Shallow Water Anchor System For Fishing Boats

A shallow water anchor system provides an upper arm having a proximal end and a distal end, the proximal end of the upper arm hingedly attached to a hull of the boat whereby the upper arm is adapted to move between a raised position and a lowered position; a lower arm having a proximal end and a distal end, the proximal end of the lower arm hingedly attached to the hull of the boat at a point lower on the boat than the upper arm; a cross beam hingedly attached between the distal end of the upper arm and the distal end of the lower arm; an actuator adapted to move the upper arm between the raised position and the lowered position, the actuator hingedly attached to the hull of the boat at the proximal end of the lower arm and further hingedly attached to the distal end of the upper arm; and a rod affixed to the distal end of the lower arm, wherein the rod is adapted to engage the bottom when the upper arm is in the lowered position.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This is a Continuation in Part of U.S. patent application Ser. No. 12/354,819 filed Jan. 16, 2009; which application claims the benefit of U.S. Provisional Application Ser. No. 61/068,087 filed Mar. 5, 2008.

FIELD OF THE INVENTION

The present invention relates generally to the field of anchoring devices for marine vessels, and, in particular, to an articulated anchor system adapted to hold a small boat in a stationary position in shallow water.

BACKGROUND OF THE INVENTION

Along many coastal areas of the United States, and in certain lakes and estuaries, fishermen fish from small boats in shallow water. In these types of fishing areas, there are extensive shallow, sandy-bottomed or grassy-bottomed regions, generally referred to as flats, that are populated by various sport fish. Fishermen who fish these flats often use one or another of several methods of holding a boat at a selected location. These methods include the use of conventional anchors, the use of a pole shoved into the bottom and secured to the boat, or other methods.

As described by Oliverio et al. in U.S. Pat. No. 6,041,730, the use of anchors such as a Danforth or a similar type of anchor by flats fishermen has several shortcomings. First, such types of anchor do not firmly fix the position of the boat so that the boat can may drift at the end of the anchor line. Second, when setting and retrieving an anchor, the anchor's flukes may rip sea grass out of the bottom and cause ecological damage. Finally, when the anchor is hauled in, mud and sea grass from the anchor can foul the inside of the boat.

Other means of securing a boat in shallow water include a pole-like structure to which the both may be secured. In addition to Oliverio et al., other references dealing with similar means include U.S. Pat. No. 458,473 wherein MacDonald describes a jointed structure hinged to a submersible coastal artillery battery and comprising a pole inserted into the bottom of a shallow body of water. Other elongate pole-like anchoring mechanisms not hingedly secured to a vessel are taught by Mestas et al. in U.S. Pat. No. 4,960,064 and by Stokes in U.S. Pat. No. 4,702,047. Mechanisms other than anchors that are hingedly attached to a vessel hull are taught, inter alia, by Alexander, in U.S. Pat. No. 2,816,521 and by Sherrill in U.S. Pat. No. 3,046,928, both of whom show stem stabilizers, and by Doerffer, in U.S. Pat. No. 4,237,808, who shows a braking device.

Unfortunately, the structure of Oliverio et al. requires an upper arm and a lower arm which together form a parallelogram, with one side of the parallelogram anchored to the transom of the boat, and the opposite side of the parallelogram retaining a rigidly fixed anchor pole. With this structure, the total range of movement of the mechanism is by necessity approximately 150°. This severely limits the depth at which the anchor may be effectively used. Further, this structure is heavy, due in large part to the number of structure elements which are required in order for the anchor to properly function. Finally, the structure shown and described in Oliverio et al. is rigidly dictated in the mounting of the parallelogram to the transom of the boat. In order to adapt the mounting of the structure to a boat with any slant other than that predetermined by the structure requires shims and adapter plates to arrange the anchor pole to the proper deployed position.

Thus, there remains a need for a shallow water anchor that provide a range of movement of 180°, or even more, to maximize the effect depth of the anchor. The anchor should preferably be light-weight to make the anchor easier to use and make the most of the prime mover of the mechanism. The mounting structure of the apparatus should also easily adapt the mount to any reasonable slant of the transom relative to the surface of the water. The present invention is directed to filling that need in the art.

BRIEF SUMMARY OF THE INVENTION

The shallow water anchor shown and described below solves these and other drawbacks of known anchor systems by providing a single arm arrangement with a fixed end of the arm mounted to the transom of a boat and the distal end of the arm retaining a rod adapted to be buried into the bottom of a lake, estuary, or other shallow body of water. The fixed end of the arm includes a first sheave and the distal end of the arm includes a second sheave, with a cable under tension between the first and second sheaves. A hydraulic operating mechanism drives a sliding block clamped to the cable. A hydraulic pressure is applied to one side or the other of a hydraulic piston with a cylinder to drive the operating mechanism, the sliding block moves back and forth thereby moving the arm up and down in a rotary motion about a shaft on the fixed end of the arm. In the down position, the rod is embedded into the bottom. In the stowed position, the arm is oriented straight up in a vertical position.

By providing a single arm for retaining the rod, the entire mechanism can be made much lighter. This also means that the hydraulic means can be much more efficiently used. Further, by using the cable and sheave arrangement, a much shorter hydraulic cylinder stroke is required to move the arm, which results in a faster deployment of the rod (3 seconds vs. 6 seconds for known anchor systems). The mounting system for the fixed end of the arm provides for an adjustment, so that the system can be easily mounted to various angles of transom for boats without any shims of adapting brackets. A shear pin is provided for the outer sheave to reduce the likelihood of damages to the rod if the boat should be underway with the rod deployed. A spring-loaded flexible subsystem for the arm may be used, to help keep the boat in place when the boat is subjected to wave action.

These and other features and advantages of this invention will be readily apparent to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, more particular description of the invention, briefly summarized above, may be had by reference to embodiments thereof which are illustrated in the appended drawings.

FIG. 1 is a side, elevation view showing the anchor in several positions.

FIG. 2 is a sectional side view of the presently preferred embodiment of the anchor in a horizontal position.

FIG. 2A is a detail side view of a sliding block portion of FIG. 2.

FIG. 3 is a sectional top view as indicated by section lines 3-3 in FIG. 2

FIG. 4 is a sectional side view showing the device in a partially raised position.

FIG. 5 is a sectional top detail view as indicated by section lines 5-5 in FIG. 6, showing the fixed end of the main arm in more detail.

FIG. 6 is a sectional side detail view as indicated by section lines 6-6 in FIG. 5.

FIG. 7 is a sectional top view as indicated by section lines 7-7 in FIG. 8, showing the distal end of the main arm in more detail.

FIG. 8 is a sectional detail view as indicated by section lines 8-8 in FIG. 7.

FIG. 9 is side view of another presently preferred embodiment of the device in a partially deployed position.

FIG. 10 is a side view of the embodiment of FIG. 9 in a deployed position.

FIG. 11 is a side section view showing details of the function of the embodiment of FIG. 9.

FIG. 12 is a side section view showing details of the function of the embodiment of FIG. 9 in choppy water.

FIG. 13 is side section view of a parallelogram embodiment, modified with the improvement of FIG. 9.

FIG. 14 is a top section detail view of a presently preferred distal end of the device.

FIG. 15 is a side detail view of the embodiment of FIG. 14.

FIG. 16 is a side detail view of the embodiment of FIG. 14 in a different position.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates shallow anchor system constructed in accordance with the teachings of this invention. The system includes a main arm 10 which is rotatably attached by a fixed end 20 to a mounting bracket 12. The mounting bracket 12 in turn is fixedly attached to a transom 14 of a fishing boat 16. By a power mechanism, preferably a hydraulic means as described below, the arm 10 is rotated into various positions such as A, B, and C, for example. When the arm is in position A, the anchor system is in the stowed position, as it would be when not in use, such as for example while the boat is under powered motion. Position B of the arm is an intermediate position, for illustration purposes extending horizontally. When the arm 10 is in position C, the arm is partially lowered to a deployed orientation.

Opposite the fixed end 20 of the arm 10 is a distal end 22. A rod 18 which is rotatably connected to the distal end 22 of the arm 10 in a manner to maintain a vertical orientation for the rod 18 in all positions of the arm 10, described below in greater detail. The rod 18 is driven into the bottom 24 of the lake or other body of water, thereby anchoring the boat 16 at a location dictated by the operator.

FIGS. 2 and 3 illustrate certain details of the preferred structure of the arm 10 and its mounting. Referring first to the fixed end 20 of the arm 10, the bracket 12 (see FIG. 1) includes a base plate 26, which is fixed to the transom 14 of the boat 16, such as for example by bolts or other fixing means. A pair of parallel forks 28 extend outwardly from the base plate a distance sufficient to receive a shaft 30. The shaft 30 is clamped to the forks 28 by retainers 32 so that the shaft 30 remains in a fixed relation to the bracket 12, i.e., the shaft 30 does not rotate relative to the forks 28. A first cable sheave 34 is mounted on the shaft 30 and also pinned to the shaft so that it cannot rotate. However, rotation of the arm 10 to the various positions shown in FIG. 1 is provided by the mounting of a tubular member 36 to the shaft 30 (see also FIGS. 5 and 6).

Referring now to the distal end 22 of the arm 10, a second cable sheave 38 is rotatably mounted to the tubular member 36. The second sheave 38 is of the same diameter as the sheave 34. A cable 42 is slung around the sheaves 34 and 38. Pairs of idling sheaves 40, one pair at the fixed end 20 and one pair at the distal end 22, direct the cable 42 into the inside of tubular member 36. Sleeves 44, one sleeve at each end of the arm 10, are swaged onto the cable 42. Each sleeve 44 is nestled inside a notch 46 of its respective sheave 34 or 38 to prevent the cable 42 from slipping relative to the sheave. Tension to the cable 42 is preferably applied by a mechanism as described below in reference to FIGS. 7 and 8.

A sliding block 50 is positioned inside the tubular member 36. The sliding block 50 is preferably attached to the cable 42 by means of a clamp 52 or other appropriate means. Note, however, that the sliding block 50 defines a through-passage 59 through which the cable return passes without obstruction. In this way, movement of the sliding block in one direction pulls the cable at the clamp 52 in that direction. The tubular member 36 includes an opening 54 to provide access to the clamp 52 for assembly and repair of the device.

A hydraulic cylinder mechanism 55 is mounted with its cylinder end 56 coupled to the tubular member 36. A piston rod 72 (see FIG. 4) extends from the mechanism 55 and terminates at a rod end 58 which is coupled to one side of the sliding block 50. A tension spring 60 is attached to the other side of sliding block 50 at one end of the spring 60 and to a fixed point of the tubular member 36 adjacent the distal end 22 of the arm. The tension of the spring 60 is sufficient to hold the arm 10 in a horizontal position, shown as position B in FIG. 2.

To move the arm to the various positions shown in FIG. 1, the hydraulic cylinder mechanism 55 is actuated. In other words, when hydraulic pressure is applied to the piston of the cylinder 55, the rod 72 moves to the right, thereby forcing the sliding block 50 to the right as well, as viewed in FIG. 2. This motion of the sliding block pulls the cable around the sheaves 34 and 38 in a clockwise direction, thus causing the arm 10 to rotate counter-clockwise around sheave 34, assisted by the tension of the spring 60. Hydraulic pressure to the other side of the cylinder piston 55 causes the sliding block 50 to be forced to the left, thus causing arm 10 to rotate clockwise, or downward, moving the rod 18 toward engagement with the lake bottom 24.

A bracket 70 is attached to the sheave 38 to hold rod 18 in a fixed relation to the sheave 38. Since the sheaves 34 and 38 are connected by the cable 42, and the sheave 34 cannot rotate, the sheave 38 also will not rotate, as the arm 10 moves up or down by rotating around the shaft 30. Thus, since the sheave 38 does not rotate, the bracket 70 also does not rotate and the rod 18 will always maintain its vertical orientation.

FIG. 4 shows the anchor mechanism partially raised or rotated counter-clockwise around shaft 30. The cylinder rod 72 has been extended in a direction indicated by the number 74, pushing the sliding block 50 to the right, assisted by contracting the spring 60, thus lifting the arm 10 up and pulling the rod 18 away from the lake bottom.

FIGS. 5 and 6 illustrate more details of the fixed end 20 of the arm 10. The shaft 30 defines knurled ends (78), where the shaft 30 is engaged by the clamps 32, to retain the shaft 30 in locking engagement with the forks 28 of the mounting bracket 12. The locking engagement of the shaft is assisted by a pair of set-screws 80. The sheave 34 is connected to the shaft 30 by a pin 82 so that the sheave 34 is prevented from rotating as arm 10 rotates up or down. This arrangement allows an angle α (see FIG. 2) to be adjusted according to the angle of the boat transom, against which the mounting plate must be mounted. The angle α is adjusted by loosening the clamps 32 (including the set screws 80), rotating the arm 10 into a perfectly vertical position A (as shown in FIG. 1) while the cylinder rod 72 is completely extended, and re-tightening the clamps 32 and set-screws 80.

FIGS. 7 and 8 show the distal end 22 of the arm 10 in more detail, specifically the tensioning means for the cable 42. The sheave 38 rotates relative to a shaft 90. Outer ends 92 of the shaft 90 extend into a pair of opposing plates 94, which are slidably held inside the tubular member (36). Bridge bars 96 rest against the open ends 98 of the tubular member 36 and provide a fixed base toward which the opposing plates 94 can be pulled by a set of bolts 100. The bolts screw into the opposing plates 94 and as the bolts are turned in a clockwise direction, the plates are moved to the right as seen in FIGS. 7 And 8, thus forcing the shaft 90 and therefore the sheave 38 to the right and increasing tension of the cable 42.

As previously described, a cable is preferably used as the connecting means between sheaves 34 and 38 for economic reasons; however a much more expensive arrangement consisting of chain and sprockets is also possible, expensive because of the environment in which this anchor will be used, all materials used must non-corroding, like aluminum, stainless steel, bronze and plastic. Thus, as used herein, the term “continuous loop of material” refers to a cable, a chain, or other means of engaging the sheaves 34 and 38. The cable 42 shown in FIG. 2 is continuous, even thought it is preferably constructed of cable cut to length, and formed into a loop by a joining member 43.

The anchor system thus far described and as shown in FIGS. 1 thru 8 works well in calm water. When there is wave action though, the rod 18 may be pulled out of the bottom 24 by waves lifting up boat 16 to which the anchor is attached. While this problem cannot be completely eliminated, such as when the boat is in a storm, the problem can be alleviated by the embodiment illustrated in FIGS. 9 to 12. This embodiment provides a flexible connection between piston rod 72 and the cable 42. The piston rod 72 is extended beyond and through the sliding block 50 and the rod is provided with collars 106 and 108. A compression spring 110 is placed between the collar 108 and sliding block 50.

In FIG. 9, the rod 72 from the cylinder 55 is 50% extended so the tubular member 36 is in a horizontal position. In this position, the compression spring 110 is partially compressed. To lower the anchor to a position as shown in FIG. 10 where the rod 18 is embedded into the bottom 24, the piston rod 72 is further retracted into the cylinder 55, the sliding block 50 is moved and has pulled on the cable 42 to rotate the arm 10 clockwise around sheave 34. Continued supply of hydraulic fluid to the cylinder 55 forces the rod 72 to retract further until the collar 106 reaches its end position against the cylinder 55, as illustrated in FIG. 11. While the sliding block 50 is unable to move, and thus sheave 34 is also held in place, the arm 10 rotates clockwise and maintains contact with bottom 24 through the compression spring 110 being compressed between the collar 108 and the block 50.

FIG. 12 illustrates conditions where wave action lowers boat 16 but the rod 18 is stuck in the ground so it cannot go any lower. Under those conditions, the anchor 10 must rotate counter-clockwise around the sheave 34, which reduces the distance between the block 50 and the collar 108, compressing the spring 110 even more. When wave action causes the boat 16 to rise, the stored energy in the spring 110 pushes the block 50 toward the distal end of the arm.

This feature of the present invention may also be applied to known structures, as shown in FIG. 13. FIG. 13 illustrates an anchor using a parallelogram 118 of links to maintain a vertical position of a ground-engaging rod 120. The motion of the rod 120 is caused by a cylinder assembly 122, which changes the distance D between opposing pivot points 124 and 126. When the rod 120 has engaged the bottom 130 and the parallelogram 118 has reached a fixed configuration, energy can be stored in a spring 128 by further retracting a piston rod 132 and compressing the spring 128. This energy can be used to reduce the distance D, thus pushing the rod 120 down when wave action lifts boat 134 up.

The parallelogram comprises an upper arm 200 having a proximal end 202 and a distal end 204. The proximal end of the upper arm is hingedly attached to a hull of the boat 134 whereby the upper arm is adapted to move between a raised position and a lowered position as previously described. A lower arm 206 defines a proximal end 208 and a distal end 210. The proximal end 208 of the lower arm 206 is hingedly attached to the hull of the boat at a point lower on the boat than the upper arm, as shown in FIG. 13. A cross beam 212 is hingedly attached between the distal end 204 of the upper arm 200 and the distal end 210 of the lower arm 206. The cylinder assembly 122 includes an actuator adapted to move the upper arm between the raised position and the lowered position. The actuator is hingedly attached to the hull of the boat at the proximal end 208 of the lower arm 206 and is also hingedly attached to the distal end 204 of the upper arm 200. The rod 120 is affixed to the distal end 210 of the lower arm 206 so that the rod is adapted to engage the bottom when the upper arm is in the lowered position.

The hydraulic piston assembly 122 is affixed to the hull of the boat at the proximal end 208 of the lower arm 206 and includes the rod 132 extending from the assembly 122. The rod 132 terminates in a guide piston 220. A receiving cylinder 222 retains the guide piston 220 and defines an end cap 224 toward the piston assembly 122. A compression spring 226 is held between the guide piston 220 and the end cap 224 to dampen the energy impressed upon the assembly as waves rock the boat, thereby tending to maintain contact between the rod 120 and the bottom 130.

A common mishap occurs when anglers leave an anchor deployed with a rod embedded into the bottom 24 and set their boat into motion. With enough force, the rod stuck in the bottom may break, or the bracket mounting the rod may be damaged. The embodiment of FIGS. 14-16 solves this problem by changing the way the rod 18 is mounted to the sheave 38.

In this embodiment, extensions 150 are attached to the sheave 38, holding a bracket 152 in between by a bolt 154 and a shear pin 156. As the boat and anchor start moving and the rod 18 is still embedded in the ground (as shown in FIG. 16), the shear pin 156 shears off to allow the bracket 152 to rotate around the bolt 154. This motion alters the angle at which the rod is set in the bottom until the rod pulls free from the bottom, thus saving the rod 18 from breaking.

The principles, preferred embodiment, and mode of operation of the present invention have been described in the foregoing specification. This invention is not to be construed as limited to the particular forms disclosed, since these are regarded as illustrative rather than restrictive. Moreover, variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

Claims

1. A shallow water anchor system for a fishing boat, the anchor comprising:

an upper arm having a proximal end and a distal end, the proximal end of the upper arm hingedly attached to a hull of the boat whereby the upper arm is adapted to move between a raised position and a lowered position;
a lower arm having a proximal end and a distal end, the proximal end of the lower arm hingedly attached to the hull of the boat at a point lower on the boat than the upper arm;
a cross beam hingedly attached between the distal end of the upper arm and the distal end of the lower arm;
an actuator adapted to move the upper arm between the raised position and the lowered position, the actuator hingedly attached to the hull of the boat at the proximal end of the lower arm and further hingedly attached to the distal end of the upper arm; and
a rod affixed to the distal end of the lower arm, wherein the rod is adapted to engage the bottom when the upper arm is in the lowered position.

2. The system of claim 1, wherein the actuator is hydraulically operated.

3. The system of claim 1, wherein the actuator comprises:

a hydraulic piston assembly affixed to the hull of the boat at the proximal end of the lower arm, the piston assembly including a rod extending therefrom and terminating in a guide piston;
a receiving cylinder retaining the guide piston; the receiving cylinder defining an end cap toward the piston assembly; and
a compression spring between the guide piston and the end cap.
Patent History
Publication number: 20090223430
Type: Application
Filed: Feb 13, 2009
Publication Date: Sep 10, 2009
Inventor: Rainer Kuenzel (Hunt, TX)
Application Number: 12/370,700
Classifications
Current U.S. Class: Including Tower Or Riser Connected To Sea Floor (e.g., Column, Mast, Etc.) (114/230.13)
International Classification: B63B 21/00 (20060101);