SOURCE SWITCHING FOR DEVICES SUPPORTING DYNAMIC DIRECTION INFORMATION

- Microsoft

With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest by pointing at the objects. Sometimes either the device user and/or the publishers of content cannot complete a content exchange due to connectivity to data or services becoming lost. A device provisioned for pointing or direction based services losing connectivity to a first network while engaging pointing based services. In response, one or more other sources for the pointing based services are identified on a second network or device to which the device can connect and the device automatically connects to the second network or device to receive the pointing based services, or data for use with the pointing based services (e.g., GPS information, point of interest data, direction data, etc.), from the one or more other sources.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/073,849, filed on Jun. 19, 2008, entitled “MOBILE COMPUTING DEVICES, ARCHITECTURE AND USER INTERFACES BASED ON DYNAMIC DIRECTION INFORMATION”, U.S. Provisional Application Ser. No. 61/074,415, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION”, and U.S. Provisional Application Ser. No. 61/074,590, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION”, the entireties of which are incorporated herein by reference.

TECHNICAL FIELD

The subject disclosure relates to the provision of direction-based services for a device based on direction information and/or other information, such as location information, and to automatic switching between disparate networks, sources of information and/or services upon which the direction-based services are based.

BACKGROUND

By way of background concerning some conventional systems, mobile devices, such as portable laptops, PDAs, mobile phones, navigation devices, and the like have been equipped with location based services, such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc., which can determine and record a position of mobile devices. For instance, GPS systems use triangulation of signals received from various satellites placed in orbit around Earth to determine device position. A variety of map-based services have emerged from the inclusion of such location based systems that help users of these devices to be found on a map and to facilitate point to point navigation in real-time and search for locations near a point on a map.

However, such navigation and search scenarios are currently limited to displaying relatively static information about endpoints and navigation routes. While some of these devices with location based navigation or search capabilities allow update of the bulk data representing endpoint information via a network, e.g., when connected to a networked portable computer (PC) or laptop, such data again becomes fixed in time. Accordingly, it would be desirable to provide a set of richer experiences for users than conventional experiences predicated on location and conventional processing of static bulk data representing potential endpoints of interest.

Moreover, with conventional navigation systems, a user may wish to request information about a particular point of interest (POI), but if the user becomes disconnected from a given network or information source (e.g., if the user goes underground losing visibility to GPS satellites, communications network interrupted or out of service, etc.), the location based services become dysfunctional. The user experience suffers as a result since users cannot interact with desired point of information.

The above-described deficiencies of today's location based systems and devices are merely intended to provide an overview of some of the problems of conventional systems, and are not intended to be exhaustive. Other problems with the state of the art and corresponding benefits of some of the various non-limiting embodiments may become further apparent upon review of the following detailed description.

SUMMARY

A simplified summary is provided herein to help enable a basic or general understanding of various aspects of exemplary, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some exemplary non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow.

Direction based pointing services are provided for portable devices or mobile endpoints. Mobile endpoints can include a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a processing engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of the direction information and/or the location information.

Devices or endpoints can include compass(es), e.g., magnetic or gyroscopic, to determine a direction and location based systems for determining location, e.g., GPS. To supplement the positional information and/or the direction information, devices or endpoints can also include component(s) for determining speed and/or acceleration information for processing by the engine, e.g., to aid in the determination of gestures made with the device.

With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest. For instance, various embodiments automatically switch among sources for points of interest data, direction data, position data, direction based services, and/or various networks that interconnect the devices and the data and services for direction-based services.

Various embodiments for a device provisioned for pointing based services include receiving pointing based services by a device via a first network, but losing connectivity to the first network. In response, one or more other sources for the pointing based services are identified on a second network or device to which the device can connect and the device automatically connects to the second network or device to receive the pointing based services, or data for use with the pointing based services (e.g., GPS information, point of interest data, direction data, etc.), from the one or more other sources.

These and other embodiments are described in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

Various non-limiting embodiments are further described with reference to the accompanying drawings in which:

FIG. 1 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic data or services switchover capabilities;

FIG. 2 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic network switchover capabilities;

FIG. 3 is a block diagram illustrating a device that supports pointing based services and includes a location data connectivity switching subsystem;

FIG. 4 is a block diagram illustrating a device that supports pointing based services and includes a direction data connectivity switching subsystem;

FIG. 5 is a block diagram illustrating a device that supports pointing based services and includes a point of interest data connectivity switching subsystem;

FIG. 6 is a block diagram illustrating a device that supports pointing based services and includes a network switching subsystem;

FIG. 7 is a block diagram illustrating a device that supports pointing based services and includes a direction based service switching subsystem;

FIG. 8 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss;

FIG. 9 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of location information;

FIG. 10 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of direction information;

FIG. 11 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of point of interest information;

FIG. 12 is a block diagram illustrating a representative architecture for supporting predictive pointing based services;

FIG. 13 is a block diagram illustrating a representative device for supporting predictive pointing based services;

FIG. 14 is a block diagram illustrating the formation of motion vectors for use in connection with location based services;

FIG. 15, FIG. 16 and FIG. 17 illustrate aspects of algorithms for determining intersection endpoints with a pointing direction of a device;

FIG. 18 represents a generic user interface for a mobile device for representing points of interest based on pointing information;

FIG. 19 represents some exemplary, non-limiting alternatives for user interfaces for representing point of interest information;

FIG. 20 represents some exemplary, non-limiting fields or user interface windows for displaying static and dynamic information about a given point of interest;

FIG. 21 illustrates a sample overlay user interface for overlaying point of interest information over a camera view of a mobile device;

FIG. 22 illustrates a process for predicting points of interest and aging out old points of interest in a region-based algorithm;

FIG. 23 illustrates a first process for a device upon receiving a location and direction event;

FIG. 24 illustrates a second process for a device upon receiving a location and direction event;

FIG. 25 is a block diagram representing an exemplary non-limiting networked environment in which embodiment(s) may be implemented; and

FIG. 26 is a block diagram representing an exemplary non-limiting computing system or operating environment in which aspects of embodiment(s) may be implemented.

DETAILED DESCRIPTION Overview

While each of the various embodiments herein are presented independently, e.g., as part of the sequence of respective Figures, one can appreciate that a portable device and/or associated network services, as described, can incorporate or combine two or more of any of the embodiments. Given that each of the various embodiments improve the overall services ecosystem in which users wish to operate, together a synergy results from combining different benefits. Accordingly, the combination of different embodiments described below shall be considered herein to represent a host of further alternate embodiments.

Among other things, current location services systems and services, e.g., GPS, cell triangulation, P2P location service, such as Bluetooth, WiFi, etc., tend to be based on the location of the device only, and tend to provide static experiences that are not tailored to a user because the data about endpoints of interest is relatively static, or fixed in time. Such conventional location systems have not factored in direction information into the experience either.

In this regard, one or more embodiments herein employ direction information in connection with location information enabling a pointing or directional approach to interacting with points of interest. In such systems, a user may become unable to receive pointing or direction based services because of disconnection from a communications network. Similarly, the user may experience interruption of receiving data needed to carry out the direction based services. For instance, the user may lose access to any of position data (e.g., disconnected from GPS satellites), direction information (e.g., compass not working), or point of interest data or services (e.g., cellular network unavailable), which may make fulfillment of any real time location or direction based services a further challenge.

Accordingly, in various non-limiting embodiments, when connectivity is lost to one or more parts of the provision of pointing based services, an automatic network switchover occurs, which can be based on automatically searching for and finding an alternate source for a given set of information or services sought. The switchover can be based on prioritization rules as well.

An exemplary non-limiting pointing based services enabled device includes an engine for analyzing location information (e.g., GPS), compass information (N, W, S, E), and movement information (e.g., accelerometer) to allow a platform for finding objects of interest in a user's environment. A variety of scenarios are provided based on a user finding information of interest about objects of interests, such as restaurants, or other items around an individual, and tailoring information to that user (e.g., coupons, advertisements). However, to maximize interaction with objects of interest, a way to switch over to alternate sources for information and services is desired. Such services can be offered as part of cloud services, web services, or from other devices near a given device, e.g., via Bluetooth.

In such a system, a user may interact with a lot of different POIs, and request information about those POIs, however, in the situation where a user loses connectivity to a data network, or loses a signal to a GPS satellite, rather than fail, it would be beneficial to provide requested information to a user from an alternate source.

A way to switchover to alternative sources is thus provided for information if any of the data or positional information is temporarily unavailable, e.g., from a nearby other device, or from location information received by a bus in which the user is travelling. A variety of scenarios are explored illustrating the benefits of being able to maintain a consistent user experience that minimizes failure.

In one embodiment, a device provisioned for pointing based services receives point of interest data from pointing based services based on pointing information associated with a direction of the device via a first network. If the device loses connectivity to the first network, another source of point of interest data to which the device can connect via a second network is identified and the device automatically connects to the second network to receive the point of interest information from the other source.

The other source can be an on-site data store of point of interest information pertaining locally to the device. The other source can be a data store of point of interest information pertaining to points of interest of a physical structure (e.g., a building or store such as Costco) where the device is located. The other source can be another nearby computing device having point of interest data that can be shared, e.g., upon receiving a request for permission to obtain the point of interest data.

In one embodiment, another device may not already include the data of interest, but the other device can provide access to needed data for direction based services via a third network unavailable to the device directly. Thus, for instance, the device connects to a second device, e.g., via Bluetooth, and the second device in effect provides access to the third network to the device, e.g., for a negotiated fee. In this way, the device obtains its point of interest data or direction based services and the second device profits from making such data or services available to the device.

Another scenario is where a user connected to a long range wireless communications network, such as a cellular network, becomes unable to connect to the long range network, e.g., if the user goes in a tunnel. Thus, the tunnel itself could host a short range network that covers the local area, or otherwise provide surrogate access to a longer range network. This way, when the device loses connection to the long range network, the short range network replaces the long range network automatically. For instance, when a mobile phone loses connection to a mobile device communications network, the mobile phone automatically switches to another device with needed data or network access via Bluetooth to provide a seamless user experience.

In one embodiment, a portable electronic device includes a memory that stores direction information representing information pertaining to orientation of the device, position information representing information pertaining to location of the device and point of interest information representing information pertaining to points of interest substantially within interactive range of the device. The device includes a positional component for receiving the position information as a function of a location of the portable electronic device and a directional component that measures the direction information as a function of an orientation of the portable electronic device.

The device further includes a switching component that switches among at least two sources for the position information when a source for the position information is not delivering position information to the device. The switching component can also switch among at least two sources for the direction information when a source for the direction information is not operating. The switching component can also switch among at least two sources for the point of interest information when a source for the point of interest information is unavailable.

The device can further include a processor (e.g., CPU, GPU, etc.) configured to process the position information and the direction information to determine identifier(s) of points of interest within scope of the device, to receive information corresponding to the identifier(s) of the points of interest, and to display information if the device interacts with at least one point of interest. The processor can process the position information and the direction information to determine identifiers of at least one point of interest within scope of the device, to receive advertisement content corresponding to the at least one identifier of the at least one point of interest, and to render the advertisement content if the device interacts with at least one point of interest.

The device can include a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. The directional component can be a digital compass that outputs direction information.

In another embodiment, a method for a pointing based services enabled device can include determining direction information as a function of a direction for the device, determining position information as a function of a position for the device, receiving pointing based services based on the direction information and position information via a first network, losing connectivity by the device to the first network, identifying at least one other source for the pointing based services to which the device can connect on a second network and automatically connecting to the second network to receive the pointing based services from the at least one other source.

The method can further include determining motion information as a function of movement of the device and the receiving of pointing base services is based on the direction information, position information and the motion information. The connecting can include automatically connecting to a nearby device that hosts the pointing based services, e.g., via Bluetooth.

Details of various other exemplary, non-limiting embodiments are provided below.

Data Source/Network Switching for Devices Supporting Dynamic Direction Information

With direction based services, users can thus interact with a set of endpoints in a host of context sensitive ways to provide or update information associated with endpoints of interest, or to receive beneficial information or instruments (e.g., coupons, offers, etc.) from entities associated with the endpoints of interest, and where failure would otherwise occur due to loss of connectivity to data or a network, any of such actions can be facilitated by automatic switchover to alternate source(s) of data/networks.

For instance, as shown in FIG. 1, a direction based services enabled device 100 includes various sub-components that can be used in connection with the provision of such direction based services. For instance, as input to a direction based services engine 110, the device 100 uses point of interest data, location information and direction information as part of interacting with various direction based services. A user can also interact graphically or otherwise via key input with user interface 120, the commands for which are carried out by the direction based services engine 110. In this regard, in various embodiments, the device 100 can include any one or more of point of interest data source controller and interface 102, direction based services source controller and interface 104, location information source controller and interface 106 or direction information source controller and interface 108, which perform the automatic switchover among one or more sources for their respective information domains. Components 102, 104, 106, 108 can be combined or provided separately, or according to sub-combinations.

For instance, point of interest data source controller and interface 102 operates to automatically switch among different sources of point of interest data 112, 114, . . . , 116. Thus, if the device 100 is outside and then goes inside a store and becomes disconnected to a data source 112 for point of interest information, then the device 100 can automatically switch over to a server source 114 inside the store which provides a local geo-cache of point of interest information applicable to the store. When the user goes outside again, the server 114 is no longer visible to the device, and the device 100 automatically switches back to source 112 or another source 116 for point of interest data.

For another example, location information source controller and interface 106 can switch among different sources for location information, depending on power of the device, connectivity, etc. For instance, source 132 might be GPS signals, source 134 might be cellular tower triangulation techniques, and source 136 might be a local in-store set of transceivers that perform signal timing and triangulation for devices that are inside the store only so that a maximally effective in store pointing based experience is provided. Thus, controller and interface 106 automatically switches among different sources of location information on behalf of the direction based services enabled device 100.

For another example, direction information source controller and interface 108 can switch among different sources for direction information, depending on power of the device, connectivity, etc. As a non-limiting example, source 142 might be an on device digital compass, source 144 might be a compass on a bus or airplane in which the device 100 is travelling, and source 146 might be an external connection to a compass. Thus, controller and interface 108 automatically switches among different sources of direction information on behalf of the direction based services enabled device 100. In this regard, if the on device digital compass source 142 becomes disabled, and the user is travelling in a bus, then the user may switch over to a different source of direction information. When travelling in a bus, the direction information associated with the bus may be more relevant than the device orientation. Or, in one non-limiting embodiment, the device 100 can make use of both device orientation source 142 and the bus orientation source 144 to make both bus and device orientation a part of an interactive point of interest experience via direction based services.

In addition, the device 100 may include a direction based services source controller and interface 104. In this regard, there may be multiple different providers of the same or different direction based services from sources 122, 124, . . . 126, and where device 100 experiences failure of delivery of services from any of such sources, the device 100 automatically switches over to an alternate source for the service or services. As noted, the sources of point of interest data, direction based services, location information, and direction information may all be accessed via a variety of wired or wireless data/communications networks 130.

This is illustrated in more detail in the embodiment of the block diagram of FIG. 2 in which network switching controller and interface 140 is introduced. As a layer between point of interest data, direction based services, location information, and direction information, networks 130 can also have automatic switchover applied to them. For instance, when the device 100 switches over from location information source 132 to location information source 136, the device 100, via network switching controller and interface 140, may also correspondingly switch between network N1 to N2. In addition, as illustrated by networks N3, N4, and N5 in the context of direction information sources 142, 144 and 146, interface 140 may be able to reach a subset of sources, thus affecting potential prioritization of switchover. If N4 can reach all of the sources 142, 144, . . . , 146, then it may be the preferable network to try first. Other factors, such as power consumption, might also affect the prioritization, but all other factors being the same, a device would prefer a more ubiquitously available network choice.

FIG. 3 illustrates a non-limiting example of a mobile computing device 300 according to an embodiment. In this regard, a set of services 360 can be built based on location information 322 and direction information 332 collected by the phone. For instance, location information 322 can be recorded by a location subsystem 320 such as a GPS subsystem communicating with GPS satellites 340. Direction or pointing information 332 can be collected by a direction subsystem 330, such as a compass, e.g., gyroscopic, magnetic, digital compass, etc. In addition, optionally, movement information 312 can be gathered by the device 300, e.g., via tower triangulation algorithms, and/or acceleration of the device 300 can be measured as well, e.g., with an accelerometer. The collective information 350 can be used to gain a sense of not only where the device 300 is located in relation to other potential points of interest tracked or known by the overall set of services 360, but also what direction the user is pointing the device 300, so that the services 360 can appreciate at whom or what the user is pointing the device 300.

In addition, a gesture subsystem 370 can optionally be included, which can be predicated on any one or more of the motion information 312, location information 322 or direction information 332. In this regard, not only can direction information 332 and location information 322 be used to define a set of unique gestures, but also motion information 312 can be used to define an even more complicated set of gestures. The gesture monitor 370 produces gesture information 372, which can be input as appropriate in connection with delivering services 360.

As mentioned, in another aspect, a device 300 can include a client side memory 380, such as a cache, of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated. The context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided and predictively cached on the device 300 that makes sense for the speed of the vehicle.

In this regard, such a mobile computing device 300 may include a location data connectivity switching subsystem 390, which switches among sources 340, 342, 344, etc. FIG. 4 illustrates that a device 400 based on the device of FIG. 3 can include direction data connectivity switching subsystem 490, which switches among sources 440, 442, 444, etc. As mentioned, device 400 may also benefit from combining the results of sources 440, 442, 444, etc. where multiple sources are available. FIG. 5 illustrates that a device 500 based on the device of FIG. 3 can include a POI data switching subsystem 590 that switches among various sources 540, 542, 544, etc. to retrieve POI information and data. FIG. 6 in turn illustrates a device 600 based on the device of FIG. 3 that uses a network switching subsystem 690 to switch among various networks, such as WiFi 640, Bluetooth 642 to another computing device 646, or cellular networks 644 to reach the set of services 360. Similarly, flattening out networks 740, the switching of which is handled by network switching subsystem 690, FIG. 7 illustrates that a direction based service switching subsystem 790 can be provided within a device 700 based on the device of FIG. 3 that switches among different direction based services 760, 762, 764, etc.

FIG. 8 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services. At 800, a device is engaging pointing based services using at least a first network for connectivity to one or more direction based service providers. At 810, such connectivity is lost for any reason. At 820, connectivity is regained quickly, or in real time, e.g., due to an automatic search for an alternate source for the missing aspect(s) of the failed direction based service being used at 800. One common scenario might be losing a long range network in favor of a short range network, or vice versa, when a device goes into, or conversely leaves, a confined space from an open space. At 830, or at anytime, the device may explicitly or implicitly be opted into a mesh device cooperation network, so that, for example, all of the devices inside a given store can collectively share information about points of interest in the store.

A user might be standing next to a frequent shopper of a store who has purchased the item of interest, and that user can have access to that information if the frequent shopper has opted in to the cooperative store network. Processing, memory, and other computing resources can be shared via a cooperative network as well.

FIG. 9 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of location information from a source. At 900, optionally, a user can opt into a mesh network for sharing of location information. This way, the user's device becomes part of sharing network that other devices can take advantage of in the event their connectivity is compromised. At 910, connectivity to device location services is lost, or the device may not even be equipped to support location services. At 920, location data is received from one or more other nearby sources (e.g., other devices) equipped with location subsystems. At 930, the surrogate location information provides a basis for a device, which otherwise could not receive direction based services based on a set of points of interest in the area, to receive and interact with direction based services.

FIG. 10 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of direction information from a source, such as an on-device digital compass. At 1000, a user can opt into a mesh network for sharing of direction information. At 1010, connectivity to the device's direction services, e.g., the on-device digital compass, is lost for some reason, e.g., the digital compass was made in an inferior factory, and stopped working after 6 months, a nearby magnetic force is compromising the results of the compass, etc. At 1020, in accordance with one or more embodiments, the direction data can be received from other nearby sources (e.g., other devices, a containing vehicle, etc.). At 1030, direction based services are carried out based on or as a function of the surrogate direction information.

FIG. 11 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of point of interest data for device interaction via the direction based services. At 1100, the device loses connectivity to point of interest data for the given location, which is normally obtained from a first data network. As an example, a mobile phone user may walk into a Costco warehouse inviting interference with signal reception from the shielded primarily metal walls. At 1110, however, according to one or more embodiments herein, the point of interest data is received from one or more nearby sources. For example, Costco might make available a local geo-cache information available by WiFi about all of the objects in the store and allow users to receive the information as well. At 1120, direction based services are performed based on the points of interest using the surrogate point of interest information.

As an example of the power of this scenario, a user can walk into Costco, automatically acquire information about items of interest in the store, automatically use Costco's location information based on local tower triangulation within the store (or other location information), and then with direction information, as the user points at various objects, a voice audio or video notification or both can inform the user of a great deal on that object based on deals available today.

For existing motor vehicle navigation devices, or other conventional portable GPS navigation devices, where a device does not natively include directional means such as a compass, the device can have an extension slot that accommodates direction information from an external directional device, such as a compass. Similarly, for laptops or other portable electronic devices, such devices can be outfitted with a card or board with a slot for a compass. While any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, limited bandwidth may degrade the interactive experience. As a result, a limited amount of data can be predictively maintained on a user's device in cache memory and optionally aged out as data becomes stale, e.g., when relevance to the user falls below a threshold.

FIG. 12 is a block diagram of an exemplary general architecture for delivering pointer based services 1210 based on points of interest information retrieved from the network according to one or more embodiments. Location information 1200 (e.g., WiFi, GLS, tower triangulation, etc.), direction information 1202 (e.g., digital compass) and optionally user intent information 1204, which can be implicit or explicit, are input to services 1210, which may be any one or more of web services 1212, cloud services 1214 or other data services 1216. As a result, content 1240 is returned for efficient real-time interactions with POIs of current relevance. POI data and content can come from more than one storage layer or abstraction 1220, 1222, 1224, . . . , or abstraction 1230, 1232, 1234, . . . , e.g., from local server databases or remote third party storage locations.

In accordance with various embodiments described herein, an intelligent switch 1250 is inserted as a layer between the devices and their desire for services, and the services and their desire to deliver services, so as to automatically switch over to alternate networks in order to connect the two desires. In this regard, while one or more embodiments described herein have implied such switch in the device, such switch can be as far out in the network as may make sense for the given alternate sources for the same information or services needed to perform direction based services.

FIG. 13 illustrates an exemplary non-limiting device 1300 including processor(s) 1310 having a position engine or subsystem 1320 for determining a location of the device 1300 and a direction engine or subsystem 1330 for determining a direction or orientation of the device 1300. Then, by interacting with local application(s) 1340 and/or service(s) 1370, POI content can be delivered to the device, which can tailored to device intent and a place in which the device is present, or other factors. When the content is displayed according to an interaction, the tailored content can be rendered by graphic subsystem or display/UI 1350 or audio subsystem 1360.

In one non-limiting embodiment, point structure 1390 is included, e.g., a triangular or other polygonal piece that points along an orientation line 1395 upon which directional calculations are based. Similarly, the orientation line 1395 can be indicated by graphics subsystem display/UI 1350 with or without point structure 1390. In this regard, various embodiments herein enable POI ID information 1380 to be sent to services 1370 so that interactions based on the associated POIs can occur as assisted by services 1370. In this regard, whenever there is a disconnect between data/communications network and information or services that a device desires in connection with the performance of direction based services, the device 1300 employs intelligent switch 1375 to find a new source for the information and services, and automatically switch over to the new source.

Additionally, whether the point of interest at issue falls within the vector can factor in the error in precision of any of the measurements, e.g., different GPS subsystems have different error in precision. In this regard, one or more items or points of interest may be found along the vector path or arc, within a certain distance depending on context.

While there are a variety of implementations, and ways to sub-divide regions, whether overlapping or not, predictive caching and aging can thus be performed in which a user's present location is discerned. The local cache may still include age out candidate locations, but as the velocity of the user indicates the user will be at various other predicted locations in the future, these regions of POIs associated with the predicted locations are downloaded to the mobile device. Accordingly, as the user travels to predicted locations, the user no longer needs the data from the age out candidate locations, which can then be removed, or flagged for removal when storage is challenged.

Accordingly, using the regional data cache, callbacks and an update mechanism that is updated dynamically based on movement, new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc. In this regard, a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone. To appreciate the problem, the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time. Thus, predictively, a cube of data can be taken to the device, the user can go offline such that when the user reconnects. Moreover, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.

Any device can include the embodiments described herein, including MP3 players, such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.

One way to obtain the service applications, assuming the underlying measuring instruments to participate in the real-time gathering of directional information, is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link. Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.

With location services, it can be determined that a user's device is physically inside an actual store, or near a window display of a store. Coupling that to the user's interacting with an object of interest with direction information to enable direction-based services results in a new opportunity to take action based on the interaction with specific items.

As mentioned, a device can include a directional component that outputs direction information as a function of an orientation of the portable electronic device and that facilitates determining an intent of the device. The directional component can optionally be a digital compass that outputs the direction information. The device can determine a subset of items of interest relative to candidate items of interest within a 3-D space as a function of the positional information or the direction information.

Interacting with an endpoint can include orientating the device toward some item(s) of interest and determining direction information associated with the orientation of the device from which a subset of the item(s) of interest are identified. For instance, interacting can include pointing the device in a direction defining a pointing line generally towards items of interest in the place(s) and determining a set of candidate items of interest as a subset of items of interest that substantially intersect with the pointing line, and enabling the selection of one or more items from the set of candidate items.

In one embodiment, a method for a device provisioned for direction based services comprises determining direction information associated with a pointed to direction relative to a pre-defined orientation of the device and identifying POIs within an area defined as a function of the pointed to direction including determining which of a set of POIs intersect with the area. Next, based on information with respect to the POIs already received by the device, information corresponding to the POIs identified within the area is displayed, e.g., on a map or list. In one embodiment, as new POIs are within range of the device, the IDs associated with the designated POIs are transmitted to a network service enabling static information and/or dynamic information about the designated POIs to be received from the service.

The designation of POIs for interaction can include explicit input with respect to the designated one or more POIs, such as one or more of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs. The designation of POIs for interaction can include implicit input with respect to the designated one or more POIs including making inferences about the interaction based on a context of present interaction.

The displaying of POI information can be made on a topographical map visually representing at least the area defined as a function of a pointed to direction and graphical indications of the POIs can be displayed within the area at corresponding locations on the topographical map view. The POIs can also be represented in a filtered list view, e.g., filtered by restaurants in the area. The designating of POIs can include designating pre-defined criteria explicitly or implicitly. The designating can include marking one or more POIs with touchscreen input relating to the one or more designated POIs, tagging the one or more POIs with tag information, or other ways to designate POIs for interaction, whereby content with respect to the POIs is downloaded in local memory of the device.

In another embodiment, a portable electronic device includes a positional component for receiving position information as a function of a location of the portable electronic device and a directional component that outputs direction information as a function of an orientation of the portable electronic device. In addition, the device includes a processor configured to process the position information and the direction information to determine identifiers or IDs of POIs within a pre-defined geographical area of the device, interact with a selected ID, having already received information about the POI corresponding to the selected identifier, and receive input regarding the selected ID defining an interaction.

Information about the selected ID defining the future interaction is transmitted along with the point of interest to a network service. In one embodiment, a pointer structure is provided on the device that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. For example, this could be a triangular structure that comes to a point to show a primary orientation of the device. This could also be indicated on the display of the device during provision of direction based services.

In one embodiment, the position information and the direction information determine a pointing line and a set of candidate points of interest are determined as a subset of points of interest that substantially intersect with a function based on the pointing line. An intersection test for determining subsets of points of interest can include defining an arc based on an angle with respect to a pointing line, defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line (2-D or 3-D depending on the application). A speaker can render audio content if a condition upon which the predicted interaction is predicated occurs. The directional component can be a digital compass that outputs the direction information.

In another embodiment, a method comprises determining a place in which a portable device is located based on location information determined for the device and identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation. Next, input with respect to an item of the subset of items is received defining an interaction with the item. Predicted interactions can include receiving a notification when a characteristic of an item meets a pre-defined condition, such as when a price of the item meets a target price condition, thereby initiating the predicted interaction.

Supplemental Context Regarding Pointing Devices, Architectures and Services

The following description contains supplemental context regarding potential non-limiting pointing devices, architectures and associated services to further aid in understanding one or more of the above embodiments. Any one or more of any additional features described in this section can be accommodated in any one or more of the embodiments described above with respect to delayed direction based services at a particular location for given POI(s). While such combinations of embodiments or features are possible, for the avoidance of doubt, no embodiments set forth in the subject disclosure should be considered limiting on any other embodiments described herein.

As mentioned, a broad range of scenarios can be enabled by a device that can take location and direction information about the device and build a service on top of that information. For example, by using an accelerometer in coordination with an on board digital compass, an application running on a mobile device updates what each endpoint is “looking at” or pointed towards, attempting hit detection on potential points of interest to either produce real-time information for the device or to allow the user to select a range, or using the GPS, a location on a map, and set information such as “Starbucks—10% off cappuccinos today” or “The Alamo—site of . . . ” for others to discover. One or more accelerometers can also be used to perform the function of determining direction information for each endpoint as well. As described herein, these techniques can become more granular to particular items within a Starbucks, such as “blueberry cheesecake” on display in the counter, enabling a new type of sale opportunity.

Accordingly, a general device for accomplishing this includes a processing engine to resolve a line of sight vector sent from a mobile endpoint and a system to aggregate that data as a platform, enabling a host of new scenarios predicated on the pointing information known for the device. The act of pointing with a device, such as the user's mobile phone, thus becomes a powerful vehicle for users to discover and interact with points of interest around the individual in a way that is tailored for the individual. Synchronization of data can also be performed to facilitate roaming and sharing of POV data and contacts among different users of the same service.

In a variety of embodiments described herein, 2-dimensional (2D), 3-dimensional (3D) or N-dimensional directional-based search, discovery, and interactivity services are enabled for endpoints in the system of potential interest to the user.

The pointing information and corresponding algorithms depend upon the assets available in a device for producing the pointing or directional information. The pointing information, however produced according to an underlying set of measurement components, and interpreted by a processing engine, can be one or more vectors. A vector or set of vectors can have a “width” or “arc” associated with the vector for any margin of error associated with the pointing of the device. A panning angle can be defined by a user with at least two pointing actions to encompass a set of points of interest, e.g., those that span a certain angle defined by a panning gesture by the user.

In one non-limiting embodiment, a portable electronic device includes a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a location based engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of at least the positional information and the direction information.

The positional component can be a positional GPS component for receiving GPS data as the positional information. The directional component can be a magnetic compass and/or a gyroscopic compass that outputs the direction information. The device can include acceleration component(s), such as accelerometer(s), that outputs acceleration information associated with movement of the portable electronic device. The use of a separate sensor can also be used to further compensate for tilt and altitude adjustment calculations.

In one embodiment, the device includes a cache memory for dynamically storing a subset of endpoints of interest that are relevant to the portable electronic device and at least one interface to a network service for transmitting the positional information and the direction information to the network service. In return, based on real-time changes to the positional information and direction/pointing information, the device dynamically receives in the cache memory an updated subset of endpoints that are potentially relevant to the portable electronic device.

For instance, the subset of endpoints can be updated as a function of endpoints of interest within a pre-defined distance substantially along a vector defined by the orientation of the portable electronic device. Alternatively or in addition, the subset of endpoints can be updated as a function of endpoints of interest relevant to a current context of the portable electronic device. In this regard, the device can include a set of Representational State Transfer (REST)-based application programming interfaces (APIs), or other stateless set of APIs, so that the device can communicate with the service over different networks, e.g., Wi-Fi, a GPRS network, etc. or communicate with other users of the service, e.g., Bluetooth. For the avoidance of doubt, the embodiments are in no way limited to a REST based implementation, but rather any other state or stateful protocol could be used to obtain information from the service to the devices. For the avoidance of doubt, implementations of direction based services and devices are not dependent on REST based implementations, but could also be performed with REST, simple object access protocol (SOAP), really simple syndication (RSS), etc.

The directional component outputs direction information including compass information based on calibrated and compensated heading/directionality information. The directional component can also include direction information indicating upward or downward tilt information associated with a current upward or downward tilt of the portable electronic device, so that the services can detect when a user is pointing upwards or downwards with the device in addition to a certain direction. The height of the vectors itself can also be taken into account to distinguish between an event of pointing with a device from the top of a building (likely pointing to other buildings, bridges, landmarks, etc.) and the same event from the bottom of the building (likely pointing to a shop at ground level), or towards a ceiling or floor to differentiate among shelves in a supermarket. A 3-axis magnetic field sensor can also be used to implement a compass to obtain tilt readings.

Secondary sensors, such as altimeters or pressure readers, can also be included in a mobile device and used to detect a height of the device, e.g., what floor a device is on in a parking lot or floor of a department store (changing the associated map/floorplan data). Where a device includes a compass with a planar view of the world (e.g., 2-axis compass), the inclusion of one or more accelerometers in the device can be used to supplement the motion vector measured for a device as a virtual third component of the motion vector, e.g., to provide measurements regarding a third degree of freedom. This option may be deployed where the provision of a 3-axis compass is too expensive, or otherwise unavailable. In this regard, any type of compass, or combination of compasses can be used according to the sensitivity or degree of directional information for a given application or set of services. Thus, electromagnetic compass(es), digital compass(es), SW, etc., or any combination of compass(es) are all contemplated for a device in order to interact with POIs. Moreover, any one or more of the compass(es) can include support for 1, 2 or 3 axes.

In this respect, a gesturing component can also be included in the device to determine a current gesture of a user of the portable electronic device from a set of pre-defined gestures. For example, gestures can include zoom in, zoom out, panning to define an arc, all to help filter over potential subsets of points of interest for the user.

For instance, web services can effectively resolve vector coordinates sent from mobile endpoints into <x,y,z> or other coordinates using location data, such as GPS data, as well as configurable, synchronized POV information similar to that found in a GPS system in an automobile. In this regard, any of the embodiments can be applied similarly in any motor vehicle device. One non-limiting use is also facilitation of endpoint discovery for synchronization of data of interest to or from the user from or to the endpoint.

Among other algorithms for interpreting position/motion/direction information, as shown in FIG. 14, a device 1400 employing the direction based location based services 1402 as described herein in a variety of embodiments herein include a way to discern between near objects, such as POI 1414 and far objects, such as POI 1416. Depending on the context of usage, the time, the user's past, the device state, the speed of the device, the nature of the POIs, etc., the service can determine a general distance associated with a motion vector. Thus, a motion vector 1406 will implicate POI 1414, but not POI 1416, and the opposite would be true for motion vector 1408.

In addition, a device 1400 includes an algorithm for discerning items substantially along a direction at which the device is pointing, and those not substantially along a direction at which the device is pointing. In this respect, while motion vector 1404 might implicate POI 1412, without a specific panning gesture that encompassed more directions/vectors, POIs 1414 and 1416 would likely not be within the scope of points of interest defined by motion vector 1404. The distance or reach of a vector can also be tuned by a user, e.g., via a slider control or other control, to quickly expand or contract the scope of endpoints encompassed by a given “pointing” interaction with the device.

In one non-limiting embodiment, the determination of at what or whom the user is pointing is performed by calculating an absolute “Look” vector, within a suitable margin of error, by a reading from an accelerometer's tilt and a reading from the magnetic compass. Then, an intersection of endpoints determines an initial scope, which can be further refined depending on the particular service employed, i.e., any additional filter. For instance, for an apartment search service, endpoints falling within the look vector that are not apartments ready for lease, can be pre-filtered.

In addition to the look vector determination, the engine can also compensate for, or begin the look vector, where the user is by establish positioning (˜15 feet) through an A-GPS stack (or other location based or GPS subsystem including those with assistance strategies) and also compensate for any significant movement/acceleration of the device, where such information is available.

As mentioned, in another aspect, a device can include a client side cache of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated. The context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided to the device that makes sense for the speed of the vehicle.

In an automobile context, the location becomes the road on which the automobile is travelling, and the particular items are the places and things that are passed on the roadside much like products in a particular retail store on a shelf or in a display. The pointing based services thus creates a virtual “billboard” opportunity for items of interest generally along a user's automobile path. Proximity to location can lead to an impulse buy, e.g., a user might stop by a museum they are passing and pointing at with their device, if offered a discount on admission.

In various alternative embodiments, gyroscopic or magnetic compasses can provide directional information. A REST based architecture enables data communications to occur over different networks, such as Wi-Fi and GPRS architectures. REST based APIs can be used, though any stateless messaging can be used that does not require a long keep alive for communicated data/messages. This way, since networks can go down with GPRS antennae, seamless switching can occur to Wi-Fi or Bluetooth networks to continue according to the pointing based services enabled by the embodiments described herein.

A device as provided herein according to one or more embodiments can include a file system to interact with a local cache, store updates for synchronization to the service, exchange information by Bluetooth with other users of the service, etc. Accordingly, operating from a local cache, at least the data in the local cache is still relevant at a time of disconnection, and thus, the user can still interact with the data. Finally, the device can synchronize according to any updates made at a time of re-connection to a network, or to another device that has more up to date GPS data, POI data, etc. In this regard, a switching architecture can be adopted for the device to perform a quick transition from connectivity from one networked system (e.g., cell phone towers) to another computer network (e.g., Wi-Fi) to a local network (e.g., mesh network of Bluetooth connected devices).

With respect to user input, a set of soft keys, touch keys, etc. can be provided to facilitate in the directional-based pointing services provided herein. A device can include a windowing stack in order to overlay different windows, or provide different windows of information regarding a point of interest (e.g., hours and phone number window versus interactive customer feedback window). Audio can be rendered or handled as input by the device. For instance, voice input can be handled by the service to explicitly point without the need for a physical movement of the device. For instance, a user could say into a device “what is this product right in front of me? No, not that one, the one above it” and have the device transmit current direction/movement information to a service, which in turn intelligently, or iteratively, determines what particular item of interest the user is pointing at, and returns a host of relevant information about the item.

One non-limiting way for determining a set of points of interest is illustrated in FIG. 15. In FIG. 15, a device 1500 is pointed (e.g., point and click) in a direction D1, which according to the device or service parameters, implicitly defines an area within arc 1510 and distance 1520 that encompasses POI 1530, but does not encompass POI 1532. Such an algorithm will also need to determine any edge case POIs, i.e., whether POIs such as POI 1534 are within the scope of pointing in direction D1, where the POI only partially falls within the area defined by arc 1510 and distance 1520.

Other gestures that can be of interest in for a gesturing subsystem include recognizing a user's gesture for zoom in or zoom out. Zoom in/zoom out can be done in terms of distance like FIG. 16. In FIG. 16, a device 1600 pointed in direction D1 may include zoomed in view which includes points of interest within distance 1620 and arc 1610, or a medium zoomed view representing points of interest between distance 1620 and 1622, or a zoomed out view representing points of interest beyond distance 1622. These zoom zones correspond to POIs 1630, 1632 and 1634, respectively. More or less zones can be considered depending upon a variety of factors, the service, user preference, etc.

For another non-limiting example, with location information and direction information, a user can input a first direction via a click, and then a second direction after moving the device via a second click, which in effect defines an arc 1710 for objects of interest in the system as illustrated in FIG. 17. For instance, via first pointing act by the user at time t1 in direction D1 and a second pointing act at time t2 by the user in direction D2, an arc 1710 is implicitly defined. The area of interest implicitly includes a search of points of object within a distance 1720, which can be zoomed in and out, or selected by the service based on a known granularity of interest, selected by the user, etc. This can be accomplished with a variety of forms of input to define the two directions. For instance, the first direction can be defined upon a click-and-hold button event, or other engage-and-hold user interface element, and the second direction can be defined upon release of the button. Similarly, two consecutive clicks corresponding to the two different directions D1 and D2 can also be implemented.

Also, instead of focusing on real distance, zooming in or out could also represent a change in terms of granularity, or size, or hierarchy of objects. For example, a first pointing gesture with the device may result in a shopping mall appearing, but with another gesture, a user could carry out a recognizable gesture to gain or lose a level of hierarchical granularity with the points of interest on display. For instance, after such gesture, the points of interest could be zoomed in to the level of the stores at the shopping mall and what they are currently offering.

In addition, a variety of even richer behaviors and gestures can be recognized when acceleration of the device in various axes can be discerned. Panning, arm extension/retraction, swirling of the device, backhand tennis swings, breaststroke arm action, golf swing motions could all signify something unique in terms of the behavior of the pointing device, and this is to just name a few motions that could be implemented in practice. Thus, any of the embodiments herein can define a set of gestures that serve to help the user interact with a set of services built on the pointing platform, to help users easily gain information about points of information in their environment.

Furthermore, with relatively accurate upward and downward tilt of the device, in addition to directional information such as calibrated and compensated heading/directional information, other services can be enabled. Typically, if a device is ground level, the user is outside, and the device is “pointed” up towards the top of buildings, the granularity of information about points of interest sought by the user (building level) is different than if the user was pointing at the first floor shops of the building (shops level), even where the same compass direction is implicated. Similarly, where a user is at the top of a landmark such as the Empire State building, a downward tilt at the street level (street level granularity) would implicate information about different points of interest that if the user of the device pointed with relatively no tilt at the Statue of Liberty (landmark/building level of granularity).

Also, when a device is moving in a car, it may appear that direction is changing as the user maintains a pointing action on a single location, but the user is still pointing at the same thing due to displacement. Thus, thus time varying location can be factored into the mathematics and engine of resolving at what the user is pointing with the device to compensate for the user experience based upon which all items are relative.

Accordingly, armed with the device's position, one or more web or cloud services can analyze the vector information to determine at what or whom the user is looking/pointing. The service can then provide additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc. As a result, instead of a blank contextless Internet search, a form of real-time visual search for users in real 3-D environments is provided.

In one non-limiting embodiment, the direction based pointing services are implemented in connection with a pair of glasses, headband, etc. having a corresponding display means that acts in concert with the user's looking to highlight or overlay features of interest around the user.

As shown in FIG. 18, once a set of objects is determined from the pointing information according to a variety of contexts of a variety of services, a mobile device 1800 can display the objects via representation 1802 according to a variety of user experiences tailored to the service at issue. For instance, a virtual camera experience can be provided, where POI graphics or information can be positioned relative to one another to simulate an imaging experience. A variety of other user interface experiences can be provided based on the pointing direction as well.

For instance, a set of different choices are shown in FIG. 19. UI 1900 and 1902 illustrate navigation of hierarchical POI information. For instance, level1 categories may include category1, category2, category3, category4 and category5, but if a user selects around the categories with a thumb-wheel, up-down control, or the like, and chooses one such as category2. Then, subcategory1, subcategory2, subcategory3 and subcategory4 are displayed as subcategories of category2. Then, if the user selects, for instance, subcategory4, perhaps few enough POIs, such as buildings 1900 and 1910 are found in the subcategory in order to display on a 2D map UI 1904 along the pointing direction, or alternatively as a 3D virtual map view 1906 along the pointing direction.

Once a single POI is implicated or selected, then a full screen view for the single POI can be displayed, such as the exemplary UI 2000. UI 2000 can have one or more of any of the following representative areas. UI 2000 can include a static POI image 2002 such as a trademark of a store, or a picture of a person. UI 2000 can also include other media, and a static POI information portion 2004 for information that tends not to change such as restaurant hours, menu, contact information, etc. In addition, UI 2000 can include an information section for dynamic information to be pushed to the user for the POI, e.g., coupons, advertisements, offers, sales, etc. In addition, a dynamic interactive information are 2008 can be included where the user can fill out a survey, provide feedback to the POI owner, request the POI to contact the user, make a reservation, buy tickets, etc. UI 2000 also can include a representation of the direction information output by the compass for reference purposes. Further, UI 2000 can include other third party static or dynamic content in area 2012.

When things change from the perspective of either the service or the client, a synchronization process can bring either the client or service, respectively, up to date. In this way, an ecosystem is enabled where a user can point at an object or point of interest, gain information about it that is likely to be relevant to the user, interact with the information concerning the point of interest, and add value to services ecosystem where the user interacts. The system thus advantageously supports both static and dynamic content.

Other user interfaces can be considered such as left-right, or up-down arrangements for navigating categories or a special set of soft-keys can be adaptively provided.

Where a device includes a camera, in one embodiment shown in FIG. 21, a representative non-limiting overlay UI 2100 is shown having 3 POIs POI1, POI2 and POI3. The POIs are overlaid over actual image data being real time viewed on the device via an LCD screen or like display. The actual image data can be of products on a shelf or other display or exhibit in a store. Thus, as the user aims the camera around his or her environment, the lens becomes the pointer, and the POI information can be overlaid intelligently for discovery of endpoints of interest. Moreover, a similar embodiment can be imagined even without a camera, such as a UI in which 3-D objects are virtually represented based on real geometries known for the objects relative to the user.

Thus, the device UI can be implemented consistent with a camera, or a virtual camera, view for intuitive use of such devices. The pointer mechanism of the device could also switch based on whether the user was currently in live view mode for the camera or not. Moreover, assuming sufficient processing power and storage, real time image processing could discern an object of interest and based on image signatures, overlay POI information over such image in a similar manner to the above embodiments. In this regard, with the device provided herein, a variety of gestures can be employed to zoom in zoom out, perform tilt detection for looking down or up, or panning across a field of view to obtain a range of POIs associated with the panning scope.

With respect to a representative set of user settings, a number or maximum number of desired endpoints delivered as results can be configured. How to filter can also be configured, e.g., 5 most likely, 5 closest, 5 closest to 100 feet away, 5 within category or sub-category, alphabetical order, etc. In each case, based on a pointing direction, implicitly a cone or other cross section across physical space is defined as a scope of possible points of interest. In this regard, the width or deepness of this cone or cross section can be configurable by the user to control the accuracy of the pointing, e.g., narrow or wide radius of points and how far out to search.

To support processing of vector information and aggregating POI databases from third parties, a variety of storage techniques, such as relational storage techniques can be used. For instance, Virtual Earth data can be used for mapping and aggregation of POI data can occur from third parties such as Tele Atlas, NavTeq, etc. In this regard, businesses not in the POI database will want to be discovered and thus, the service provides a similar, but far superior from a spatial relevance standpoint, Yellow Pages experiences where businesses will desire to have their additional information, such as menus, price sheets, coupons, pictures, virtual tours, etc. accessible via the system.

In addition, a synchronization platform or framework can keep the roaming caches in sync, thereby capturing what users are looking at and efficiently processing changes. Or, where a user goes offline, local changes can be recorded, and when the user goes back online, such local changes can be synchronized to the network or service store. Also, since the users are in effect pulling information they care about in the here and in the now through the act of pointing with the device, the system generates high cost per thousand impression (CPM) rates as compared to other forms of demographic targeting. Moreover, the system drives impulse buys, since the user may not be physically present in a store, but the user may be near the object, and by being nearby and pointing at the store, information about a sale concerning the object can be sent to the user.

As mentioned, different location subsystems, such as tower triangulation, GPS, A-GPS, E-GPS, etc. have different tolerances. For instance, with GPS, tolerances can be achieved to about 10 meters. With A-GPS, tolerances can be tightened to about 12 feet. In turn, with E-GPS, tolerance may be a different error margin still. Compensating for the different tolerances is part of the interpretation engine for determining intersection of a pointing vector and a set of points of interest. In addition, as shown in FIGS. 4-6, a distance to project out the pointing vector can be explicit, configurable, contextual, etc.

In this regard, the various embodiments described herein can employ any algorithm for distinguishing among boundaries of the endpoints, such as boundary boxes, or rectangles, triangles, circles, etc. As a default radius, e.g., 150 feet could be selected, and such value can be configured or be context sensitive to the service provided. On-line real estate sites can be leveraged for existing POI information. Since different POI databases may track different information at different granularities, a way of normalizing the POI data according to one convention or standard can also be implemented so that the residential real estate location data of Zillow can be integrated with GPS information from Starbucks of all the Starbucks by country.

In addition, similar techniques can be implemented in a moving vehicle client that includes GPS, compass, accelerometer, etc. By filtering based on scenarios (e.g., I need gas), different subsets of points of interest (e.g., gas stations) can be determined for the user based not only on distance, but actual time it may take to get to the point of interest. In this regard, while a gas station may be 100 yards to the right off the highway, the car may have already passed the corresponding exit, and thus more useful information to provide is what gas station will take the least amount of time to drive from a current location based on direction/location so as to provide points of interest that are up ahead on the road, and not already aged points of interest that would require turning around from one's destination in order to get to them.

For existing motor vehicle navigation devices, or other conventional portable GPS navigation devices, where a device does not natively include directional means such as a compass, the device can have an extension slot that accommodates direction information from an external directional device, such as a compass. Similarly, for laptops or other portable electronic devices, such devices can be outfitted with a card or board with a slot for a compass. While any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, one advantageous feature of a user's locality in real space is that it is inherently more limited than a general Internet search for information. As a result, a limited amount of data can be maintained on a user's device in cache memory and properly aged out as data becomes stale.

While there are a variety of implementations, and ways to sub-divide regions, whether overlapping or not, predictive caching and aging 2200 is conceptually illustrated by FIG. 22 in which a user's present location 2202 is discerned. At this point, the local cache still includes age out candidate location 2210, but as the velocity of the user indicates the user will be at predicted locations 2204 and 2206 in the future, these regions of POIs are downloaded to the mobile device. Accordingly, as the user travels to predicted location 2206, it starts to be clear that the user no longer needs the data from the age out candidate location 2210, which can then be removed, or flagged for removal when storage is challenged.

Accordingly, using the regional data cache, callbacks and an update mechanism that is updated dynamically based on movement, new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc. In this regard, a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone. To appreciate the problem, the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time. Thus, predictively, a cube of data can be taken to the device, the user can go offline such that when the user reconnects, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.

The predictive algorithms again depend on what the user is interested in finding, what service the user may be using, the context of the user, etc. They can also be based on velocity, direction, time, etc. For instance, if it is nighttime, assumptions based on demographics or preferences may lead the device to return information about nightclubs or all night diners. Or, instead of giving directions as driving directions that calculate distances as absolute distances, i.e., as the crow flies, a device can take road curves into account since instantaneous pointing information on roads can be collected and handled by a corresponding service when giving driving directions. Or, as another alternative, the direction one is heading on a road, such as a highway with a concrete divider, is relevant to the directions that a navigation system should give. Where a U-turn is unavailable and user passes an exit with a point of interest, for instance, directions should take this into account and consider the heading of the vehicle.

One way to obtain the service applications, assuming the underlying measuring instruments to participate in the real-time gathering of directional information, is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link. Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.

In another aspect of any of the embodiments described herein, because stateless messaging is employed, if communications drop with one network, the device can begin further communicating via another network. For instance, a device has two channels, and a user gets on a bus, but no longer have GPRS or GPS activity. Nonetheless the user is able to get the information the device needs from some other channel. Just because a tower, or satellites are down, does not mean that the device cannot connect through an alternative channel, e.g., the bus's GPS location information via Bluetooth.

With respect to exemplary mobile client architectures, a representative device can include, as described variously herein, client Side Storage for housing and providing fast access to cached POI data in the current region including associated dynamically updated or static information, such as annotations, coupons from businesses, etc. This includes usage data tracking and storage. In addition, regional data can be a cached subset of the larger service data, always updated based on the region in which the client is roaming. For instance, POI data could include as a non-limiting example, the following information:

   POI coordinates and data //{−70.26322, 43.65412, “STARBUCK'S”}    Localized annotations //Menu, prices, hours of operation, etc    Coupons and ads //Classes of coupons (new user, returning, etc)    Support for different kinds of information (e.g., blob v structured information (blob for storage and media; structured for tags, annotations, etc.)

A device can also include usage data and preferences to hold settings as well as usage data such as coupons “activated,” waypoints, businesses encountered per day, other users encountered, etc. to be analyzed by the cloud services for business intelligence analysis and reporting.

A device can also include a continuous update mechanism, which is a service that maintains the client's cached copy of a current region updated with the latest. Among other ways, this can be achieved with a ping-to-pull model that pre-fetches and swaps out the client's cached region using travel direction and speed to facilitate roaming among different regions. This is effectively a paging mechanism for upcoming POIs. This also includes sending a new or modified POI for the region (with annotations+coupons), sending a new or modified annotation for the POIs (with coupons), or sending a new or modified coupon for the POI.

A device can also include a Hardware Abstraction Layer (HAL) having components responsible for abstracting the way the client communicates with the measuring instruments, e.g., the GPS driver for positioning and LOS accuracy (e.g., open eGPS), magnetic compass for heading and rotational information (e.g., gyroscopic), one or more accelerometers for gestured input and tilt (achieves 3D positional algorithms, assuming gyroscopic compass).

As described earlier, a device can also include methods/interfaces to make REST calls via GPRS/Wi-Fi and a file system and storage for storing and retrieving the application data and settings.

A device can also include user input and methods to map input to the virtual keys. For instance, one non-limiting way to accomplish user input is to have softkeys as follows, though it is to be understood a great variety of user inputs can be used to achieve interaction with the user interfaces of the pointing based services.

  SK up/down:    //Up and down on choices   SK right, SK ok/confirm: //Choose an option or drill down/next page   SK left, SK cancel/back, //Go back to a previous window, cancel   Exit / Incoming Call events //Exit the app or minimize   In addition, a representative device can include a graphics and windowing stack to render the client side UI, as well as an audio stack to play sounds / alerts.

As mentioned, such a device may also include spatial and math computational components including a set of APIs to perform 3D collision testing between subdivided surfaces such as spherical shells (e.g., a simple hit testing model to adopt and boundary definitions for POs), rotate points, and cull as appropriate from conic sections.

As described in various embodiments herein, FIGS. 23 and 24 illustrate two processes for a device when location (e.g., GPS) and direction (e.g., compass) events occur. In FIG. 23, upon the occurrence of a location or direction event, at 2300, it is determined whether predictive caching should be initiated for a next region to which a user is travelling. At 2310, if so, then the next region of data can be pre-fetched. At 2320, old regional data no longer of relevance can be aged out. At 2330, any usage data can be uploaded to the service framework for business intelligence, input to an advertisement engine, etc.

FIG. 24 represents another process for filtering potential POIs after a pointing event. Upon the detection of a location and direction event, at 2400, for POIs in the device's local cache, a group of POIs are determined that pass an intersection algorithm for the direction of pointing of the device. At 2410, POIs in the group can be represented in some fashion on a UI, e.g., full view if only 1 POI, categorized view, 2-D map view, 3-D perspective view, or user images if other users, etc. The possibilities for representation are limitless; the embodiments described herein are intuitive based on the general notion of pointing based direction services.

At 2420, upon selection of a POI, static content is determined and any dynamic content is acquired via synchronization. When new data becomes available, it is downloaded to stay up to date. At 2430, POI information is filtered further by user specific information (e.g., if it is the user's first time at the store, returning customer, loyalty program member, live baseball game offer for team clothing discounts, etc.). At 2440, static and dynamic content that is up to date is rendered for the POI. In addition, updates and/or interaction with POI information is allowed which can be synced back to the service.

Exemplary Networked and Distributed Environments

One of ordinary skill in the art can appreciate that the various embodiments of methods and devices for pointing based services and related embodiments described herein can be implemented in connection with any computer or other client or server device, which can be deployed as part of a computer network or in a distributed computing environment, and can be connected to any kind of data store. In this regard, the various embodiments described herein can be implemented in any computer system or environment having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units. This includes, but is not limited to, an environment with server computers and client computers deployed in a network environment or a distributed computing environment, having remote or local storage.

FIG. 25 provides a non-limiting schematic diagram of an exemplary networked or distributed computing environment. The distributed computing environment comprises computing objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc., which may include programs, methods, data stores, programmable logic, etc., as represented by applications 2530, 2532, 2534, 2536, 2538. It can be appreciated that objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. may comprise different devices, such as PDAs, audio/video devices, mobile phones, MP3 players, laptops, etc.

Each object 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. can communicate with one or more other objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. by way of the communications network 2540, either directly or indirectly. Even though illustrated as a single element in FIG. 25, network 2540 may comprise other computing objects and computing devices that provide services to the system of FIG. 25, and/or may represent multiple interconnected networks, which are not shown. Each object 2510, 2512, etc. or 2520, 2522, 2524, 2526, 2528, etc. can also contain an application, such as applications 2530, 2532, 2534, 2536, 2538, that might make use of an API, or other object, software, firmware and/or hardware, suitable for communication with or implementation of the delayed interaction model as provided in accordance with various embodiments.

There are a variety of systems, components, and network configurations that support distributed computing environments. For example, computing systems can be connected together by wired or wireless systems, by local networks or widely distributed networks. Currently, many networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks, though any network infrastructure can be used for exemplary communications made incident to the techniques as described in various embodiments.

Thus, a host of network topologies and network infrastructures, such as client/server, peer-to-peer, hub and spoke, or hybrid architectures, can be utilized. In a client/server architecture, particularly a networked system, a client is usually a computer that accesses shared network resources provided by another computer, e.g., a server. In the illustration of FIG. 25, as a non-limiting example, computers 2520, 2522, 2524, 2526, 2528, etc. can be thought of as clients and computers 2510, 2512, etc. can be thought of as servers where servers 2510, 2512, etc. provide data services, such as receiving data from client computers 2520, 2522, 2524, 2526, 2528, etc., storing of data, processing of data, transmitting data to client computers 2520, 2522, 2524, 2526, 2528, etc., although any computer can be considered a client, a server, or both, depending on the circumstances. Any of these computing devices may be processing data, or requesting services or tasks that may implicate the delayed interaction model and related techniques as described herein for one or more embodiments.

A server is typically a remote computer system accessible over a remote or local network, such as the Internet or wireless network infrastructures. The client process may be active in a first computer system, and the server process may be active in a second computer system, communicating with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of the server. Any software objects utilized pursuant to the direction based services can be provided standalone, or distributed across multiple computing devices or objects.

In a network environment in which the communications network/bus 2540 is the Internet, for example, the servers 2510, 2512, etc. can be Web servers with which the clients 2520, 2522, 2524, 2526, 2528, etc. communicate via any of a number of known protocols, such as the hypertext transfer protocol (HTTP). Servers 2510, 2512, etc. may also serve as clients 2520, 2522, 2524, 2526, 2528, etc., as may be characteristic of a distributed computing environment.

Exemplary Computing Device

As mentioned, various embodiments described herein apply to any device wherein it may be desirable to perform pointing based services, and delay interactions with points of interest. It should be understood, therefore, that handheld, portable and other computing devices and computing objects of all kinds are contemplated for use in connection with the various embodiments described herein, i.e., anywhere that a device may request pointing based services. Accordingly, the below general purpose remote computer described below in FIG. 26 is but one example, and the embodiments of the subject disclosure may be implemented with any client having network/bus interoperability and interaction.

Although not required, any of the embodiments can partly be implemented via an operating system, for use by a developer of services for a device or object, and/or included within application software that operates in connection with the operable component(s). Software may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers or other devices. Those skilled in the art will appreciate that network interactions may be practiced with a variety of computer system configurations and protocols.

FIG. 26 thus illustrates an example of a suitable computing system environment 2600 in which one or more of the embodiments may be implemented, although as made clear above, the computing system environment 2600 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of any of the embodiments. Neither should the computing environment 2600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 2600.

With reference to FIG. 26, an exemplary remote device for implementing one or more embodiments herein can include a general purpose computing device in the form of a handheld computer 2610. Components of handheld computer 2610 may include, but are not limited to, a processing unit 2620, a system memory 2630, and a system bus 2621 that couples various system components including the system memory to the processing unit 2620.

Computer 2610 typically includes a variety of computer readable media and can be any available media that can be accessed by computer 2610. The system memory 2630 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM). By way of example, and not limitation, memory 2630 may also include an operating system, application programs, other program modules, and program data.

A user may enter commands and information into the computer 2610 through input devices 2640 A monitor or other type of display device is also connected to the system bus 2621 via an interface, such as output interface 2650. In addition to a monitor, computers may also include other peripheral output devices such as speakers and a printer, which may be connected through output interface 2650.

The computer 2610 may operate in a networked or distributed environment using logical connections to one or more other remote computers, such as remote computer 2670. The remote computer 2670 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and may include any or all of the elements described above relative to the computer 2610. The logical connections depicted in FIG. 26 include a network 2671, such local area network (LAN) or a wide area network (WAN), but may also include other networks/buses. Such networking environments are commonplace in homes, offices, enterprise-wide computer networks, intranets and the Internet.

As mentioned above, while exemplary embodiments have been described in connection with various computing devices, networks and advertising architectures, the underlying concepts may be applied to any network system and any computing device or system in which it is desirable to derive information about surrounding points of interest.

There are multiple ways of implementing one or more of the embodiments described herein, e.g., an appropriate API, tool kit, driver code, operating system, control, standalone or downloadable software object, etc. which enables applications and services to use the pointing based services. Embodiments may be contemplated from the standpoint of an API (or other software object), as well as from a software or hardware object that provides pointing platform services in accordance with one or more of the described embodiments. Various implementations and embodiments described herein may have aspects that are wholly in hardware, partly in hardware and partly in software, as well as in software.

The word “exemplary” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.

As mentioned, the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. As used herein, the terms “component,” “system” and the like are likewise intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.

The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it should be noted that one or more components may be combined into a single component providing aggregate functionality or divided into several separate sub-components, and any one or more middle layers, such as a management layer, may be provided to communicatively couple to such sub-components in order to provide integrated functionality. Any components described herein may also interact with one or more other components not specifically described herein but generally known by those of skill in the art.

In view of the exemplary systems described supra, methodologies that may be implemented in accordance with the disclosed subject matter will be better appreciated with reference to the flowcharts of the various figures. While for purposes of simplicity of explanation, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Where non-sequential, or branched, flow is illustrated via flowchart, it can be appreciated that various other branches, flow paths, and orders of the blocks, may be implemented which achieve the same or a similar result. Moreover, not all illustrated blocks may be required to implement the methodologies described hereinafter.

While the various embodiments have been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function without deviating therefrom. Still further, one or more aspects of the above described embodiments may be implemented in or across a plurality of processing chips or devices, and storage may similarly be effected across a plurality of devices. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.

Claims

1. A method for a device provisioned for pointing based services, comprising:

receiving point of interest data from one or more pointing based services based on pointing information associated with at least one direction of the device via a first network;
losing connectivity to the first network;
identifying at least one other source of point of interest data to which the device can connect via a second network; and
automatically connecting to the second network to receive the point of interest information from the at least one other source.

2. The method of claim 1, wherein the identifying includes automatically searching for an on-site data store of point of interest information pertaining locally to the device.

3. The method of claim 1, wherein the identifying includes automatically searching for a data store of point of interest information pertaining to points of interest of a physical structure where the device is located.

4. The method of claim 1, wherein the identifying includes automatically identifying at least one other computing device having stored thereon point of interest data.

5. The method of claim 4, further comprising:

requesting permission to receive the point of interest data from the at least one other computing device.

6. The method of claim 1, wherein the identifying includes automatically identifying at least one other computing device having access to point of interest data to which the at least one other computing device can connect via a third network.

7. The method of claim 1, further comprising:

receiving point of interest data from one or more pointing based services based on pointing information associated with at least one direction of the device via the second network.

8. The method of claim 1, wherein the losing connectivity includes losing connectivity to a long range wireless communications network and the identifying includes identifying at least one other source of point of interest data to which the device can connect via a short range wireless communications network.

9. The method of claim 8, wherein the losing connectivity includes losing connectivity to a mobile device communications network and the identifying includes identifying at least one other source of point of interest data to which the device can connect via Bluetooth.

10. A portable electronic device, comprising:

a memory that stores at least information related to at least direction information representing information pertaining to orientation of the device, position information representing information pertaining to location of the device and point of interest information representing information pertaining to points of interest substantially within interactive range of the device;
a positional component for receiving the position information as a function of a location of the portable electronic device;
a directional component that measures the direction information as a function of an orientation of the portable electronic device; and
a switching component that switches among at least two sources for the position information when at least one source of the at least two sources for the position information is not delivering position information to the device.

11. The device of claim 10, wherein the switching component switches among at least two sources for the direction information when at least one source of the at least two sources for the direction information is not operating.

12. The device of claim 10, wherein the switching component switches among at least two sources for the point of interest information when at least one source of the at least two sources for the point of interest information is unavailable.

13. The device of claim 10, further comprising:

at least one processor configured to process the position information and the direction information to determine at least one identifier of at least one point of interest within scope of the device, to receive information corresponding to the at least one identifier of the at least one point of interest, and to display information if the device interacts with the at least one point of interest with the device.

14. The device of claim 10, further comprising:

at least one processor configured to process the position information and the direction information to determine at least one identifier of at least one point of interest within scope of the device, to receive advertisement content corresponding to the at least one identifier of the at least one point of interest, and to render the advertisement content if the device interacts with the at least one point of interest with the device.

15. The device of claim 10, further comprising:

a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information.

16. The device of claim 10, wherein the directional component is a digital compass that outputs the direction information.

17. A method for a pointing based services enabled device, comprising:

determining direction information as a function of a direction for the device;
determining position information as a function of a position for the device;
receiving pointing based services based on the direction information and position information via a first network;
losing connectivity by the device to the first network;
identifying at least one other source for the pointing based services to which the device can connect on a second network; and
automatically connecting to the second network to receive the pointing based services from the at least one other source.

18. The method of claim 17, further comprising:

determining motion information as a function of movement of the device and the receiving includes receiving pointing base services based on the direction information, position information and the motion information.

19. The method of claim 17, wherein the connecting includes automatically connecting to a nearby device that hosts the pointing based services.

20. The method of claim 17, wherein the connecting includes automatically connecting via Bluetooth.

Patent History
Publication number: 20090315766
Type: Application
Filed: Jun 2, 2009
Publication Date: Dec 24, 2009
Applicant: MICROSOFT CORPORATION (Redmond, WA)
Inventors: Moe Khosravy (Bellevue, WA), Lev Novik (Bellevue, WA)
Application Number: 12/476,426
Classifications
Current U.S. Class: 342/357.07; 714/4; 707/3; 707/9; Cooperative Computer Processing (709/205); Information Processing Systems, E.g., Multimedia Systems, Etc. (epo) (707/E17.009); Query Processing For The Retrieval Of Structured Data (epo) (707/E17.014); Saving, Restoring, Recovering Or Retrying (epo) (714/E11.113); Advertisement (705/14.4)
International Classification: G06Q 30/00 (20060101); G06F 11/14 (20060101); G06F 17/30 (20060101); G06F 15/16 (20060101); G01S 5/00 (20060101);