base structure, which may extend, for example, 30 feet below the surface of the ground, in order to provide sufficient margin for the strength of the support system.
The present invention also includes an energy saving feature which provides support rails along the vehicle to engage the rollers on the rings. The vehicle rails are preferably hollow rectangular conduits which carry liquid nitrogen or other suitably cold fluids. The nitrogen is carried on board the vehicle and vented or circulated to the vehicle rails. The nitrogen rapidly cools the rails, and thereby creates an ice layer on the rails by condensing atmospheric moisture on the rail. The ice layer substantially reduces the drag that the vehicle experiences as it travels by limiting the ability of the rail and rollers to bond together.
These and other objects and advantages of the present invention will be apparent to those skilled in the art from a review of the following detailed description along with the accompanying drawing figures.
The supports 14 are arranged to define a route of travel along a desired course at an elevated height for transport of passengers and cargo. In a contemplated embodiment, the vehicle 12 is about 500 feet long, and the supports are about 200 feet apart, so that there are typically at least two, and optionally three or mores supports 14 in contact with a vehicle 12 at any time. The spacing of the supports 14 and the length of the vehicle 12 are interrelated and may be adjusted based on travel speed, load capacity and other requirements. To the extent that support of the moving vehicle is to be increased, the spacing between the supports 14 can be adjusted so that the vehicle 12 is supported at all times by at least three sets of supports 14 and intermittently by four or more supports 14. It is presently contemplated that the spacing of supports 14 should not exceed fifty percent of the length of the vehicle 12, and in practice it may be less.
The support 14 includes a ring 16, preferably formed of a hard and strong metal, such as steel. The supports 14 are not shown in certain figures in the drawings so that other structures such as rings 16 may be more clearly seem As contemplated by the present invention, the term ring is intended to encompass a variety of shapes in vertical cross-section in addition to those of generally circular or elliptical shape. A ring according to the present invention is a support body mounted at an elevated or overhead position with one or more portals or passages through which the body 40 of the vehicle 12 passes. The vehicle 12, as will be set forth below, receives motive force from structure in the rings 16 as it passes through the series of rings 16.
The ring 16 has one or more portals or passages 17 formed in it. The portals or passages 17 may be circular (
The vehicles 12 may be of different shapes based on travel speed, load requirements, the course of travel and other factors, with the form of the rings 16 and portals 17 conforming to the shape and function of the vehicle 12. In urban applications, double or parallel travel (
The rails 20 which are in contact with rollers 18 and driven by a suitable power source thus receive motive force to move the vehicle 12 at lower ranges of speed through the transportation system 10. The rails 20 may be longitudinally continuous along the body of the vehicle 12, or they may be either articulated or provided in segments, if desired.
Mounted at one or more positions about the periphery of the vehicle 12 and separate from the weight-carrying rails 20 are one or more longitudinally extending motive force transfer plates 21. The plates 21 serve as part of a friction clutch or linear clutch. At lease one such plate 21 is provided, although it should be understood that there may be two or more such motive force transfer plates on the vehicle 12 based on load and travel speed requirements, if desired.
The friction clutch or clutches 21 may be longitudinally continuous or segmented along the length of the vehicle 12. The rollers 18 and the rails 20 are shown in greater detail in
Thus, the present invention permits the shape of the vehicle 12 to be of a design to accommodate a variety of capacity ranges and travel routes. Much like railroads, overhead systems according to the present invention may have areas of single (
A secondary function of the rings 16 is a safety feature. Since each ring 16 completely encircles the body 40 of the car 12 along a circumferential portion of its length, the car 12 is guided to move through the series of rings 16 in its direction of travel. Unlike railroads where possible disastrous consequences may occur if there is a derailment, the tubular overhead guide design of the present invention means that in the unlikely event of a roller failure, the clutch plates 21 and rails 20 on the car 12 then come in contact with the reinforced body of the rings 16 and the car 12 would then slide to a stop. The fact that the rings 16 enclose the car 12 in a 360° manner while the car 12 is supported by at least three rings 16 means that the car 12 may proceed to the next ring along the travel path under its own momentum in the event of power loss or roller failure. Another benefit of the circumferentially enclosing ring 16 as opposed to an open top is that this enclosing structure provides greater structural strength to the ring 16.
Turning to
The ring 16 is mounted in a support member 22, which may preferably be reinforced concrete. The support member 22 may of course be made of steel or of other suitable structural material if desired. The support member 22 is mounted on top of a pedestal 24, which may for example be about sixteen feet high, three feet wide, and tree feet thick. The pedestal 24 may be of concrete, steel or other suitable structural materials. Those of skill in the art will recognize that the height of the pedestal may vary with the topography of the land over which the system 10 is installed in order to make the travel path of the vehicle 12 substantially level, so that movement of the car 12 is as even and smooth as possible. The pedestal 24 is mounted to and formed contiguously with a base 26, which preferably extends about thirty feet into the ground, and is ten feet wide, and three feet thick. The base 26 as shown is intended as illustrative only, and will vary depending on the subterranean structure of the subsoil, climate and weather factors and other such considerations.
Unlike traditional railways that carry their power generating capacity with them in the form of a locomotive (the French TGV system having about 12,000 hp) that generates power and transmits it to stationary rails, the present invention has a power source (motors) on the rings 16 that impart motive force to the moving vehicle 12.
An advantage of this is that power demand for moving the vehicle 12 is matched to localized need. In other words additional power is supplied for rings located in areas along the route of travel where acceleration of the vehicle 12 is required and less power is provided where the need is for power in maintaining momentum of the vehicle 12.
Direct drive of the moving vehicle 12 is, as noted, furnished by stationary electric motors for the rollers 18 at lower speeds such as in urban areas. This allows systems to have increased size of motors and a greater number of motors for areas of acceleration or hill climbing. Further, with the present invention, once design speed has been achieved for a given section of route by the vehicle 12, as the vehicle 12 enters the next ring 16 along the route of travel it encounters the rollers 18 of that next ring 16 at a time when those rollers have been brought up to a speed by their drive motors slightly higher than the design speed of the vehicle 12 for that section of the route. The motors are preset as to speed and timing and the vehicle operator serves mainly in a safety capacity role. If in low speed urban systems where frequent stops and starts can be expected, it will be possible in some cases to slightly elevate the line of travel going into and out of the stations. This serves two purposes. The first is to aid in acceleration as the vehicle 12 leaves a station, i.e., it begins to move from a ring 16 at a slightly elevated position. The second is to assist at the next station in braking as the vehicle 12 approaches a station or stop to a slightly elevated ring 16, i.e., the vehicle 12 is essentially climbing and thus decelerating as it comes to a stop at that station. This technique captures the kinetic energy of the vehicle 12 and stores it in the vehicle 12 as potential energy and its use may be made available as needed on a case-by-case basis.
The present invention also allows the rollers 18 to transfer the kinetic energy of the moving vehicle 12 as it is entering a station back into the system in the braking mode. The kinetic energy may be converted to another form as it is received then used to drive the motors and regenerate power and feed it back to move the vehicle as it departs. This is an optional feature which may or may not be used, based on cost effectiveness conservations. It is also contemplated that power sources such as linear induction motors can also be used to drive the vehicle 12 and provide braking, if desired.
For provision of power for higher speed systems, usually above 55 mph, other sources are presently contemplated to provide motive forces to the vehicle 12. Returning now to
The flywheel assemblies are used to provide motive power to the vehicle 12, preferably for higher speeds. Each flywheel assembly 30 includes a flywheel 72 (
On the bottom of the vehicle 12 are one or more transfer plates or linear friction clutch plates 21, shown and described below with regard to
The friction clutch plate or plates 21 are typically located beneath the body 40 of the vehicle 12 for higher speed operations. If desired, the clutch plates 21 may be located on the sides or top of the vehicle 12 to be engaged by correspondingly positioned flywheels 72. If the flywheel assembly 30, as shown in
Further details of the flywheel assembly 30 are shown in
For high-speed systems such as those shown, power demands are greater as the vehicle 12 accelerates. Once a desired speed for the vehicle 12 is achieved, power consumption stabilizes as a function of speed (maintaining desired speed plus overcoming aerodynamic drag and rolling friction). In order to minimize the size and cost of the motors for high-speed versions of the present invention, the energy-storing flywheel 72 is incorporated into the rings 16. This allows a smaller motor (separate from the rollers motor) to use the time between the passage of the vehicle 12 to bring the flywheel 72 up to a desired speed prior to the arrival of the next vehicle 12. This is a cost saving design feature as it allows sufficient power to be brought to bear and avoids the high costs of high-speed locomotives.
However it should be understood that alternative drive mechanisms for the vehicles 12 might be used. They include, for example, magnetic propulsion, or onboard power generation for developing thrust, such as jet-propelled, or propeller driven motive force generators.
The vehicle 12 also houses one or more nitrogen tanks 48. The tanks 48 provide nitrogen to the inside of the rails 20 to develop a thin ice layer on the rails to reduce drag and rolling friction, as herein described. This feature of the invention is shown in more detail in
The rail 20 preferably defines a curved contact surface 54 which provides stable retention of the vehicle 12 within the five rails 20, as shown in
The system 10 according to the present invention may be provided at suitable locations along its route with a vertical lift system S as shown in
The system 10 according to the present invention may also be provided with a lateral or horizontal transfer/storage system L (
Further, the system 10 of the present invention is provided with a rotary station or table R (
Energy is lost to two main factors in any rail system. The first is rolling friction caused by interactions between the rail and the wheel, while the other is aerodynamic drag. Rolling function is virtually constant and varies little with changes in speed or weight of the train. Unlike rolling friction, aerodynamic drag varies greatly with speed and increases as the square of speed. Thus, a doubling of speed leads to a quadrupling of aerodynamic drag. In general, aerodynamic drag energy losses begin to exceed that of rolling friction in the speed range of 55 mph to 70 mph. As has been noted, to the shape of the car 12 may be varied based on the intended design speed.
For trains, energy consumed in overcoming rolling friction shows little increase as speed increases. For high-speed, such as greater than 150 mph, aerodynamic related issues are a far greater concern in terms of energy losses. For this reason, as shown in
The reason the rails 120 in
Also, the cooling of the rails below the local dew point and then below the freezing point of water will induce atmospheric moisture to condense on the rails and form a barrier to the formation of molecular bonding between the steel of the wheels and the steel rail. Since the cost of cooling is relatively inexpensive to do with liquid nitrogen (although other methods could be used) this method is proposed.
For higher speed operation when the motive force is supplied by the frictional transference of energy from the flywheel assembly 30 reduction of energy lost to rolling friction can greatly lower energy consumed. As the moisture condenses on the rails it typically freezes, then turns to liquid as the rail nears the roller and pressure rises. This should produce a boundary layer of water under higher pressure between two surfaces, thus the hydroplaning effect. This can also be thought of as a form of viscous hydroplaning. This can be enhanced by the addition of a fine mist of water vapor moving with the rails and containing surface tension increasing chemical additives in the vapor. The overall purpose is to reduce the ability of the rail and roller to form molecular and/or metallic bonds thus reducing the energy needed to then break these bonds.
Rail cooling techniques, if used at all, will find their best applications for operations at higher speed. In addition to energy savings the effect should also produce lower noise levels emanating from the rail/roller interface. Also it will have a lubricating effect when it is necessary to force the car into a turn.
The principles, preferred embodiment, and mode of operation of the present invention have been described in the foregoing specification. This invention is not to be construed as limited to the particular forms disclosed, since these are regarded as illustrative rather than restrictive. Moreover, variations and changes may be made by those skilled in the at without departing from the spirit of the invention.
Claims
1.-2. (canceled)
3. An apparatus for reducing friction comprising:
- a wheel rollingly engaging a rail;
- a cold fluid flowing adjacent the rail; and
- a cold condensate being formed between the rail and rolling wheel.
4.-12. (canceled)
13. The apparatus of claim 3 wherein the rail is hollow to flow a cold fluid therethrough.
14. The apparatus of claim 3 wherein the cold fluid is liquid nitrogen.
15. The apparatus of claim 3 wherein the cold condensate is a layer of ice.
16. The apparatus of claim 15 wherein the cold fluid rapidly cools the rail causing the ice layer to form on the rail.
17. The apparatus of claim 15 wherein the ice layer is formed on the rail by condensing atmospheric moisture on the rail.
18. The apparatus of claim 3 wherein the cold condensate reduces drag between the wheel and rail.
19. The apparatus of claim 3 wherein the cold condensate limits the bonding between the wheel and rail.
20. The apparatus of claim 3 further including a vehicle carrying the cold fluid and the rail being mounted on the vehicle, the cold fluid being circulated from the vehicle to adjacent the rail.
21. The apparatus of claim 3 wherein the rail includes a tube for the cold fluid.
22. The apparatus of claim 3 further including an insulation sleeve on the rail to conserve thermal energy.
23. The apparatus of claim 3 further including a recirculation loop for the cold fluid.
24. The apparatus of claim 3 further including a vent for the cold fluid.
25. The apparatus of claim 24 wherein the vent includes a valve.
26. An apparatus comprising:
- an elongate vehicle having a body;
- at least one rail mounted longitudinally along the vehicle body;
- a plurality of supports each forming an elevated portal through which the vehicle travels;
- a drive on each of the supports to selectively engage the vehicle;
- the rail being engageable by the drive to receive motive power for the vehicle;
- a cold fluid flowing adjacent the rail; and
- a cold condensate being formed between the rail and the drive.
27. An apparatus comprising:
- an elongate vehicle having a body with aft and fore ends;
- at least one metal rail mounted longitudinally along the vehicle body, the at least one metal rail having a side portion extending along the body and at least a fore portion;
- a plurality of supports each forming an elevated portal;
- metal drive rollers on each of the supports to selectively engage the vehicle;
- the at least one metal rail being engageable by the metal drive rollers;
- the weight of the vehicle body causing the at least one metal rail to frictionally engage the metal drive rollers to transfer motive power to the vehicle;
- a cold fluid flowing adjacent the rail;
- a cold condensate being formed between the rail and the metal drive rollers; and
- the fore portion being in contact with the metal drive rollers prior to the side portion of the rail contacting the metal drive rollers.
Type: Application
Filed: Feb 17, 2009
Publication Date: Jun 25, 2009
Patent Grant number: 7992501
Applicant: TUBULAR RAIL, INC. (Houston, TX)
Inventor: Robert C. Pulliam (Houston, TX)
Application Number: 12/371,986
International Classification: B61B 5/00 (20060101); F16C 32/00 (20060101);