BONE FIXATION SYSTEM

The invention provides embodiments of a bone fixation system having a bone plate and a specialized screws system. The bone plate includes one or more bi-directional combination holes that can accommodate two bone screws in the same hole, the screws being oriented in non-parallel direction. In accommodating two screws in the same hole, one of the screws has a by-pass head.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/035,138, filed on Mar. 10, 2008, the complete disclosure of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to a system and method for bone fracture fixation.

INTRODUCTION

Conventional bone fracture fixation plate and screw systems work by drawing the fracture fragments to the plate, and if designed with “compression” holes, the fracture fragments can be made to compress against each other to promote primary bone healing. However, the angular relationship between the plate and screws is not fixed and can change postoperatively. As such, this can lead to misalignment and poor clinical results.

One method of securing the screw to a bone plate involves the use of so-called “locking screws.” A locking screw has a male thread on an outer surface of its head that interfaces with a female thread on the plate to lock the screw to the plate. Bone plates having threaded holes for accommodating locking screws are known. For example, German Patent Application No. 43 43 117 discloses a bone plate with threaded holes for locking screws. As the relationship between the locking screws and the plate is fixed, locking screws provide a high resistance to shear or torsion forces. However, locking screws have a limited capability to compress bone fragments.

Another approach to construction of a bone plate involves use of “combination holes.” Combination holes in the bone plates have a domain for non-locking screws and another domain for locking screws. The locking screws can only be applied in a direction perpendicular to the plate. (See, e.g., U.S. Pat. Nos. 6,669,701 and 7,354,441 to Frigg) However, only a one locking or a non-locking screw can be applied in each of these “combination” holes along the bone plates.

Another bone plate hole configuration involves a “figure-eight” hole. (See, e.g., Universal Locking System available from Zimmer Holdings, Inc. (Warsaw, Ind.); see, also J. Bone and Joint Surgery, 89(7) 2007.) The figure-eight hole in the a bone plate has two parallel threaded domains. A locking screw can be mated to one domain of the holes or to the other domain of the same hole. In either case, the locking screw can be applied only perpendicular to the bone plate. Further, only one screw can be applied in each of these “figure-eight” holes along the plate.

In yet another approach, the bone plate has individual locking holes for mating individual locking screws. (See, e.g., MIS Technique available from Zimmer Holdings, Inc. (Warsaw, Ind.)) The individual holes are oriented alternating in one direction and in another direction (in the plane transverse to the longitudinal axis of the plate) away from the perpendicular to the plate. However, for such a configuration, half of the screw holes may not be suitable for use. In the worse case scenario, none of the holes can be used.

BRIEF DESCRIPTION

A system and method for bone fracture fixation, especially long bone fracture fixation, in acute injury or reconstruction setting is provided. The system includes a bone plate and a specialized screw system. The bone plate has an upper surface and an opposed lower surface, which contacts the bone to be fixated. The bone plate includes at least one, and suitably a plurality of bi-directional divergent combination holes, spaced apart along its length. Each bi-directional combination hole has two screw domains. The central axis of the domains are at angles to each other and in reference to the lower plate surface, i.e., the directions of the screws positioned in each domain of a combination hole are non-parallel. The specialized screw system includes a by-pass head screw having a cut away such that “by-pass” head of the screw allows placement of a “full head” screw immediately adjacent in the same combination hole. The screws may have a threaded portion along their shafts or may be non-threaded pegs. The specialized screws may be locking (i.e., threaded head) or non-locking.

In some embodiments, the invention provides a bone plate which has a suitably serpentine shape to optimize the use of materials around the bi-directional holes. The bi-directional holes may be disposed adjacent but offset or angled to one another, e.g., along the length of a bone plate. In other embodiments, the invention provides a bone plate, which has a suitably linear shape. The combination holes may also be placed adjacent to one another but are offset or angled with respect to each other and with respect to the longitudinal axis of the plate. The central axis of the domains of the combination holes are configured at an angle with respect to each other and with respect to the lower plate surface. The bone plate may include both combination and non-combination holes.

In another aspect, a method of fixating bone factures is provided which includes positioning a bone plate having a plurality of bi-directional divergent holes therethrough to a fracture site, and inserting bone screws through the bi-directional holes of the bone plate into a bone or bone fragments to fixate the fracture, the screws being oriented in the bone in non-parallel directions. A by-pass head screw allows accommodation of a full head screw in the same hole.

Other advantages and a better appreciation of the specific adaptations, variations, and physical attributes of the invention will be gained upon an examination of the following detailed description of the invention, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be better understood and appreciated by reference to the detailed description of specific embodiments presented herein in conjunction with the accompanying drawings of which:

FIG. 1 is a top plan view of a serpentine plate configuration of a bone plate with a plurality of bi-directional screw holes, all in accordance with embodiments of the invention;

FIG. 2 is a top plan view of a linear plate configuration of a bone plate with a plurality of bi-directional screw holes, all in accordance with embodiments of the invention;

FIG. 3 depicts perspective views of the serpentine and linear bone plate configurations, illustrating both combination bi-directional holes and conventional holes;

FIG. 4 is a top view of serpentine plate configuration and a cross-sectional view, along plane A-A′, of the bi-directional divergent holes, illustrating the angled axes of the domains of each combination hole;

FIG. 5 is a perspective view of the directionality of individual screws when installed in bi-directional divergent holes;

FIG. 6 is a perspective view of a by-pass locking screw in accordance with embodiments of the invention; and

FIG. 7 is a top, cutaway view of a standard locking screw and a by-pass head screw, both positioned in the same bi-directional hole in accordance with embodiments of the invention.

FIG. 8 depicts perspective views of the serpentine and linear bone plate configurations, having only combination bi-directional holes.

DETAILED DESCRIPTION

A bone fixation system embodying the principles illustrated in embodiments of the invention is provided. The system includes a bone plate and a specialized screw system.

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of the structure and function set forth in the following description or illustrated in the appended drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.

Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “comprising,” “including,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. “Comprising” also encompasses the terms “consisting of” and “consisting essentially of” The use of “consisting essentially of” means, e.g., that a device may include additional features, but only if the additional features do not materially alter the basic and novel characteristics of the device.

Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.

Further, no admission is made that any reference, including any patent or patent document, citied in this specification constitutes prior art. In particular, it will be understood that unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the common general knowledge in the art in the United States or in any other country. Any discussion of the references states what their authors assert, and applicant reserves the right to challenge the accuracy and pertinence of any of the documents cited herein.

As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.

Unless otherwise noted, technical terms are used according to conventional usage. However, as used herein, the following definitions may be useful in aiding the skilled practitioner in understanding the invention. Such definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.

The term “bone screw”, as used herein, refers to a screw configured to be inserted into bone. The screw may be threaded, or have a threaded portion, along its shaft, or may be non-threaded shaft, e.g., a non-threaded or smooth peg. The bone screw may also be a locking screw with threads on the outer surface of its head. The head of the screw may take several shapes from hemispherical to hexagonal recessed.

As used herein, the term “combination hole” or “combination aperture” is meant to refer a hole or aperture in a bone plate that is dimensioned and configured to have two portions or domains, each of which can accommodate a screw such that two screws can be positioned in the same combination hole.

As used herein, the term “bi-directional” or “bi-angular” in reference to a combination hole or aperture is meant to refer to a hole or aperture in a bone plate that is dimensioned and configured to accommodate two screws wherein, when the screws are positioned in the same hole, the screws are directed at angles to each other and to the bone plate, i.e., the directions of the two screws in the same combination hole are non-parallel.

The term “by-pass head” refers to a specialized screw in accordance with embodiments of the invention in which the head of the screw has a substantially circular or spherical segment, i.e., the head is cut by a chord or plane. The by-pass head screw may be locking or non-locking.

In view of the aforementioned disadvantages inherent in conventional bone fixation systems, a novel system and method for fixating bone fractures, especially long bone fractures, is provided. Given that many fractures have not only transverse fracture components but also oblique or, even rather frequently, long fracture lines along the bone, the inventor has been found that screw placement, in case of fracture fixation with a plate, directed away from a plane perpendicular to the bottom surface of the plate is advantageous. In one aspect, a bi-angular or bidirectional combination screw hole configuration in a bone plate is provided which is in the form of at least one, and suitably a plurality of, such combination holes or apertures, each hole of which has two domains for holding and positioning screws. One domain of the hole may be suitably used to mate a conventional bone screw, e.g., a non-locking screw, in one direction away from the perpendicular or even along the perpendicular to the bottom surface of the plate, while the other domain of the same combination hole is suitably used to mate a screw, e.g., a locking screw, in an entirely different non-parallel direction. In use, two screws may be suitably mated in each bi-angular hole wherein one screw is a conventional bone screw and the other is a by-pass head screw in accordance with embodiments of the invention. The direction of the screw placement per hole depends on the optimal configuration for individual fracture fixation and is not limited as in the existing prior art devices. It is also understood that the combination hole may accommodate two by-pass head screws as well.

Reference is now made to FIGS. 1-8 in which a bone fixation system, generally designated by reference numeral 10, in accordance with one embodiment of the invention is shown. System 10 includes a bone plate 20 and a screw system 21 for stabilizing bone segments. In one embodiment, bone plate 20 is defined by a first surface 22 and a second bone-contacting surface 24 that is opposed to the first surface 22. Bone plate 20 is suitably elongate, with a length 23 and a longitudinal axis 25. Bone plate 20 can optionally be curved along its length, enabling bone plate 20 to be anatomically contoured, i.e., to contour a bone surface.

In an illustrated embodiment, bone plate 20 includes a plurality of combination screw apertures or holes 26 which extend through the first and second surfaces 22, 24 of bone plate 20. Each of the combination apertures or holes 26 has a predefined shape and size. Each of the apertures or holes 26 is suitably shaped as a bi-angular or an offset figure-eight, and is dimensioned and configured to receive a pair of screws 32 and 34 therethrough. Screws 32, 34 are used to anchor bone plate 20 to the particular bone segments that require fixation, i.e., are suitable for insertion into bone. Each hole 26 has two domains 28 and 30, respectively, which are substantially circular but overlapping, forming an offset figure-eight overall shape. Each domain is dimensioned and configured to receive one of the pair of screws therethrough. Domains 28 and 30 may or may not be provided with internal threads 41. Internal threads 41 may engage the threads of a threaded head bone screw.

Certain variations of the invention are set forth and illustrated in the figures. As shown in FIG. 4, one domain of a combination hole has a hole axis 36 and the other a hole axis is 38. The axes are angled with respect to each other, i.e., the axes are non-parallel. As shown in FIG. 7, screws 32, 34 have a head portion 36 and 38, respectively, at a proximal end 42. Each screw 32, 34 has an elongate body or shaft 44 that may include a threaded portion 46, as shown in FIG. 5, and/or a threaded head portion 45. Such external threads 45 disposed along the screw head can mately engage internal threads 41 of the domains of the bi-directional hole 26. It is understood that non-threaded screws or pegs as well as conventional threaded head screws can also be accommodated in bidirectional holes 26 as shown in FIG. 5.

Bone plate 20 may have many shapes. In one variation, as shown in FIG. 1, bone plate 20 may have a suitably serpentine shape 52 with, e.g., an arched cross section contouring the bone surface. As described, the serpentine shape coupled with the angled combination holes permit a materials-conserving plate configuration. However, the plate can be configured in many different shapes and sizes to accommodate any situation. For example, FIG. 2 illustrates another variation of the invention as a linear plate configuration 54, and FIGS. 3 and 8 show perspective views of both the serpentine plate 52 and linear plate 54. The embodiments of FIG. 3 illustrate bone plate 20 with both combination bi-directional holes and conventional holes. The embodiments of FIG. 8 illustrates bone plate 20 having only combination bi-directional holes.

As described herein, in one variation, the underside of the bone plate may be concave, thus allowing the plate to conform to the rounded surface of the tibia, femur, humerus, forearm bone, and other bones with which embodiments of the invention may be used. The concave configuration of the underside also allows a conventional bone screw to be inserted obliquely through the plate hole when a small bone fragment must be gripped and pulled against the plate.

To accommodate two screws in a single combination hole, a conventional head, (e.g., substantially circular or hemispherical), bone screw 32 may be placed in at least one of the domains 28, 30 of holes 26 and provide compression of the fractured bone fragments. In the other domain, screw 34 has a by-pass head 50. By-pass head 50 of screw 34 allows two screws to be accommodated in the same single combination hole.

For example, a by-pass head screw may be placed eccentrically with respect to the hole, as is necessary for attaining compression of a fracture. With the by-pass head screw in place in the first domain of hole 26, the second domain of hole 26 may then receive the conventional full-head screw 32, as such variation is shown in FIG. 7. As described hereinabove, the second domain of the hole provides an increased angulation of the bone screw with respect to the bone plate and the other screw. That two divergent screws are mated to the same bi-angular hole provides additional fixation to bone because screws, oriented divergently into the bone, offer significantly more resistance to pull out than any existing configuration. Torsional resistance is also theoretically greatly increased. FIGS. 4-7 further illustrate embodiments of the invention with respect to the bi-directional screw holes and specialized by-pass screw head.

As noted, one of the two screws mated into the bi-angular hole can be a conventional nonlocking screw which is capable of bringing the bone to the plate. The other screw can then be mated to the plate and bone in a locking fashion. In current prior art devices, a surgeon has to sacrifice several holes to bring the bone to the plate and then use the remaining holes in a “locking mode”. In accordance with the invention, no hole is “wasted” and every hole could offer enhanced fixation beyond what an existing locking or non-locking screw can.

Similarly, a non-locking by-pass head screw can be made to lock to the plate with a conventional locking screw that is mated to the adjacent domain of the same bi-angular screw. The bi-angular screw hole mated with two divergent screws provides added fixation in fractures adjacent to the softer bone proximate to joints, specifically, periarticular fractures and those that require articular subchondral support such as in distal radius fractures, tibial pilon fractures, tibial plateau fractures, etc.

Bone plate 20 may be provided with any number of holes 26 as may be suitable for a specific surgical application. Holes 26 may be disposed along the length 23 of bone plate 20; variations are illustrated, as shown, e.g., in FIGS. 1 and 2. One of ordinary skill in the art will know and appreciate that bone plate 20 may be provided with other types and configurations of holes 40, e.g., non-combination screw holes, in addition to combination holes 26, as illustrated. For example, in addition to one or a plurality of bi-directional combination screws, bone plate 20 may be provided with substantially cylindrical holes, threaded holes, or any other type of hole known to one of ordinary skill in the art.

To facilitate insertion, the threaded screws can be self-tapping screws or pre-drilled with the aide of a drill guide. Additionally, the screws can be cannulated for insertion of a guide wire to guide screw placement. As noted, the screws may have a smooth shaft such as a peg. The hole domains may have a substantially conical shape with a doublelead thread. The length of the individual screw shaft and the shaft (threaded or smooth) configuration can be selected for the particular application. For example, the individual screw shaft can also be smooth with a rounded, diamond, or trocar shaped tip. The domains may also be threaded or smooth, depending on whether the domain is accommodating a threaded screw or a peg.

In practice, embodiments of the invention provide methods of fixating bone fractures. The method includes positioning a bone plate having, along its length, a plurality of bi-directional divergent holes therethrough to a fracture site, inserting bone screws through the bi-directional holes of the bone plate into a bone or bone fragments to fixate the fracture, the screws being oriented in the bone in non-parallel directions.

It should also be noted that during the surgical act of applying the plate to the fractured bone, critical vessels or nerves or muscle or other soft tissue may be in the way of the path of the intended drill hole. In accordance with embodiments of the invention, a surgeon is able to avoid undue retraction on the soft tissue or even minimize soft tissue dissection by choosing the more suitable direction afforded by the bi-directional hole design. Therefore, an additional benefit of the bi-directional design is its versatility, minimizing the requirement for soft tissue dissection and retraction.

In summary, the full mechanical advantage of the combination hole configuration in accordance with embodiments of the invention is realized when two screws are mated to the same bi-directional or bi-angular hole. The head of one screw to be mated to the plate suitably has a by-pass head to allow the placement in the same hole of a second screw with a conventional full-headed screw. Having two fixed-angle screws oriented in divergent directions into the substance of the bone enhances the pull out strength of the plate from the bone far beyond that of a single locking screw oriented perpendicular to the plate.

The foregoing description is considered as illustrative only of the principles manifest in embodiments of the invention. Further, since numerous modifications and changes may readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents are considered to fall within the scope of the invention. Various features and advantages of the invention are set forth in the following claims.

All publications, patents and patent applications referenced in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications, patents and patent applications are herein expressly incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference. In case of conflict between the present disclosure and the incorporated patents, publications and references, the present disclosure should control.

Claims

1. A bone plate, comprising:

an elongate member having an upper surface, lower surface and a longitudinal axis, and
at least one bi-directional divergent combination hole therethrough from the upper surface to the lower surface, configured and dimensioned to receive a pair of bone screws configured to be anchored into a bone or bone fragments.

2. The bone plate of claim 1, wherein, when the screws are positioned in the bi-directional hole, the bi-directional hole orients the screws in non-parallel directions.

3. The bone plate of claim 2, wherein one of the pair of screws has a by-pass head configured to accommodate the other screw having a full head.

4. The bone plate of claim 1, wherein the member is in a serpentine shape.

5. The bone plate of claim 1, wherein the member is linear in shape.

6. The bone plate of claim 1, wherein the bi-directional combination hole comprises two domains, each configured to accommodate a bone screw.

7. The bone plate of claim 6, wherein the two domains are configured as an offset figure-eight.

8. The bone plate of claim 6, wherein at least one of the domains is threaded.

9. The bone plate of claim 6, wherein at least one of the domains is non-threaded.

10. The bone plate of claim 6, wherein one of the screws is a non-locking screw and the other is a locking screw.

11. The bone plate of claim 6, wherein both screws are locking screws.

12. The bone plate of claim 2, wherein one of the screws is non-threaded.

13. The bone plate of claim 2, wherein at least one of the bi-directional holes is configured to direct one of the pair of screws, when inserted, oblique to or perpendicular to the longitudinal axis of the member.

14. The bone plate of claim 6, wherein each domain has a hole axis, and the hole axis of one domain is non-parallel to the hole axis of the other domain.

15. The bone plate of claim 1, further comprising a plurality of bi-directional combination holes.

16. The bone plate of claim 15, wherein the holes are configured to be offset with respect to each other along the longitudinal axis of the member.

17. The bone plate of claim 15, wherein the bi-directional holes alternate with conventional holes, the conventional holes configured to receive a bone screw.

18. The bone plate of claim 1, wherein the bone plate is anatomically contoured.

19. The bone plate of claim 18, wherein the lower surface of the bone plate is concave.

20. A bone screw capable of providing compression across a fracture, comprising a by-pass head and an elongate shaft extending from the head to a distal end of the screw.

21. The screw of claim 20, wherein the by-pass head further comprises a threaded portion about its outer surface.

22. The screw of claim 20, the by-pass head further comprises a non-threaded portion about its outer surface.

23. The screw of claim 20, wherein, when the screw is configured to be positioned within a bi-directional hole of a bone plate, the by-pass head configured to accommodate the placement of a full head screw or peg within the same hole.

24. A bone fixation system, comprising:

a bone plate and a by-pass head bone screw;
the bone plate having an upper surface, a lower surface, a longitudinal axis, and at least one bi-directional combination hole extending through the upper surface and the lower surface;
the bi-directional combination hole having two domains, each domain configured to accommodate a bone screw;
the by-pass head screw configured to, when positioned in the bi-directional hole, permit a full head screw to be accommodated in the at least one bi-directional combination hole; each screw having an elongate shaft, and when each is positioned in the bi-directional combination hole, their shafts are oriented in non-parallel directions.

25. The bone fixation system of claim 24, wherein the two domains are configured as an offset figure-eight.

26. The bone fixation system of claim 24, wherein, when a screw is positioned in the bi-directional combination hole, its shaft is oriented perpendicular or oblique to the longitudinal axis of the bone plate.

27. The bone fixation system of claim 24, wherein the bone plate further comprises a plurality of bi-directional combination holes, the holes being offset with respect to each other along the longitudinal axis of the plate.

28. A method of fixating bone fractures, comprising positioning a bone plate having a plurality of bi-directional divergent holes therethrough to fracture site, and inserting bone screws through the bi-directional holes of the bone plate into a bone or bone fragments to fixate the fracture, the screws being oriented in the bone in non-parallel directions with respect to each other.

29. The method of claim 28, wherein each bi-directional hole accommodates a pair of screws, at least one of the pair of screws is a by-pass head screw.

30. A kit, including:

a bone plate having an upper surface, a lower surface and a longitudinal axis and at least one bi-directional divergent combination hole therethrough from the upper surface to the lower surface, which is configured and dimensioned to receive a pair of bone screws configured to be anchored into a bone or bone fragments; and
at least one by-pass head screw engageable in the bidirectional hole.

31. A bone plate system, comprising:

an elongated plate member having a plurality of bi-directional combination holes therethrough, the holes configured as offset figure-eights; and
one or more bone screws engageable into the bidirectional holes wherein each combination hole is configured and dimensioned to orient two screws insertable therein in non-parallel directions, one of the screws being a by-pass head screw.
Patent History
Publication number: 20090228010
Type: Application
Filed: Mar 5, 2009
Publication Date: Sep 10, 2009
Inventors: Eduardo Gonzalez-Hernandez (Coconut Grove, FL), Dennis L. Steffen (Tavernier, FL)
Application Number: 12/398,882
Classifications
Current U.S. Class: Multi-element Or Coated Plate (606/70); Including Anchoring Means (606/286)
International Classification: A61B 17/80 (20060101);