MINIMALLY INVASIVE MEDICAL APPARATUS FOR DISPENSING A BIOLOGICALLY ACTIVE COMPOUND AND AN ASSOCIATED MEDICAL PROCEDURE FOR DISPENSING A BIOLOGICALLY ACTIVE COMPOUND
A medical apparatus for dispensing a biologically active compound. The medical apparatus includes a sleeve, wherein (1) the sleeve has a working channel defined therein through which medical instruments may be advanced, (2) the sleeve includes a fluid delivery channel which is distinct from the working channel, (3) the fluid delivery channel has an exit, and (4) the sleeve includes a housing having an interior cavity defined therein. The medical apparatus also includes an insufflation valve in fluid communication with the working channel. The insufflation valve is positionable between an open position and a closed position such that (i) when the insufflation valve is located in the open position an insufflation gas can be advanced into the working channel and (ii) when the insufflation valve is located in the closed position the insufflation gas is prevented from being advanced into the working channel. The medical apparatus further includes a chemical container having an interior void defined therein for receiving the biologically active compound, wherein the interior void is in fluid communication with the exit through the fluid delivery channel when the chemical container is positioned within the interior cavity of the housing such that the biologically active compound may be delivered through the fluid delivery channel to an outer surface of the sleeve.
This application is a continuation of application Ser. No. 10/727,120, filed Dec. 3, 2003 (pending) which is a divisional of co-pending U.S. patent application Ser. No. 09/934,399, filed Aug. 21, 2001 (now U.S. Pat. No. 6,695,815), which is a continuation of U.S. patent application Ser. No. 09/511,1 00, filed Feb. 23, 2000 (now U.S. Pat. No. 6,302,873), the disclosures of which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTIONThe present invention generally relates to a medical apparatus and procedure for dispensing a biologically active compound. The present invention particularly relates to a medical apparatus and procedure for dispensing a biologically active compound during a minimally invasive surgical technique, such as laparoscopic surgery.
Minimally invasive surgical techniques, such as laparoscopic surgery, typically include the use of a trocar assembly. A trocar assembly includes a trocar (sometimes referred to as an “obturator”) positioned within the lumen of a cannula. The trocar and cannula are advanced through a body cavity wall so as to create a small opening or a port site wound therein. The trocar is then completely removed from the lumen of the cannula such that the cannula's lumen provides an entrance for laparoscopic instruments into the interior of the body cavity. The body cavity is then insufflated with an inert gas, such as CO.sub.2, to provide easier access to the organs contained therein. An alternative to insufflation, which also aids in intra-abdominal visualization and provides access to the organs, is a mechanical lifting device. Once the surgery is complete the cannula is completely removed from the port site wound to rapidly desufflate the body cavity.
Surgery performed by using minimally invasive techniques is generally associated with lower postoperative morbidity, slower tumor growth, shorter postoperative stay, less postoperative pain, decreased cost, and quicker recovery as compared to “open” or conventional surgical techniques.sup.(1, 2, 3, 4, 5, 6). Because of the aforementioned advantages, these minimally invasive techniques are being applied to an increasing variety of all surgical procedures. For example, laparoscopic procedures for the resection of malignancies have emerged. In particular, laparoscopic colectomy for carcinoma of the colon has been developed, and it has been reported that the initial results of these procedures have advantages over operations performed in the traditional open manner.sup.(5, 6, 14), Moreover, it is hoped that the long term results of these procedures will be comparable, or better than, those performed in the traditional open manner.
However, the development of laparoscopic surgery for cancer has been hindered because of the major concern regarding the implantation of tumor cells in the port site wound.sup.(2, 3, 6, 7). In fact, numerous port site recurrences have been documented in the medical literature heretofore, and these recurrences are associated with a decreased survival rate for patients who may have had a curative cancer.sup.(2, 3, 6, 7). Specifically, the medical literature reports that the incidence of tumor cell implantation ranges from as high as 20% to as low as 0%.sup.(8). The studies generating the aforementioned data utilized highly skilled and experienced laparoscopic surgeons practicing at major university programs. However, in spite of utilizing highly skilled and experienced laparoscopic surgeons, the data indicates that the incidence of tumor cell implantation in the surgical wound is greater when employing laparoscopic techniques as compared to when conventional surgical techniques are used (i.e. 0.6% implantation incidence for conventional techniques.sup.(9) compared to 1% incidence for laparoscopic techniques.sup.(10).
Several mechanisms may be responsible for the above discussed implantation of tumor cells in the port site wound. For example, minimally invasive surgical techniques for treating cancer require the insertion and removal of laparoscopic instruments or cameras through the lumen of the cannula. In addition, these surgical techniques require that the cannula itself be moved relative to the port site wound such that the cannula is advanced further into, or withdrawn from, the body cavity.sup.(11). Moving the cannula in the above described manner facilitates a surgeon's ability to optimally locate instruments within the body cavity thereby helping to ensure the successful completion of the medical procedure. However, the aforementioned manipulations of the laparoscopic instruments and cannula may result in the exposure of the port site wound to exfoliated cancer cells which creates a risk of implanting tumor cells in the walls of the port site wound.sup.(11, 12). In particular, exfoliated cancer cells may adhere to and thus contaminate a portion of the exterior surface of the cannula.sup.(11, 12). The contaminated portion of the exterior surface of the cannula may then be advanced into contact with the port site wound during insertion and removal from the port site wound.sup.(11, 12). This contact may dislodge the exfoliated cancer cells from the exterior surface of the cannula and thus cause the exfoliated cancer cells to be implanted in the port site wound.sup.(11, 12).
Furthermore, studies have shown that a physician may undergo a significant learning curve before becoming proficient in the performance of advanced laparoscopic surgery, such as cancer surgery.sup.(3, 13, 16). As a result, a relatively inexperienced surgeon may have a tendency to manipulate or handle a tumor to a greater degree during a surgical procedure than an experienced surgeon. Studies have shown a 14.6% incidence of viable tumor cells in proximity of the specimen where the surgeon is working with his or her instruments.sup.(15). In addition, an inexperienced surgeon may have a tendency to insert and withdraw an instrument through the lumen of the cannula a greater number of times than an experienced surgeon. The above described increased manipulation of the instrument or the tumor can result in a greater incidence of tumor cell implantation in the port site wound.sup.(11, 12).
Regardless of how these cells contaminate the wound, once implanted therein, viable tumor cells can cause a subcutaneous metastases or “port site recurrence” after the resection of malignant tissue. These “port site recurrences” have delayed the advancement of laparoscopic cancer surgery.sup.(2, 6, 7, 8, 9, 10, 11, 12) into all fields of cancer surgery, and is one reason why the benefits of laparoscopic surgery have not been available to cancer patients.
Furthermore, laparoscopic surgery performed for general surgery, gynecological surgery, urological surgery, or any other intra-abdominal infection is associated with a small but real incidence of port site wound infection.sup.(1). The infecting bacteria causing these illnesses can contaminate the port site wound in the same manner as discussed above with regard to tumor cell contamination, and these infections can increase a patient's morbidity and consequently the length of a patient's hospital stay, thereby considerably increasing their hospital bill.
One way of addressing the problem of potential tumor or infectious cell implantation in the port site wound is to apply a biologically active compound, such as a cytotoxic agent which kills tumor or infectious cells, on a medical apparatus (e.g. a trocar assembly) utilized in the laparoscopic procedure. By placing such a compound on the medical apparatus the biologically active compound becomes disposed on the interior surface of the body cavity and on the surface of the port site wound. Having the biologically active compound disposed on the medical apparatus, the interior surface of the body cavity, and the surface of the port site wound establishes a “pharmacological barrier” which prevents any viable tumor or infectious cells from becoming implanted in the port site wound.
Heretofore, biologically active compounds were disposed on the medical apparatus by various methods. For example, dipping the medical apparatus in a solution or suspension of the biologically active compound, applying the biologically active compound to the medical apparatus with an applicator such as a cotton swab, or injecting the intraperitoneal surface with the biologically active compound.sup.(16, 17). However, the aforementioned methods of administering the biologically active compound suffer from several drawbacks. For example, these methods are inconvenient, messy, inexact, or highly variable. In addition, these methods do not allow the amount of the biologically active compound administered to the patient via the medical apparatus to be appropriately controlled. Controlling the amount administered to a patient is important since it allows the physician to carefully adjust the dose of the biologically active compound and thus avoid any undesirable side effects while maximizing the delivery of the biologically-active compound. In addition, controlling the dose allows the physician to collect dose response data, and thus measure the effectiveness of various pharmacological regimens. With the recent advances in the fields of biotechnology, genetic engineering, and pharmacology, there is a need to accurately, efficiently, and reproducibly deliver current and future biologically active agents during the performance of a minimally invasive surgical technique.
What is needed therefore is a medical apparatus and procedure for disposing a biologically active compound which addresses the above described drawbacks.
TABLE OF REFERENCES CITED IN THE BACKGROUNDLord et al., Dis. Col. Rect. 39(2):148 (1996)
Berman, Important Advances in Oncology 1996, Laparoscopic Resection for Colon Cancer: Cause for Pause, Vincent DeVita Ed., p. 231
Falk et al., Dis. Col. Rect. 36:28 (1993)
Liberman et al., Surg. Endo. 10:15 (1996)
Whelan et al., Dis. Col. Rect. 41(5):564 (1998)
Wexner et al., Am. Surg. 64(1):12-18 (1998)
Greene, Semin. Lap. Surg. 2(3):153 (1995)
Kazemier, Surg. Endo. 9:216 (1995)
Reilly et al., Dis. Col. Rect. 39(2):200 (1996)
Jacquet et al., Dis. Col. Rect. 38(10):140 (1995)
Reymond et al., Surg. Endo. 11:902 (1997)
Allardyce et al., Dis. Col. Rect. 40(8):939 (1997)
Caushaj et al., Dis. Col. Rect. 37(4):21 (Podium Abstract 1994)
Lee et al., (oral presentation, 6.sup.th World Congress of Endoscopic Surgery, June 1998) Surgical Endoscopy 12 (5):14 (1998)
Russell et al., Dis. Col. Rect. 40 (11):1294 (1997)
Neuhaus S J, (oral presentation, 6.sup.th World Congress of Endoscopic Surgery, June 1998) Surgical Endoscopy 12 (5): 515 (1998)
Schneider C, (oral presentation, 6.sup.th World Congress of Endoscopic Surgery, June 1998) Surgical Endoscopy 12 (5): 517 (1998)
SUMMARY OF THE INVENTIONIn accordance with one embodiment of the present invention, there is provided a medical apparatus for dispensing a biologically active compound. The medical apparatus includes a trocar assembly including a cannula and a trocar, wherein (1) the cannula has a working channel defined therein through which medical instruments may be advanced, (2) the cannula includes a fluid delivery channel which is distinct from the working channel, and (3) the fluid delivery channel has an exit. The medical apparatus also includes a valve in fluid communication with the working channel. The valve is positionable between an open position and a closed position such that (i) when the valve is located in the open position a gas can be advanced into the working channel and (ii) when the valve is located in the closed position the gas is prevented from being advanced into the working channel. The medical apparatus further includes a chemical container having an interior void defined therein for receiving the biologically active compound. The interior void is in fluid communication with the exit through the fluid delivery channel, whereby the biologically active compound may be delivered through the fluid delivery channel to an outer surface of the cannula.
Pursuant to another embodiment of the present invention, there is provided a medical procedure for dispensing a biologically active compound. The medical procedure includes the steps of (a) creating an opening in a wall of a non-vascular body cavity, (b) advancing a medical apparatus through the opening and into the non-vascular body cavity, the medical apparatus including a trocar assembly having (1) a cannula and a trocar, wherein (A) the cannula has a working channel defined therein through which medical instruments may be advanced, (B) the cannula includes a fluid delivery channel which is distinct from the working channel, and (C) the fluid delivery channel has an exit, and (2) a chemical container having an interior void defined therein for receiving the biologically active compound, the interior void being in fluid communication with the exit through the fluid delivery channel, and (c) advancing the biologically active compound from the interior void of the chemical container onto an exterior surface of the cannula through a fluid path defined by the fluid delivery channel.
According to yet another embodiment of the present invention, there is provided a medical apparatus for dispensing a biologically active compound. The medical apparatus includes a sleeve, wherein (1) the sleeve has a working channel defined therein through which medical instruments may be advanced, (2) the sleeve includes a fluid delivery channel which is distinct from the working channel, and (3) the fluid delivery channel has an exit. The medical apparatus also includes a housing secured to the sleeve. The housing has an interior void defined therein for receiving the biologically active compound, wherein the interior void is in fluid communication with the exit through the fluid delivery channel such that the biologically active compound may be delivered through the fluid delivery channel to an outer surface of the sleeve. The medical apparatus further includes an insufflation valve in fluid communication with the working channel. The insufflation valve is positionable between an open position and a closed position such that (i) when the insufflation valve is located in the open position an insufflation gas can be advanced into the working channel and (ii) when the insufflation valve is located in the closed position the insufflation gas is prevented from being advanced into the working channel.
According to yet another embodiment of the present invention, there is provided a medical apparatus for dispensing a biologically active compound. The medical apparatus includes a trocar assembly including a cannula and a trocar. The cannula has a working channel defined therein, and the working channel has a cross-sectional area sized for passage of a laparoscope therethrough. The cannula includes a fluid delivery channel which is distinct from the working channel. The fluid delivery channel has an exit. The medical apparatus also includes a chemical container having an interior void defined therein for receiving the biologically active compound. The interior void is in fluid communication with the exit through the fluid delivery channel, whereby the biologically active compound may be delivered through the fluid delivery channel to an outer surface of the cannula.
According to still another embodiment of the present invention, there is provided a medical procedure for dispensing a biologically active compound. The medical procedure includes the steps of (i) creating an opening in a wall of a body cavity, (ii) advancing a medical apparatus through the opening and into the body cavity, the medical apparatus including a trocar assembly having (1) a cannula and a trocar, wherein (A) the cannula has a working channel defined therein through which medical instruments may be advanced, (B) the cannula includes a fluid delivery channel which is distinct from the working channel, and (C) the fluid delivery channel has an exit port, and (2) a chemical container having an interior void defined therein for receiving the biologically active compound, the interior void being in fluid communication with the exit port through the fluid delivery channel, (iii) advancing a gas into the body cavity, and (iv) advancing the biologically active compound from the interior void of the chemical container onto an exterior surface of the cannula through a fluid path defined by the fluid delivery channel.
According to yet another embodiment of the present invention, there is provided an arrangement for delivering a biologically active compound. The arrangement includes a chemical container configured to be removably disposed in a void of a housing of a trocar assembly.
It is therefore an object of the present invention to provide a new and useful medical apparatus for protecting a port site wound.
It is another object of the present invention to provide an improved medical apparatus for protecting a port site wound.
It is still another object of the present invention to provide a new and useful medical apparatus for dispensing a biologically active compound.
It is another object of the present invention to provide an improved medical apparatus for dispensing a biologically active compound.
It is moreover an object of the present invention to provide a new and useful medical procedure for protecting a port site wound.
It is still another object of the present invention to provide an improved medical procedure for protecting a port site wound.
It is moreover an object of the present invention to provide a new and useful medical procedure for dispensing a biologically active compound.
It is still another object of the present invention to provide an improved medical procedure for dispensing a biologically active compound.
The above and other objects, features, and advantages of the present invention will become apparent from the following description and attached drawings.
While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
First Embodiment of the InventionReferring to
Housing 34 includes an exterior wall segment 110 and an interior wall segment 112 (see
Referring now to
As shown in
Referring back to
As shown in
It should also be understood that insufflation valve 108 and pressure control valve 50 can be positioned such that pressure line 46 (see
Referring now to
Biologically active compound 12 includes chemical substances such as antibiotics, cytotoxic agents or compounds which effectively inhibit tumor cell adherence to a membrane. A large number of antimicrobial agents (i.e. antibiotics) or antiseptics are contemplated for use as biologically active compound 12 in the present invention. Preferably, where possible, the antibiotic should be active against both Gram-positive and Gram negative pathogens. The following are illustrative of the antibiotics and/or antiseptics which can be disposed in interior void 28 to aid in the control, inhibition, or prevention of infections of opening 52: (i) metal salts, or like compounds with antibacterial metal ions, e.g. copper or silver, and optionally with additional nonmetallic ions of antibacterial properties; (ii) topical antibiotics, e.g. neomycin, soframycin, bacitracin, polymcin; (iii) antibacterials such as chlorhexidine and its salts; (iv) quaternary ammonium compounds, e.g. centrimide, domiphen bromide, and polymeric quaternaries; (v) iodophors such as povidone iodine, and polyvinylpyrrolidone-iodine (PVP-I); (vi) acridine compounds such as 9-aminoacridine, 3,6-diaminoacridine and 6,9-diamino-2-ethoxyacridine; and (vii) biguanidine compounds such as 1,6-di(4-chlorophenylbiguanido)hexane, diaminohexylbiguanide, 1,6-di(aminohexylbiguanido)hexane, and polyhexamethylenebiguanide. Additional suitable antibiotics include aminoglycoside antibiotics such as amikacin, butirosin, dideoxykanamycin B (DKP), fortimycin, gentamycin, kanamycin, lividomycin, neomycin, netilmicin, ribostamycin, sagamycins, seldomycins and their epimers, sisomicin, sorbistin, tobramycin, streptomycins, linkomycins such as clindamycin, lincomycin and rifamycins such as rifampicin and rifamycin. Antibiotics such as polymyxin B sulfate-neomycin sulfate, cleocin phosphate (available from the Upjohn Company, Kalamazoo, Mich.) and erythromycin ethylsuccinate are also contemplated.
Examples of suitable antiseptics include bromchlorophen, hexetidine, buclosamide, salicylic acid, cerium nitrate, chlorhexidine, 5-chloro-8-hydroxyquinoline, copper 8-hydroxyquinolate, acridine orange, undecenoic acid, undecoylium chloride and silver salts such as silver sulfadiazine, mafenide, nitrofurazole, cloflucarban, tribromasalan, taurolin and noxythiolin.
With respect to aiding in the control, inhibition or prevention of tumor cell adhesion and implantation and the subsequent metastasis via opening 52, compounds which effectively block or inhibit tumor cell adhesion (please note that tumor cell adhesion is a step in the metastasis cascade), or destroy tumor cells before adhering to a side wall 58 of opening 52, or other sites, can be disposed in interior void 28. Types of compounds which effectively block or inhibit tumor cell adherence include anticoagulants, fibrinolytic agents and compounds which alter the electrical charge of a membrane surface. For example, the surface charge altering and anticoagulant heparin can be disposed in interior void 28. Additionally, any of several water-soluble high molecular weight glucose polymers (average molecular weight (MW) 75 kdal) otherwise known as dextrans, can also be disposed in interior void 28 to alter the surface electrical charge of any contacted membranes thereby blocking tumor cell adhesion. Preferably a dextran having an average MW of about 40 kdal is used to coat outer surface 30.
As stated above, tumor cell destroying compounds, hereinafter referred to as cytotoxic compounds, can also be disposed in interior void 28. These compounds include cisplatin, carboplatin, 5-fluorouracil, providoneiodine, tumor necrosis factor (TNF)-.alpha. tauromustine, mitomycin C, camptothecin, bleomycin, indomethacin, N-methyl formamide, tamoxifen, sodiumhypochlorite, chlorhexidinecetrimide, adriamycin, methotrexate. Tumor cell destroying compounds also include antimetabolites such as cytarabine, azaribine, mercaptopurine, thioguanine; natural products such as vinblastine, vincristine, dactinomycin, daunorubicin, doxorubicin, bleomycin, mithramycin, mitomycin; and other miscellaneous agents such as cisplatin, hydroxyurea, procarbazine and mitotane, Alkylating agents such as mechlorethamine, nitrogen mustards, ethlenimine derivatives, alkyl sulfonates, nitrosoureas, and triazenes are also contemplated. Moreover, the compounds disclosed by Krakoff, Irwin H. in Systemic Treatment of Cancer, CA Cancer J. Clin., vol. 46, No. 3, pages 134-141 (May/June 1996), which is incorporated herein by reference, are contemplated for being disposed in interior void 28.
In addition antiangiogenesis agents such as angiostatin and endostatin are included in the group of cytotoxic compounds to be disposed in interior void 28. Moreover, antibodies, including human monoclonal antibodies are included as cytotoxic compounds. Preferably, the human monoclonal antibody HuMab SK1 as described by Chang, Helena R. et al. in Human Monoclonal Antibody SK1 -Mediated Cytotoxicity Against Colon Cancer Cells, Dis. Colon Rectum, vol. 36, No.12, pages 1152-1157 (December 1993) which is incorporated herein by reference, is disposed in interior void 28. Other monoclonal antibodies can also be disposed in interior void 28, for example those produced from hybridomas having the accession numbers HB8573, HB8232 and HB8250 available from the American Type Culture Collection, located at 12301 Parklawn Drive, Rockville Md., 20852. Furthermore, interleukin 2 (IL-2), cytokines or lymphokines are also included in the group of cytotoxic compounds of the present invention. Also contemplated are hyaluronate coating solutions. In addition, gene based cancer drugs are contemplated. Examples of such include gene based cancer drugs directed toward the RAS gene. Another example of a gene based cancer drug is a drug directed toward the EGF receptor (i.e. EGFR). It should also be understood that a combination of any of the above compounds can be disposed in interior void 28.
During use of medical apparatus 10, trocar 18 is initially located in a first trocar position as shown in phantom in
However, if cancer or infection is detected within body cavity 56, or if the surgeon suspects cancer or an infection is present, each chemical container 26 is loaded, under the surgeon's direction, with a predetermined amount of an appropriate biologically active compound 12. Specifically, a syringe (not shown) is filled with a predetermined amount of the appropriate biologically active compound 12 and the hypodermic needle of the syringe is inserted through diaphragm 44 of loading aperture 122 (see
Once both chemical containers 26 are loaded in the above described manner, each door 94 (see
It should be understood that positioning ribs 126 within grooves 130 in the above described manner aligns each fluid delivery needle 38 in fluid communication with fluid delivery channel 22 (see
However, it should be appreciated that, in contrast to having chemical containers 26 removable from housing 34 as described above, chemical containers 26 can be integrally formed with housing 34 of cannula 16. In this situation, chemical containers 26 function in a substantially identical manner as described above, with the exception that chemical containers 26 are never removed from housing 34. In particular, chemical containers 26 are loaded with a predetermined amount of biologically active compound 12 while the chemical containers 26 are positioned within and secured to housing 34. Moreover, it should be understood that chemical containers can be integrally formed with cannula 16 such that chemical containers are never removed from cannula 16.
After placing fluid delivery channels 22 and pressure line 46 in fluid communication with interior void 28 of each chemical container 26 doors 94 are located in the closed position. Insufflation valve 108 and pressure control valve 50 are then positioned such that pressure line 46 (see
Once biologically active compound 12 is located in fluid delivery channel 22, biologically active compound 12 is advanced along the length of cannula 16 in a direction indicated by arrow 132 as shown in
It should be appreciated that as biologically active compound 12 is delivered to outer surface 30 of cannula 16 an amount of biologically active compound 12 is transferred from outer surface 30 to side wall 58 of opening 52 as shown in
If necessary, in order to keep biologically active compound 12 from falling or sliding off outer surface 30 due to gravity, or being advanced out of exit ports 24 to quickly, biologically active compound 12 can contain a suitable pharmaceutically acceptable carrier. Such pharmaceutically acceptable carriers include known excipients and auxiliaries which facilitate the processing of biologically active compound 12 into a preparation which has the appropriate consistency to be advanced out of exit ports 24 in a controlled manner and thus disposed on outer surface 30, side wall 58, and interior surface 57.
Suitable excipients which may be used to prepare a pharmaceutically acceptable carrier, such as a paste or a viscous solution, include fillers such as saccharides, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate. Additionally, silica, talc, stearic acid or salts thereof such as magnesium stearate or calcium stearate, and/or polyethylene glycol can be used.
In addition, a suspension of biologically active compound 12 may be disposed on outer surface 30 or side wall 58. Suitable vehicles for such suspensions include sesame oil or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Such suspensions can include substances which increase the viscosity of the suspension including, for example, sodium carboxymethyl cellulose, sorbitol and/or a dextran.
The exact formulation of a pharmaceutically acceptable carrier will depend upon the particular nature of biologically active compound 12 to be disposed upon outer surface 30 and is easily determinable by one of ordinary skill in the art from only routine experimentation.
Being able to deliver essentially all of biologically active compound 12 contained within chemical containers 26 to side wall 58 or into body cavity 56 allows a surgeon to accurately determine the total amount of biologically active compound 12 administered to a patient during a surgical procedure. Knowing the total amount of biologically active compound 12 administered to the patient allows the surgeon to accurately control the dose administered to the patient and thus ensure that a proper dosage regimen for that particular patient is followed. The proper dosage regimen for a particular patient is dependent upon several factors including the age, sex, weight, condition of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired. In addition, the dosage regimen will also depend upon the immunologic status of the patient and the aggressiveness of the tumor. Moreover, the amount of biologically active compound 12 administered to the patient should be large enough to produce the desired effect but not so large as to cause adverse side effects, such as unwanted cross reactions, impaired wound healing, bleeding, impaired platelet function, anaphylactic reactions and the like.
Counterindication, if any, immune tolerance and other variables will also affect the proper amount administered to the patient. The exact formulation of a pharmaceutically acceptable carrier and the amount of biologically active compound 12 contained therein (and therefore the amount administered to the patient) is easily determinable by one of ordinary skill in the art from only routine experimentation and by applying well know principles of therapeutics as set forth, for example, in Gilman, Alfred G. et al., eds., The Pharmacological Basis of Therapeutics, 6.sup.th Edition, Macmillan Publishing Co., Inc. New York, N.Y. (1980) which is herein incorporated by reference. Preferably, such preparations will contain about 0.001 to about 99 percent biologically active compound 12 together with the pharmaceutically acceptable carrier.
The above described ability of the present invention which allows a surgeon-to accurately determine the total amount of biologically active compound 12 disposed on outer surface 30 (and thus administered to a patient) during a surgical procedure represents a significant advantage over other methods of disposing biologically active compound 12 onto a medical apparatus (e.g. dipping the medical apparatus in a solution or suspension of biologically active compound 12 or the unquantified irrigation of opening 52 with biologically active compound 12). Specifically, many of the less accurate methods do not allow the surgeon to accurately control the amount of biologically active compound 12 administered to the patient. Therefore, these less accurate methods of disposing biologically active compound 12 onto the medical apparatus make it very difficult for the surgeon to ensure that a proper dosage regimen for a particular patient or cancer is being followed.
The present invention also allows a surgeon to avoid utilizing a biologically active compound 12 until it is deemed necessary. This is not possible with the aforementioned less accurate methods. For example, the dipping of a medical apparatus (i.e. a medical apparatus similar to medical apparatus 10) in a solution or suspension of biologically active compound 12 must be performed prior to the beginning of the surgery at a time when the surgeon has not visually confirmed the presence of cancer or infection in body cavity 56. The surgeon must dispose biologically active compound 12 on the medical device before the beginning of the surgery since withdrawing the medical apparatus after the surgery has started would cause a loss of the insufflation of body cavity 56 which can complicate the surgical procedure. Therefore, in many circumstances the surgeon will unnecessarily utilize biologically active compound 12 when no cancer or an infection is present which increases the cost of the surgical procedure. This is in contrast to the present invention which allows the surgeon to (1) begin the surgical procedure, (2) confirm whether biologically active compound 12 is required, and (3) only if needed, administer an accurate controllable amount of biological compound 12 to the patient without interrupting the surgical procedure and withdrawing medical apparatus 10 from body cavity 56.
Second Embodiment of the InventionNow referring to
Sleeve 62 is substantially identical in construction to cannula 16 discussed above in reference to
It should be understood that housing 70 is substantially identical in construction to housing 34 discussed above. Furthermore, fluid delivery channels 66 are in fluid communication with the interior cavity (not shown) of housing 70 in a substantially identical manner as described above in reference to fluid delivery channels 22.
Moreover, each chemical container 74 is constructed in a substantially identical manner as that described above for chemical containers 26. For example, each chemical container 74 has an interior void (not shown; see
Medical apparatus 60 is used in a similar fashion as that described above for medical apparatus 10 with some modifications to account for the presence of sleeve 62. Specifically, trocar 82 is initially located in the first trocar position, and trocar assembly 78 is positioned within working channel 64 of sleeve 62 as shown in phantom in
Body cavity 138 is then insufflated in a similar manner as that described above in reference to
Once chemical containers 74 are positioned in the above described manner, the insufflation valve (not shown) and a pressure control valve (not shown) attached to housing 70 (i.e. a pressure control valve substantially identical to pressure control valve 50) are manipulated such that the interior void of each chemical container 74 is in fluid communication with pressure source 48. Bringing the interior void of each chemical container 74 into fluid communication with pressure source 48 advances biologically active compound 12 contained therein into each fluid delivery channel 66.
Once biologically active compound 12 is located in fluid delivery channel 66, biologically active compound 12 is advanced along the length of sleeve 62 and sealing member 86 in a direction indicated by arrows 146 and 147 as shown 20 in
Referring to
With respect to the differences between medical apparatus 10 and medical apparatus 200, rather than having delivery channels 22 defined in cannula 16, medical apparatus 200 has grooves 202 defined in outer surface 30 of cannula 16. Similar to delivery channels 22, grooves 202 function to deliver a biologically active compound to outer surface 30 of cannula 16. As shown in
Medical apparatus 200 is used in a substantially identical fashion as that described above for medical apparatus 10. Once medical apparatus 200 is positioned as shown in
Once chemical containers 26 are positioned in the above described manner, the insufflation valve 108 and pressure control valve 50 are manipulated such that the interior void of each chemical container 26 is in fluid communication with pressure source 48. Bringing the interior void of each chemical container 26 into fluid communication with pressure source 48 advances biologically active compound 12 contained therein into each groove 202 via conduits 204.
Once biologically active compound 12 is located in grooves 202, biologically active compound 12 is advanced along the length of cannula 16 in a direction indicated by arrow 206 as shown in
If necessary, the distal portion of each groove 202 can have a sponge material 214 disposed therein, as shown in
As shown in
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. For example, while chemical containers 26 and 74 are described above as being separate from housings 34 and 70, respectively, other arrangements are contemplated. As discussed above, one such arrangement incorporates chemical containers 26 and 74 into housings 34 and 70, respectively, such that each chemical container is “built in” or integral to the housing.
Claims
1. A medical apparatus for dispensing a biologically active: compound while performing a minimally invasive surgical procedure in a non-vascular body cavity, comprising:
- a sleeve having an open distal end, wherein (1) said sleeve has a working channel defined therein through which medical instruments may be advanced into the non-vascular body cavity, (2) said sleeve defines a fluid delivery channel which is distinct from said working channel, and (3) said fluid delivery channel has an exit;
- a housing secured to said sleeve, said housing having an interior void defined therein for receiving said biologically active compound, wherein said interior void is in fluid communication with said exit through said fluid delivery channel such that said biologically active compound may be delivered through said fluid delivery channel to an outer surface of said sleeve; and
- a trocar having a closed converging distal tip positionable between a first trocar position and a second trocar position, said trocar being located within said working channel of said sleeve with said tip projecting from said open distal end of said sleeve when said trocar is positioned in said first trocar position, and said trocar is completely removed from said working channel of said sleeve when said trocar is positioned in said second trocar position.
2. The medical apparatus of claim 1, wherein said fluid delivery channel is defined in a wall of said sleeve.
3. The medical apparatus of claim 2, wherein said fluid delivery channel includes a groove defined in a surface of said sleeve.
4. The medical apparatus of claim 1, wherein said sleeve further includes a number of sealing members extending therefrom.
5. The medical apparatus of claim 1, wherein said housing is integrally formed with said sleeve.
6. The medical apparatus of claim 1, wherein said fluid delivery channel is a void space.
7. A medical apparatus for dispensing a biologically active compound while performing a minimally invasive surgical procedure in a non-vascular body cavity, comprising:
- a sleeve having an open distal end, wherein (1) said sleeve has a working channel defined therein through which medical instruments may be advanced into the non-vascular body cavity, (2) said sleeve defines a fluid delivery channel which is distinct from said working channel, and (3) said fluid delivery channel has an exit;
- a housing secured to said sleeve, said housing having an interior void defined therein for receiving said biologically active compound, wherein said interior void is in fluid communication with said exit through said fluid delivery channel such that said biologically active compound may be delivered through said fluid delivery channel to an outer surface of said sleeve;
- a trocar having a closed converging distal tip positionable between a first trocar position and a second trocar position, said trocar being located within said working channel of said sleeve with said tip projecting from said open distal end of said sleeve when said trocar is positioned in said first trocar position, and said trocar is completely removed from said working channel of said sleeve when said trocar is positioned in said second trocar position; and
- a pressure source operatively coupled to the housing for pressurizing the biologically active compound.
8. The medical apparatus of claim 7, wherein said fluid delivery channel is defined in a wall of said sleeve.
9. The medical apparatus of claim 7, wherein said fluid delivery channel includes a groove defined in a surface of said sleeve.
10. The medical apparatus of claim 7, wherein said sleeve further includes a number of sealing members extending therefrom.
11. The medical apparatus of claim 7, wherein said housing is integrally formed with said sleeve.
12. The medical apparatus of claim 7, wherein said fluid delivery channel is a void space.
Type: Application
Filed: Mar 16, 2009
Publication Date: Aug 6, 2009
Inventor: Stephen P. Moenning (Punta Gorda, FL)
Application Number: 12/404,763