SYSTEM AND METHOD FOR DELIVERING LAST MILE COMPUTING OVER LIGHT FROM A PLURALITY OF NETWORK EDGE LOCATIONS
Last mile computing is a cost effective system and method for delivering subscription based multimedia computing, wherein processing is done at network edge and the computed multimedia information is transported over light to be presented on remote end devices. The network edges can include a campus data center location, a metro data center location, a rural data center location, and a traditional telecommunication central office location. The computed multimedia information can deliver data, voice and video services. The last mile computing system enables subscribers to choose and perform last mile computing in a plurality of operating system environments: the system's native master operating system environment; Microsoft operating systems environments; Apple-Macintosh operating systems environments; Unix and Linux operating systems environments; and in other commercially available Legacy operating systems environments. Last mile computing systems are interconnected in a local domain architecture and local domains in turn are interconnected in an inter domain architecture over optically enabled communication networks. Such interconnected last mile computing domains provides a means for delivering last mile services ubiquitously. Subscribers can request last mile services from a last mile computing system regardless of their home location.
This application is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/763,703, which was filed Jun. 15, 2007 and is continuation of and claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 10/353,268, which was filed Jan. 28, 2003 and is now issued as U.S. Pat. No. 7,233,999, the disclosures of which are hereby incorporated by reference in their entirety.
BACKGROUNDDesktop based computing has emerged as the de facto mode of delivering computing replacing mainframe computing. Users have to purchase expensive personal computers and or laptop computers to meet their computing needs. With changes in the processor speed or with the availability of newer programs and operating systems, users are forced to replace their desktop based personal computers and laptop computers every few years. For corporations, management of desktop computers has become the second biggest expense after employee payroll. The purchase price of a desktop computer is only a fraction of the total cost of supporting desktop based systems over their short life span of 24 to 36 months. In addition to mounting costs, desktop based computing also creates huge loss of productivity. Every user of desktop computer is acutely aware of the painful downtime they have to endure when their system fails. Key applications such as database applications are delivered from centralized servers, which traditionally are powerful desktop computers. They typically have the same or a little longer life span than that of desktop computers. Maintenance and management costs of centralized servers can be an order of magnitude higher than desktop computers. A majority of server based applications have a client component, which once again needs to be run on a desktop computer. Those client-server applications that eliminated the client component, and can now be accessed over the Internet, still generally are accessed by using either a desktop based personal computer or a laptop computer.
For mobile users, laptop computers to a certain extent have eased the problem of accessing information when traveling. But some people do not have laptops. For users who have laptops, security of their information becomes a concern. Even the physical security of laptop computers is an issue. They can be easily lost, stolen or broken. But the biggest concern of laptop computer users is the speed by which they access server based applications and data, when away from their office locations. As user programs become more sophisticated and bulky, laptop users, when away from their offices are paralyzed by slow access speeds. Today attachments of over 1 megabyte are commonplace and are growing in size.
Computing to this day remains elusive from a vast number of people. Not everyone can afford a desktop system. Even the richest school districts cannot provide a computer to every student. In its present form, the usage of desktop computers may never reach the ubiquitous penetration of that of telephone service. One vastly overlooked aspect of desktop based computing is the wastage of resources. Often times, only a fraction of personal computer and laptop computer processor and other key resources are utilized. And when these systems are turned off, none of the capabilities are utilized. Such colossal waste of permanently dedicated resources to one individual serves no purpose. Recycling of used desktop and laptop computers is another big problem. Unwanted desktop and laptop computers have already become a major environmental threat.
Recent innovations in the optical segments of the telecommunication industry have gone untapped.
SUMMARYThe present disclosure provides a system and method for delivering multimedia last mile computing from network edge locations over light, embodying a wide array of converged programming, processing, and networking logic. The network edges can embody a plurality of locations—a campus data center location, a metro data center location, a rural data center location, and a traditional telecommunication central office location, for example. The computed multimedia information can deliver a plurality of services—data services, voice services and video services, for example.
In one embodiment, a last mile computing system includes a relatively tightly coupled optical unit and a macro processing system. The macro processing system delivers processing capacity to the last mile computing subscriber based on said subscriber's subscription level. The processing capacity can be of various strength levels. The optical unit includes an optical transceiver and can convert the computed multimedia information in light form and transmit it to be displayed on end devices connected to the client premise device. It can also receive subscriber commands and end device system messages in light form. The optical transceiver can multiplex multiple light signals of different colors that are each capable of supporting a plurality of distinct last mile computing session.
In another embodiment, a last mile computing system includes a multi user, multi tasking master operating system. The master operating system includes a kernel that can provide specialized functionality in addition to a general purpose operating system functionality. The specialized functionality can provide subscribers the freedom to choose and perform last mile computing from a plurality of commercial operating systems. The commercial operating system choices include, for example, Microsoft operating systems, Apple-Macintosh operating systems, Unix and Linux operating systems, and other commercially available Legacy operating systems. Subscribers can also choose to perform last mile computing in a master operating system environment. The commercial operating systems can execute on top of the master operating system environment. The master operating system can mask its presence from the commercial operating systems while also masking the remoteness of subscribers. The commercial operating systems can operate such that they are operating in a standalone mode.
In another embodiment, a last mile computing system includes an allied resources subsystem that can provide system resources for the delivery of the multimedia last mile computing. These system resources include, for example, memory, storage, commercial operating systems and commercial applications and user programs.
In another embodiment, a last mile computing system includes an optically enabled communication network. The optical communication network can connect a centralized portion of the last mile computing system to a remote client premise device.
In another embodiment, a last mile computing system includes a client premise device. The client premise device has an optical transceiver and can interface to connect end devices to display, for example, data, voice, and video services. It can receive the computed multimedia information in light form and further cause it to be displayed on a corresponding end device. The optical transceiver unit can also convert and transmit subscriber commands and device system messages in light form a client premise device can support a plurality of last mile computing session.
Particular embodiments provide a means for the delivery of subscription based multimedia computing over light from network edge locations. The computed multimedia information can support the delivery of data service, voice service, and video service. Subscribers can access last mile computing services by providing authentication credentials to a last mile computing system. Voice services and video services can be delivered transparently, once subscribed.
Last mile computing systems in a defined geographical proximity can be a member of a local last mile computing domain. Members of a local domain can be interconnected over a high capacity optically enabled communication network. Multiple local last mile computing domains in turn can be interconnected in an inter-domain architecture over such an optically enabled communication network. Subscribers of a particular local last mile computing domain can be considered foreign subscribers on a different last mile computing domain, and such a domain can be considered a foreign domain. Subscribers can select a home location to perform last mile computing during an initial subscription process.
Particular embodiments provide mobile subscribers freedom from having to carry equipment. When away from home location, subscribers can perform last mile computing from a last mile computing system. Such a last mile computing system can be on subscribers' local domain or can be on a foreign domain. Regardless of which location subscribers choose to perform last mile computing, subscribers can have complete access to their applications and data. Similar to computing or data service, voice and video services can also be delivered transparently at a foreign last mile computing location of a foreign last mile computing domain. In essence, last mile computing services—for example, data services, voice service, and video service—can follow the subscriber.
Particular embodiments, in which a last mile computing system is interconnected in a local domain, can support over subscription, thereby enabling a last mile computing system to subscribe more subscribers than said system's total service capacity. Subscribers requesting service from a last mile computing system with no servicing capacity can be transparently handed over to a member last mile computing system on the local domain with adequate service capacity.
Certain embodiments may provide each, some, or none of these technical advantages, and certain embodiments may provide one or more other technical advantages which may be readily apparent to those skilled in the art from the figures, descriptions, and claims included herein.
To provide a more complete understanding of the present disclosure and the features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings, in which:
As used herein, the functional terminology of a parent kernel process and a child kernel process can be used interchangeably. The term “subscriber” encompasses an authorized user of the last mile computing system. The term “network edge” encompasses a centralized location from where computing can be performed and delivered. The term “home location” encompasses a subscriber's initial subscription location. The term “home domain” and “local domain” encompasses a group of interconnected last mile computing systems in a defined geography in which one of the last mile computing systems is a subscriber's home location last mile computing system. The term “foreign location” encompasses another last mile computing system that is not a member of the subscriber's home domain. The term “foreign domain” encompasses a group of foreign last mile systems interconnected in a defined geography. The terms “computing services” and “last mile services” can be used interchangeably and encompass data services, voice service, and video service. The term “data service” encompasses computing service.
The tightly coupled networking-processing platform 50 is the heart of the last mile-multimedia computing system 1. It includes two distinct but highly coupled components, a large macro processing system 52 and a high capacity optical unit 51 having an optical transceiver. The macro processing system 52 delivers guaranteed processing capacity to subscribers whereby said capacity is reclaimed and added back to the pool of the available processing capacity at the end of each last mile computing session. During the initial startup or boot of the last mile computing system, a fixed measure of dedicated processing capacity is allocated to run the master operating system 10. This portion of the macro processing unit's 52 capacity is marked protected and remains dedicated to run the master operating system 10 and said capacity is excluded from subscriber use. The architecture of the macro processing system 52 is modular and the total processing capacity of said system can be varied. Such a modular architecture provides a means for offering various processing levels for subscribers to select from. Furthermore, subscribers can also request additional processing capacity by a click of a mouse should their processing requirements increase. The said modular architecture also provides a means for subscribers to reduce their subscribed processing capacity level. The total processing capacity of the macro processing system 52 is less than the subscribers' cumulative processing capacity requirements. The ratio of the processing capacity of the macro processing system 52 to the total subscribers' cumulative processing capacity requirement is variable. For example, a last mile computing system may be able to service 1000 subscribers at a given instance but the system may subscribe 1200 subscribers. This is due to the fact that each subscribed subscribers will not request service simultaneously. Based upon the system usage heuristics, and the density of subscribers, the system's service capacity to subscriber ratio can be lowered or increased.
The optical transceiver of the optical unit 51 of the tightly coupled networking-processing platform 50 transmits the computed multimedia information in light form using general purpose communication protocols over the communication network 70 to the client premise device 100. It also receives subscriber commands through end devices connected to the client premise device 100 and the system messages of these devices. The optical transceiver of the client premise device 100 converts the subscriber commands and devices system messages into light and transmits it over the communication network 70 to be received by said transceiver of the optical unit 51. The optical transceiver of the optical unit 51 thereby forwards said client premise location commands and system messages and passes them to the master operating system 10 for further processing.
The optical transceiver of the networking-processing platform 50 maintains a two way communication session with the client premise device 100. This enables the centralized assembly of the last mile computing system 1 maintain a highly responsive and seamless communication with the client premise device 100. The optical transceiver of said platform 50 multiplexes a plurality of light signals of different colors each color capable of supporting a plurality of distinct last mile computing session.
The two way communication between the optical transceiver 51 and the client premise device 100 can be dynamic. The optical transceiver of the optical unit 51 also provides a means for the last mile computing system 1 to communicate with other last mile computing systems and also the outside world. The optical unit 51 and the macro processing unit 52 of the networking-processing platform 50 are tightly coupled 53. These tightly coupled units of the networking-processing platform 50 can be present in a single chassis and can also be housed in separate chassis.
The master operating system 10 of the last mile computing system 1 is a multi user multi tasking operating system. It includes a kernel and provides general purpose operating system functionality of prior known art while also providing special purpose operating system functionality as described herein.
The master operating system 10 operates in two modes—the user mode 49, and the kernel mode 19. In the user mode 49, the master operating system 10 has common traps 45, and library routines 46 providing operating system functionality of prior known art. The master operating system 10 also provides system call interfaces 91 and 92 to facilitate the execution of processes in the user mode 49 originating from the client premise device 100 environment, the networking-processing platform 50 environment, and the allied resources subsystem 60 environment. System call interface 92 provides a means for processes to change state from user mode 49 to kernel mode 19. System call interfaces 90 and 91 facilitate communication between the kernel processes and the networking-processing platform 50 and the allied resources subsystem 60 environments respectively. Said interfaces also facilitates delivery of results of the processes executing in the kernel mode 19 to the networking-processing 50 and the allied resources subsystem 60 environments respectively
Subscribers can choose to perform last mile computing in the master operating system 10 environment or they can choose one of the commercially available operating systems 64 to perform last mile computing. When a commercial operating system is selected for performing last mile computing, an image of said operating systems gets loaded on top of the master operating 10 for execution. The master operating system 10 while masking its presence also masks the remoteness of the subscriber from the selected commercial operating system.
Subsequently the master operating system 10 facilitates the proper functioning of the commercial operating system as described in subsequent sections.
During the initial boot of the last mile computing system 1, the master operating system 10 is loaded in memory space 61 of the allied resources subsystem 60. The off the shelf commercial operating systems 64 are run on top of the master operating system 10, should subscribers choose to perform last mile computing in a commercial operating system environment. The kernel processes of the master operating system 10 communicate with each other by making use of the services of the interprocess communication process 21 of the system procedures subsystem 20. As described heretofore, the kernel processes communicates with the networking-processing platform and the allied resources subsystem platform by making use of system call interfaces 90 and 91 respectively.
Some kernel process, such as the kernel subscription process 11, the memory manager process 25, and the storage manager process 26 spawn child processes, which are dedicated to facilitate the smooth operation of individual subscribers' last mile computing session. Said child processes communicate the status of the subscriber's session to their parent processes and in case wherein one or more parameters of subscriber's last mile computing session falls below the optimal defined parameters, the parent processes issues executive level commands to the last mile computing system 1 to immediately correct the situation and bring subscriber's last mile computing session to optimal levels of performance.
The allied resources subsystem 60 of the last mile computing system 1 includes memory space 61, storage space 62, commercial applications and user programs space 63 and commercial operating systems space 64. These are the resources employed for delivering last mile computing as described herein. The architecture of the allied resources subsystem 60 can be expanded to include other general purpose devices such as video gateways, voice gateways, cache systems, and load balancing devices etc. The device drivers 13 module of the master operating system 10 may include the logic to facilitate the proper functioning of the newly introduced devices in the allied resources subsystem 60. Devices that master operating system 10 cannot service, the master operating system 10 provides means for introducing driver logic for servicing said devices.
Kernel processes of the master operating system 10 cater to large number of subscribers simultaneously while managing the overall system resources under their management. They do this by spawning identical child processes running in the kernel mode 19 for the administration, management and monitoring of each individual subscriber's last mile computing session. The parent process in turn manages the child processes and also manages the overall system resources while the child process manages the resources under their jurisdiction. The child process continually presents the status of the resources under its jurisdiction to its parent process. Some child kernel processes such as the unique child kernel process once spawned remains alive during the entire subscription period of the subscriber regardless the subscriber is performing last mile computing or not. The child storage manager processes also remain alive during the entire subscription period. However, other child processes such as the child memory manager process, are spawned for the duration of the subscriber session and dies ones the session ends.
The kernel subscription process 11 of the master operating system 10 is the principal process to which other kernel processes of the master operating system 10 reports their operational status. It monitors the overall performance of the last mile computing session to ensure that the service level agreements provided are continually met. Should the last mile computing session fall below optimal performance levels, the kernel subscription process 11 issues executive level commands to correct the situation immediately and brings the last mile computing session to optimal performance levels.
The kernel subscription process 11 has registries wherein said registries contain subscriber subscription and authentication information. When a new subscriber subscribes, the kernel subscription process 11 spawns a child kernel subscription process with a unique identifier, which identifies the child process as the child of the kernel subscription process 11. The child kernel subscription process contains a plurality of subscriber information including: subscriber system resources such as processing power level, memory space, and storage requirement information; subscriber location information; subscriber authentication information; types of last mile services subscribed; and the agreed upon system performance service level agreements, etc. The child kernel subscription process also contains intelligence to request the master operating system of a foreign domain to create a clone of itself when subscriber intends to perform last mile computing from said foreign domain. It also has logic to switch from active to dormant state and from dormant to active state. The kernel subscription processes 11 furthermore encompass service daemons on dedicated ports listening in slave mode to subscriber service requests. The service request can be of type computing or data service wherein the service daemon initiates the facilitation of subscriber authentication for the delivery of said service. Service requests can also be of type voice services and video services wherein the service daemon initiates the transparent delivery of said services request.
During subscriber last mile computing session, a plurality of kernel processes including: the master file system 12; memory manager 25, storage manager 26; applications manager 27; and commercial operating systems manager 28; etc, communicate the status of the resources under their jurisdiction to the child kernel subscription process 11 by using the services of interprocess communication process 21. The child kernel subscription process 11 thereby ensures that the last mile computing system is delivering optimal performance meeting the subscriber subscribed service level criteria. If the last mile computing session performance tends to fall below optimal defined levels, the child kernel subscription process informs the parent kernel subscription process 11, to issue an executive command to correct the situation which the interprocess communication process 21 broadcasts to those kernel processes who are responsible for and to take immediate corrective actions to bring the subscriber last mile computing session to optimal performance levels. The kernel subscriber process 11 administers, manages and monitors the child kernel subscription process it spawns. The spawned child kernel subscription processes run in the kernel mode 49 in the protected memory of the memory space 61. The kernel subscription process 11 also provides a means for subscribers to modify registry entries relating to the subscription criteria. When subscribers intends to change subscription criteria, the last mile computing system challenges the subscriber for appropriate credentials, and when said credentials are provided and verified, subscribers are given access to a subset of subscription related kernel subscription process registry entries, thereby subscribers can change their subscription criteria.
The macro processing system scheduler 24 of the master operating system 10 keeps tracks of the available processing power of the macro processing system 52. When subscribers login to the last mile computing system 1 and requests service, the kernel subscription process 11 authenticates the subscriber and looks up kernel registries to determine subscriber subscription level. It then instructs the macro processing system scheduler 24 to secure and allocate appropriate processing resources to the subscriber session. During the duration of the subscriber's last mile computing session, the allocated processing capacity is guaranteed for said subscriber's use. Based on the heuristics of the subscriber's usage of the processing power, the master operating system 10 may use some of the subscriber allocated processing cycles for other purposes. However, the kernel subscription process 11 in charge of monitoring the service level agreements for the optimal performance of subscriber's session permits the usage of spare processing capacity only when the subscriber's processing requirements fall below predefined thresholds. The last mile system 1 can also be configured not to let the master operating system 10 use the subscriber allocated processing capacity for other purposes, for a select class of subscribers. Said select class of subscribers can be extended to include each subscriber of the last mile computing system 1.
The resource request scheduler 22 of the master operating system 10 enables kernel processes in requesting and securing system wide resources. When oversubscribed, the resource request scheduler 22 provides a means for the last mile computing system 1 to secure processing and other resources from peer last mile computing systems on a local domain. The kernel device drivers 13 module encompasses peripheral and other devices driver logic, the device controllers 44 of the hardware controller subsystem 40 provides means for controlling said devices. Device drivers 13 and device controllers 44 also provide means for accessing, administering and controlling the client premise device 100 location devices. The device drivers 13 module of the master operating system 10 include logic to facilitate the proper functioning of the commonly used devices that may get introduced in the overall system architecture, such as the introduction of new devices in the allied resources subsystem 60. Those devices without the driver and control logic embedded in the master operating system 10 environment, the master operating system 10 provides a means for introducing said devices, driver and control logic by making use of the kernel hooks of the master operating systems environment 35.
The master file system 12 of the master operating system 10 provides read write operation from and to the memory space 61 and storage space 62 of the allied resources subsystem 60. The master file system 12 can also perform read write operations from and to, peripheral storage devices connected to the client premise device 100. The kernel hooks 30 subsystem of the type of Microsoft Environment 31, Apple-Macintosh Environment 32, Unix and Linux Environment 33, and Legacy Systems Environment 34 provides a means for the master operating system 10 to invoke the file system functionality of said commercial operating systems to perform read write operations to the memory 61 and storage 62 of the allied resources subsystem 60 when a commercial operating system is selected by the subscriber to perform last mile computing. The kernel hooks 30 of the said types also mask the presence of the underlying master operating system from the commercial operating systems, whereby the presence of the master operating system is transparent to the commercial operating systems. Similarly, the master operating system 10 by making use of the kernel hooks 30 subsystem provides a means for programming in the commercial operating system environment. The kernel hooks of the type master operating system environment 35 provide a means for programming in the master operating system environment 10. The kernel hooks 30 of the appropriate type transparently pass through the subscriber commands and client premise device 100 system messages to the commercial operating systems. The appropriate kernel hooks also mask subscriber remoteness from said commercial operating systems. Quintessentially, the kernel hooks 30 subsystem simulates conditions conducive to the operation of commercial operating systems wherein said commercial operating systems operates as such they are in a standalone mode of execution.
During initial boot of the last mile computing system 1, the master operating system 10 is loaded in the memory 61 of the allied resources subsystem 60 and is run on pre-determined macro processing system space 52. This portion of the macro processing space 52 is exclusive for the operation of the master operating system 10. The system procedures control subsystem module 20 invokes the commercial operating systems manager 28 to determine the various types of commercial operating systems available in the commercial operating systems space 64. Subsequently the commercial operating systems manager 28 requests the hardware controller module 40 to invoke the allied resources subsystem controller 43 to load images of the available commercial operating systems from the commercial operating systems space 64 in the memory 61 of the allied resources subsystem 60. The allied resources subsystem 60 keeps the loaded images of the commercial operating systems 64 in ready state. When a subscriber requests service from the last mile computing system 1, the kernel subscription process 11 determines the operating system preference of the subscriber. If a commercial operating system selection is indicated, the kernel subscription process 11 issues a command to the system procedures control subsystem 20 to invoke the commercial operating systems manager 28 to oversee the configuration of the subscriber selected commercial operating system in the subscriber allocated resources. Then the hardware controller 40 is notified to invoke the allied resource subsystem controller 43 to configure the readily available image of the subscriber preferred commercial operating system such that the subscriber can begin performing last mile computing in the selected commercial operating system environment.
During subscriber login, based on subscriber subscription level and criteria, the macro processing system scheduler 24 allocates guaranteed processing capacity on the macro processing system 52 space, while the memory manager 25 allocates dedicated memory resources in the memory space 61 to the subscriber. If it is determined that the subscriber has chosen a commercial operating system to perform last mile computing, the commercial operating systems manager 28 by making use of the services of the allied resource subsystem controller 43, facilitates the configuration of the subscriber preferred operating system in subscriber allocated resources. The macro processing system controller 42 ensures that the subscriber selected operating system is run correctly in the macro processing system space 52 allocated for said subscriber. The commercial operating systems manager 28 then uses the appropriate kernel hooks subsystem 30 to monitor and manage the proper functioning of the subscriber selected commercial operating system.
When a newer version of commercial operating systems system is available, copies of such versions are made available in the commercial operating systems space 64. The commercial operating systems manager 28 facilitates the notification of the availability of a newer version to the subscriber and should the subscriber choose to upgrade, the commercial operating systems manager 28 by making use the services of the allied resource subsystem controller 43 facilitates the transition to a newer version. The kernel subscription process 11 also updates its registry to the newer version of the operating system. Subscribers can also invoke their subscription registries and switch back to an older version of a commercial operating system or to a different commercial operating system environment for example from a Microsoft operating systems to a Apple-Macintosh operating system. The master operating system 10 also provide means for subscribers to switch back to the master operating system 10 environment to perform last mile computing. When subscribers switch from a commercial operating system based last mile computing to the master operating system based last mile computing, applications and data that was generated in a commercial operating system environment can continually be accessed by invoking the appropriate kernel hooks 30. During subscription process, subscribers can choose to perform last mile computing in the master operating system 10 environment.
During the initial subscription process, storage manager 26 of the master operating system 10 oversees the creation of dedicated storage in the storage space 62 of the allied resources subsystem 60. Unlike other resources such as memory and processing capacity that are allocated to subscribers for the duration of the last mile computing session, storage is permanently assigned for the exclusive use of each individual subscriber of the last mile computing system 1. When a new subscriber applies for subscription, the storage manager receives input from the kernel subscription process 11 to spawn a permanent and unique child storage manager process to create subscriber exclusive storage in the storage space 62 of the allied resources subsystem 60. The unique storage child manager makes use of the services of the allied resource subsystem controller 43, and crafts the most advantageous storage for said subscriber in the storage space 62. Subsequently the child storage manager safeguards the newly created subscriber storage space and provides a means for maintaining the integrity of subscriber content. Once spawned the unique child storage manager stays alive during the entire duration of subscriber subscription. It also keeps the kernel subscription process 11 informed about the subscriber storage status and content integrity. Subscribers can invoke their kernel subscription process registries to request additional storage space. Under such conditions the unique child of the storage manager 26 for said subscriber negotiates with the allied resource subsystem controller 43 to obtain the most suitable and contiguous storage for the subscriber in storage space 62. The storage manager 26 also enables subscribers to relinquish excess storage.
The applications manager 27 of the master operating system 10 enables installation and removal of user programs and commercial applications in the master operating systems environment and in the selected commercial operating systems environment. Copies of the widely used commercial applications loaded after the initial system boot are readily available for use by the subscribers. The application manager 27 also enables installation of user specific commercial applications and user programs in the permanent subscriber storage of storage 62 of the allied resources subsystem 60 by making use of the services of the master file system 12. Furthermore, the application manager provides a means for loading said subscriber specific applications and user programs in the subscriber allocated memory space for ready execution. The application manager 27 also enables subscribers to perform programming in the commercial applications environment by making use of the services of the appropriate kernel hooks subsystem 30. Subsequently the applications manager 27 provides means for monitoring and management of said commercial applications and user programs.
The memory manager 25 is responsible for the administration, monitoring and management of memory space 61 of the allied resources subsystem 60. During the initial system boot of the last mile computing system 1, the master operating system 10 gets loaded in a protected portion of the memory space 61. The memory manager 25 takes into account this portion of the memory space 61 where the master operating system 10 resides and marks the said memory area protected such that no other process or program can use said memory space. The memory manager 25 also protects the master operating system's 10 memory space by not allowing other processes and programs use said protected memory of memory space 61, even should such processes and programs attempt to use it. The memory manager 25 further marks additional memory from memory space 61 as reserved. Said reserved memory space is designated for the use of spawned kernel process and also to load the images of commercial operating systems and commercial applications to be readily available. Eternal processes such as child kernel subscription processes, child storage manager processes, etc. reside permanently in the reserved memory of memory space 61.
The memory manager 25 keeps tracks of the total memory space 61 and how much is available at various times. During subscriber login, it receives instructions from the kernel subscription process 11, to allocate subscriber subscribed measure of memory for the subscriber's last mile computing session. The memory manager 26 then spawns a unique child memory manager process to service the kernel subscription process's 11 command. The newly spawned child memory manager process, by making use of the services of the allied resource subsystem controller 43 of the hardware controller subsystem 40, harvests the most suitable memory from memory space 61 in the subscriber subscribed measure and allocates it for subscriber use. And upon memory allocation in said measure, the kernel subscription process 11 checks it registry to determine if a commercial operating system is selected by the subscriber to perform last mile computing; and if so instructs the commercial operating systems manager 28 to load the readily available copy of the selected operating system into the memory and configure it for execution. The child memory manager process of the memory manager 25 then provides a plurality of memory management services including: caching: memory allocation; fragmentation and file mapping; paging; garbage collection; LIFO/FIF0; memory hierarchy and swapping; etc., during the duration of the subscriber's session for the continuous last mile computing session of said subscriber. The memory manager 25 then deducts the subscriber assigned memory from the total memory space 61. As the memory manager 25 continues to spawn child processes it assigns a unique identifier to identify each child process. The memory manager 25 then manages the child processes while managing the overall memory space 61 while the child memory manager processes manages the memory of memory space 61 under their respective jurisdictions. Based on the heuristics of the subscriber's usage of allocated memory, the master operating system 10 may use some of the subscriber allocated processing cycles for other purposes. However, the kernel subscription process 11 in charge of monitoring the service level agreements for the optimal performance of subscriber's session permits the usage of spare processing capacity only when the subscriber's memory usage requirements fall below predefined thresholds. The last mile system 1 can also be configured not to let the master operating system 10, use the subscriber allocated memory for other purposes, for a select class of subscribers. Said select class of subscribers can be extended to include each subscriber of the last mile computing system 1. At the end of the subscriber's last mile computing session, the child memory manager process reclaims the memory that had been assigned to the subscriber and includes it back to the available pool of memory space 61. The child memory manager process then informs its parent, the memory manager 25, to issue a grateful death command and dies gracefully.
Subscriber's initial subscription location becomes their default home last mile computing location. The vast number of last mile computing systems connected via optically enabled communication networks offer subscribers the ability to perform last mile computing from a foreign domain when away from their home location. When subscribers requests service from a foreign last mile computing location, the kernel subscription process 11 of the home location gets notified of the subscriber's intent to perform last mile computing from a location. The kernel subscription process 11 of the home location negotiates the availability of system resources for the subscriber to perform last mile computing at the foreign location. Once the system resources are guaranteed, the kernel subscription process 11 informs the child kernel subscription process which has the subscriber information to create a clone of itself in the foreign last mile computing location of domain. The child kernel subscriber process requests the master operating system 10 of the foreign last mile computing system to create a clone of itself. The original child kernel subscription process at the subscriber's home location thereafter provides the subscriber's subscription information to the master operating system of the foreign last mile computing system in the foreign domain. The master operating system of the foreign last mile computing system thereby creates an exact replica of the child kernel subscription process in its kernel environment.
The cloned kernel subscription process thereafter takes over the administration, management and monitoring of the last mile computing session at the foreign last mile computing location. Subsequently said cloned process facilitates the transfer of subscriber applications and data content to the foreign location. At this time, the child kernel subscription process in the home domain goes into a dormant stage. The active cloned process in the foreign domain continually keeps the kernel subscription process 11 in the home domain updated about the performance of the last mile computing session at the foreign location. At the end of the subscriber session at the foreign last mile computing location, the cloned child kernel subscription process facilitates the synchronization of subscriber applications and data from the foreign location to the subscriber's default home location. Subsequently, the cloned kernel subscription process informs the original child kernel subscription process to come out of dormant mode into active mode. The cloned subscriber process then requests the master operating system 10 of the foreign location to issue a grateful death command and dies gracefully.
The optical unit scheduler 23 of the master operating system 10 keeps tracks of the total and available transceiver capacity of the optical unit 51. Working in tandem with the optical unit controller 41 of the hardware controller subsystem 40 it enables the optical unit 51 of the networking-processing platform 50 to communicate effectively and efficiently with a plurality of client premise devices 100. A plurality of master operating system 10 processes makes use of buffer cache 14 in ways similar to the usage of buffer cache of prior known art.
The total processing capacity of the macro processing system 52 is less than the cumulative processing requirements of the subscribers for said last mile computing system 1. As described heretofore, this is a variable ratio based upon a plurality of criteria including: system capacity; geography; number of users; types of users; etc. When the last mile computing system 1 reaches it maximum processing capacity and when additional subscribers request service, the macro processing system scheduler 24 informs the resource request scheduler 22 that the home system has exhausted processing capacity and additional subscribers need to be serviced. The resource request scheduler 22 thereby confirms with other resource managers within its home environment to determine what additional resources needs to be secured from peer last mile computing systems on its local domain. Subsequently the resource request scheduler 22 broadcasts a resource request message on the local domain. It then collects and processes replies of each last mile computing system, and subsequently secures resources on the least subscribed last mile computing system on the local domain. Next, the oversubscribed subscribers are transparently handed over to the selected peer last mile computing system for service.
The remote sensor 102 transmits and receives information from a plurality of general purpose wireless input output device including: wireless phones; wireless keyboards; wireless mice; wireless speakers; wireless biometrics devices; etc. Network connection interface 103, connects the client premise device 100 to the communication network of
At block 210, the logic is for the client premise device to broadcast a service request message on the network. The service request message could be broadcasted to each local domain last mile computing systems. In a local domain one or more last mile computing systems can be present. The number of last mile computing systems in a local domain depends primarily on the subscriber density in a given geography. Though the service request message may be received by more than one last mile computing systems, the tightly coupled networking-processing platform of that last mile computing system responds in whose jurisdiction the client premise device location falls. As the logic moves to block 212, the networking-processing platform of the in-jurisdiction last mile computing system acknowledges the client premise device's request for service. This acknowledgement logic at block 212 is in the form of the servicing networking-processing platform presenting its unique system identification, which can be a combination of its Ethernet address and other uniquely identifying system parameters. This unique identification pertains to the service providing last mile computing system in whose jurisdiction said client premise device location falls. At this juncture wherein the in-jurisdiction networking-processing platform indicates to the client premise device 100, that it is the service provider, the client premise device, populates its service provider identification field.
If the decision at state 201 is positive, the logic moves to block 202. The logic at block 202 is that the last mile computing system understands that the service has been previously subscribed at the present client premise device location. At this juncture, the master operating system instructs the kernel subscription process to issue a login prompt to the subscriber. As the logic at block 202 is executed, wherein a login prompt is displayed to the subscriber, the logic moves to the diamond decision box 203. If the decision at state 203 is positive, wherein the subscriber has provided the correct authentication credentials, the last mile computing system authenticates the subscriber and the logic moves to block 204 and then to block 206 wherein processing and allied subsystem resources are secured. The master operating system then configures the preferred operating system and loads selected user programs as described in
A negative decision at state 203 may imply an additional subscriber wants to subscribe to the last mile computing system from said location. The logic then moves to state 213, which is the diamond decision box. State 213 is to determine whether the subscriber at the present client premise device location has a pre-selected subscription. The pre-selected subscription is primarily for corporate users whose corporation has signed a blanket last mile computing service for its employees. The manner in which the decision test at state 213 is conducted is that the networking-processing platform presents a window on the subscriber display device prompting the subscriber to input pre-selected service code. If the logic at decision diamond 213 is positive, the logic then moves to block 216. At block 216, the logic is to prompt the subscriber to enter the pre-selected service code. The last mile computing service provider may offer a plurality of last mile computing services including: gold service package; silver service package; bronze service package; etc. These service packages may correspond to different processing power levels and different system resources such as memory and storage space etc. The logic at block 216 is for the subscriber to enter the requested information. Once the last mile computing system verifies the pre-selected service code, the logic moves to block 218. If the diamond decision at state 213 is negative, the logic moves to block 214. At block 214, the logic is for the last mile computing system to present a series of subscription choices to the subscriber. Once the subscriber selects the desired subscription level and service types, the logic moves to block 218.
At block 218, the last mile computing system prompts the subscriber to enter authentication credentials. Once the subscriber provides authentication credentials, the logic moves to block 220. The logic at block 220 is that the kernel subscription process of the master operating system spawns a child kernel subscription process whose registries are populated with the subscriber's subscription information which includes subscribed service types, subscriber's processing power level, system resources requirement, preferred operating system, authentication information, and other related information.
The logic then moves to block 222 and then to block 224 wherein processing and allied subsystem resources are secured. Since this is a new subscriber, at block 224 a unique child storage manager process is spawned which then harvests the most advantageous storage from storage space of the allied resource subsystem and allocates the harvested storage space permanently for subscriber's exclusive use. The master operating system then configures the preferred operating system and loads selected commercial application and user programs as described in
In case of negative decision at state 231, the logic moves to block 232 wherein the home location broadcasts a resources request on the local domain of which the last mile computing system is a member. The architecture of the local domain last mile computing systems is designed such that last mile computing systems within a local domain are capable of servicing the oversubscribed subscriber of a peer last mile computing system. The logic then moves to block 234 where members of the local last mile computing domain responds with their available service capacity and the home location last mile computing system selects the one that is most suitable to service the present oversubscribed subscriber. This selection is usually a function of which of the peer last mile computing systems has the most available capacity. However, the home location last mile computing system can also modify the selection criteria for choosing the best suited peer to service the oversubscribed subscriber. Once the best peer is identified to service the oversubscribed subscriber, the logic then moves to block 236.
At block 236, the logic is for the home location last mile computing system to secure the processing capacity meeting the subscriber's subscription criteria. Once the processing resources are secured, the logic then moves to block 238 where the logic is to acquire the allied subsystem resources in the selected last mile computing system. In this case, where the processing and other allied subsystem resources are acquired on a peer last mile computing system in a local domain, the peer resources dedicated to the oversubscribed subscriber becomes a virtual extension of the system requesting such resources. This is possible due to the fact that the peer last mile computing systems in a local domain are connected over a high capacity, resilient and self healing optically enabled communication network. In most cases, if there exists processing capacity at a last mile computing location to service a newly service requesting subscriber, then there are also exists other resources to service the service requesting subscriber. However, the last mile computing systems in a local domain can be designed to mix and match resources from other last mile computing systems within that domain.
If the decision diamond of state 231 is determined to be positive, then the logic moves to block 240 and then to block 242 wherein processing and allied subsystem resources are secured at the home location. The logic then moves to the diamond decision 243, which determines if the master operating system is selected as the preferred operating system to perform last mile computing. Checking the registry of the present subscriber's unique child kernel process, it is determined whether or not the subscriber has chosen to perform last mile computing session using the native master operating system. If the diamond decision of state 243 is negative, then the logic moves to block 244 where the subscriber's chosen operating system is loaded to run on top of the master operating system. The logic then moves to block 246 where subscriber specific commercial applications and user programs are loaded in the subscriber allocated memory of the memory space of the allied resources subsystem. Thereafter the logic moves to the circular block 248 wherein the desktop settings based on the selected commercial operating system environment are displayed on the subscriber's display and the subscriber can begin performing last mile computing.
If the diamond decision of state 243 is positive, the master operating system 10 prepares to provide the entire operating system functionality to the present subscriber. The logic then moves to block 250 where commercial applications and subscriber selected user programs are loaded and configured in the subscriber allocated memory and processing resources. The logic then moves to the circular block 252 wherein the desktop settings based on the master operating system environment are displayed on the subscriber's display and the subscriber can begin performing last mile computing in the master operating system environment.
If the diamond decision at state 261 turns negative, it is established that the service requesting subscriber is a member of a foreign domain and the logic moves to block 262. At block 262, the subscriber's login information is forwarded to the closest mirrored authentication repository. This mirrored authentication repository can be on the present local last mile computing domain or can be on one of the adjacent last mile computing domains. At block 262, when the authentication information is sent to the closest mirrored authentication repository, the subscriber is authenticated and the logic moves to block 264. At block 264, the logic is to identify the subscriber's home domain location. This information about the subscriber's home location is also stored in the mirrored authentication repository. Once the subscriber's home location is identified, the logic moves to block 266 wherein the original subscriber kernel subscription process is notified of the subscriber's intent to perform last mile computing in a foreign last mile computing location. The original child kernel subscription process provides the subscriber's subscription details and requests the master operating system of the foreign last mile computing system to create a clone of itself in the foreign last mile computing location, and the logic then moves to block 268 wherein the original child kernel subscription process releases shared resources. This entails temporarily removing the subscriber earmarked resource requirement from the home last mile computing system. For example, if the home last mile computing system has 100 subscribers subscribed, now when one of the subscriber is performing computing at a foreign domain; the home computing system will consider it has only 99 subscribed subscribers. Thereafter the original child kernel subscription process after being acknowledged that its clone has been created at the foreign location goes into the dormant mode. The logic then moves to block 270, where the subscriber is re-authenticated at foreign domain. This can happen transparently or the foreign last mile computing system can prompt the subscriber to enter login credentials once more. At block 272, the clone subscription process secures last mile computing resources based on the present subscriber's subscription criteria. The logic then moves block 274 wherein subscriber data is transferred to the foreign last mile computing location. The subscriber data at block 274 can be transferred from the home location to the foreign location in one of two ways. The mostly used subscriber data may be transferred or the entire data may be transferred from the home location to the foreign location. If the present subscriber has performed last mile computing at the present foreign location multiple times, then the entire subscriber data may be transferred. This data is transferred to a secure storage location at the storage space 62 of the foreign domain's allied resources subsystem. Regardless of whether partial data is transferred or the entire data is transferred to the foreign location, this data transfer remains temporary. The subscriber's permanent storage space at the home location remains exclusive to the subscriber and the data content remains unchanged. When data is transferred to the foreign location, it implies a copy of the original data. During the last mile computing session at the foreign location, as the data content changes, it gets synchronized with the original data at the subscriber's home location. Once either partial or the entire data is transferred to the foreign location, the logic moves to circular block 276 wherein the foreign last mile computing system based on the subscriber's preferred operating system environment displays desktop settings and the subscriber can begin performing last mile computing at said foreign location.
If the diamond at 321 turns negative implying that the subscriber at said client premise device is not performing last mile computing. The logic then moves to block 326 whereby the last mile computing system without challenging subscriber to provide authentication credentials assigns system resources transparently to process subscriber voice and video services request. Subsequently the logic moves to the circular block 328 whereby the requested services are delivered to the subscriber.
While particular embodiments are described and illustrated, the particular embodiments described and illustrated are only representative of the subject matter contemplated. The scope of the present disclosure encompasses embodiments that are or could become apparent to those skilled in the art, and the scope of the present disclosure is to be limited only by the appended claims. In the claims, reference to an element in the singular is not intended to mean one and only one, but rather one or more unless explicitly stated. The present disclosure encompasses structural and functional equivalents to the elements of the embodiments described and illustrated that are known or later come to be known to those of ordinary skill in the art. Moreover, it is not necessary for a device, method, or logic to address each and every problem sought to be solved by the present disclosure to be encompassed by the present claims. No element, component, or method step in the described and illustrated embodiments is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. sections 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
Claims
1. An apparatus comprising:
- a macro processing component operable to: allocate processing to a client device to enable computing of multimedia content from a plurality of network-edge locations; and designate a portion of allocated processing to execute a master operating system operable to enable subscriber selection of an operating system from a plurality of available operating systems to perform the computing; and
- an optical transceiver coupled to the macro processing component that is operable to: receive computed multimedia content; convert the computed multimedia content to light form; and transmit the computed multimedia content over a network to the client device.
2. The apparatus as recited in claim 1, wherein the multimedia content comprises one or more of audio, data, video, or voice.
3. The apparatus as recited in claim 1, wherein the optical transceiver is further operable to multiplex a plurality of light signals of different wavelengths to enable distinct computing sessions with a plurality of client devices.
4. The apparatus as recited in claim 1, wherein the plurality of available operating systems comprise one or more closed source operating systems and one or more open source operating systems.
5. The apparatus as recited in claim 1, wherein the master operating system is executable by the allocated processing from a protected memory space of an allied resources subsystem communicatively coupled to the macro processing component.
6. The apparatus as recited in claim 1, wherein the macro processing component and the optical transceiver are coupled within a common chassis.
7. The apparatus as recited in claim 1, wherein the macro processing component is operable to allocate processing at a plurality of subscriber selectable levels.
8. A method comprising:
- allocating processing power to a client device to enable computing of multimedia content from a plurality of network-edge locations; and
- designating a portion of allocated processing power to execute a master operating system operable to enable subscriber selection of an operating system from a plurality of available operating systems to perform the computing;
- converting computed multimedia content to light form; and
- transmitting the computed multimedia content over a network for display at the client device.
9. The method as recited in claim 8, wherein the multimedia content comprises one or more of audio, data, video, or voice.
10. The method as recited in claim 8, wherein the transmitting is performed by an optical transceiver that is configured to multiplex a plurality of light signals of different wavelengths to enable delivery of the multimedia content to the client device.
11. The method as recited in claim 8, further comprising:
- ascertaining a subscriber selection of one of the plurality of available operating systems; and
- computing the multimedia content using a selected operating system.
12. The method as recited in claim 8, wherein the plurality of available operating systems to perform the computing includes the master operating system.
13. The method as recited in claim 1, wherein allocating processing power comprises allocating the processing power at a subscriber selected level.
14. The method as recited in claim 1, further comprising:
- obtaining the master operating system from a protected portion of memory; and
- executing the master operating system using the designated portion of the allocated processing power.
15. A storage device storing instructions that, if executed by one or more components of a networking processing platform, cause the one or more components of the networking processing platform to perform a method comprising:
- allocating processing to a client device to enable computing of multimedia content from a plurality of network-edge locations;
- designating a portion of the allocated processing to execute a master operating system operable to enable subscriber selection of an operating system from a plurality of available operating systems to perform the computing; and
- generating computed multimedia content using a selected operating system executed via allocated processing.
16. The storage device as recited in claim 15, wherein the instructions, if executed by one or more components of a networking processing platform, further cause the one or more components of the networking processing platform to perform a method comprising:
- converting computed multimedia content to light form; and
- transmitting the computed multimedia content over a network to the client device.
17. The storage device as recited in claim 15, wherein the multimedia content corresponds to one or more resources available from an allied resources subsystem component.
18. The storage device as recited in claim 15, wherein the instructions, if executed by one or more components of a networking processing platform, further cause the one or more components of the networking processing platform to perform a method comprising:
- ascertaining a selected operating system from the plurality of available operating systems; and
- loading an image of the selected operating system on top of the master operating system to perform the computing.
19. The storage device as recited in claim 15, wherein the instructions, if executed by one or more components of a networking processing platform, further cause the one or more components of the networking processing platform to perform a method comprising:
- ascertaining a selected operating system as the master operating system; and
- executing the master operating system to generate the computed multimedia content.
20. The storage device as recited in claim 15, wherein the instructions, if executed by one or more components of a networking processing platform, further cause the one or more components of the networking processing platform to perform a method comprising:
- authenticating a subscriber to interact with one or more resources available from an allied resources subsystem component via the client device; and
- obtaining the multimedia content from the allied resources subsystem component to perform the computing, wherein the multimedia content corresponds to the one or more resources.
21. A memory device storing a master operating system that, if executed by a macro processing component, causes the macro processing component to perform a method comprising:
- generating an instance of one of a plurality of operating system environments for a client device responsive to a selection of the operating system environment received from the client device;
- computing multimedia content for the client device in accordance with the selected operating system environment; and
- communicating computed multimedia content to an optical transceiver coupled to the macro processing component to cause the optical transceiver to convert the computed multimedia content to light form for delivery over a network to the client device.
22. The memory device as recited in claim 21, wherein the selected operating system environment comprises the master operating system.
23. The memory device as recited in claim 21, wherein the selected operating system environment comprises a commercially available operating system.
24. The memory device as recited in claim 21, wherein the method further comprises:
- obtaining the multimedia content from an allied resources subsystem component, wherein the multimedia content corresponds to one or more resources made available to the client device by the allied resources subsystem component.
25. The memory device as recited in claim 21, wherein the master operating system is configured to support a plurality of computing sessions with a plurality of client devices.
26. An allied resources subsystem comprising:
- memory;
- one or more resources available on a subscription basis residing in the memory; and
- a communication interface operable to: receive a selection of resources for delivery to a client device; and communicate selected resources to a network processing platform configured to cause the network processing platform to: compute multimedia content corresponding to the selected resources; and convert the computed multimedia content to light form for delivery over a network to the client device.
27. The allied resources subsystem as recited in claim 26, further comprising a master operating system residing in a protected portion of the memory for execution by the network processing platform.
28. The allied resources subsystem as recited in claim 27, wherein the master operating system is executable from the protected portion of the memory to:
- generate an instance of one of a plurality of operating system environments for the client device responsive to a selection of the operating system environment received from the client device; and
- cause the network processing platform to compute the multimedia content in accordance with the selected operating system environment.
29. The allied resources subsystem as recited in claim 26, further comprising storage space having a plurality of portions each of which is assigned for exclusive use by a corresponding subscriber.
30. The allied resources subsystem as recited in claim 26, wherein the one or more system resources comprise one or more of memory, storage, operating systems, or software applications.
Type: Application
Filed: Apr 16, 2009
Publication Date: Aug 27, 2009
Inventor: Altaf Hadi (Murphy, TX)
Application Number: 12/424,891
International Classification: G06F 15/16 (20060101);