Cleaning Tool for Attachment Surfaces

A tool that is useful for cleaning and disinfecting the attachment surfaces of a fluid connector device used in medical applications, the tool having a housing with an opening of defined shape and a chemically treated flexible insert disposed inside the housing that substantially conforms to the inside wall of the housing and, when placed over the attachment surfaces of a fluid connector device, can be manipulated axially and rotationally relative to the attachment surfaces to contact, clean and disinfect the surfaces.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a tool that is useful for mechanical cleaning and/or application of fluids to an exposed or accessible attachment surface of a fluid connector device used in medical applications.

2. Description of Related Art

A significant problem that exists today in the delivery of healthcare services is the accidental transmission of pathogens and diseases from one patient to another, or from a patient or healthcare worker to another, by improperly or inadequately cleaned connectors such as those used in fluid infusion or extraction therapies. Proper and thorough cleaning of fluid connector devices and ports is essential, for example, in reducing the incidence of methycillin-resistant Staphylococcus aureus (MRSA) infections.

Fluid connectors of medical devices are commonly cleaned using wipes that are saturated with alcohol or another similarly effective disinfectant. The wipes are manufactured and stored in sealed pouches until the time of use, then removed manually by the user, who holds the wipe in his or her fingers and rubs the wipe against the exposed surfaces of the attachment surfaces to be cleaned. Any bacteria or pathogen that is present on the fingers of the user, typically a healthcare worker who has also been treating other patients, can be transferred to the wipe and then to the attachment surfaces of the device, or can be transferred directly to the device by inadvertent contact between the user's hand and an attachment surface. Also, because fluid connectors of the attachment devices frequently comprise a plurality of differing surfaces having various contours and degrees of exposure, a conventional wipe may not reach all portions of the surfaces when manipulated by the user. This is particularly true, for example, where the fluid connector comprises threads.

An improved cleaning tool for the attachment surfaces of fluid connectors used in medical applications is therefore needed that will reduce the likelihood of direct contact between the hands of the user and the surface being cleaned, that will better conform to the contours of the attachment surfaces when manipulated by the user, and that will apply pressure more evenly around the perimeter of the fluid connector being cleaned.

Swab pouches have recently been disclosed in United States Patent Publication Nos. 2007/0225660 A1, 2008/0038167 A1 and 2008/0039803 A1 for use in covering, protecting and disinfecting the ends of luers, luer valves, cannulas and the like. Although such pouches offer some advantages over conventional wipes, a device is still needed that can be manufactured reliably and that can be manipulated easily and effectively by a clinician to mechanically scrub and/or disinfect exposed or accessible attachment surfaces of fluid connectors used in medical applications.

SUMMARY OF THE INVENTION

A tool is disclosed that is useful for mechanically cleaning and/or applying fluids to an exposed or accessible attachment surface of a fluid connector device used in medical applications. As used herein, “fluid” is intended to include liquids, gases, and solutions, suspensions or slurries. Such fluids can include or contain, for example, vascular and/or non-vascular fluids, medicines or flowable cellular tissues, that are infused into, or extracted or collected from, a patient. As used herein, “fluid connectors” or “fluid connector devices” can include, for example, luers, hubs, threaded or unthreaded connectors, Clave® connectors, and the like. Medical applications involving fluid infusion or extraction can include, for example, intravascular, intraosseous, intracranial, hepatic, lymphatic, subcutaneous, epidural, or urinary therapies. It should be understood and will be appreciated, however, by those of ordinary skill in the art upon reading this disclosure that these examples of fluids, fluid connector devices and medical applications are not exhaustive of those in connection with which the cleaning tool of the invention can be used beneficially.

According to one preferred embodiment of the invention, a cleaning and disinfecting tool is disclosed that preferably comprises a housing having an inside wall and an open end with a defined shape, and a flexible insert such as a sponge or other similarly effective material conforming substantially to inside wall of the housing that can be used to scrub and treat a frontal attachment with a suitable cleaner or disinfectant. The cleaning and disinfecting tool can be prepackaged in a sterile wrapper and, when removed from the package, placed over the attachment surfaces of a fluid connector device such as the attachment end of a CLAVE® connector. The cleaning and disinfecting tool can be manipulated axially and rotationally relative to the end of the frontal attachment to scrub the contacted surfaces of the connector and to apply a chemical capable of cleaning, disinfecting or otherwise decontaminating the contacted surfaces.

According to another preferred embodiment of the invention, the housing of the subject cleaning tool is molded, thermoformed or stamped from a suitable material, most preferably a polymeric material. A flexible insert such as a chemically treated sponge is preferably disposed inside the housing and can further comprise a centrally disposed opening having interior side and end wall sections configured to receive and contact external portions of the free end of a frontal attachment as the cleaning tool is manipulated by a user. Where the flexible insert is a sponge, the sponge desirably contains an amount of cleaner or disinfectant and, optionally, one or more other additives, that is adequate for decontaminating the frontal attachment with which it is used. Both the housing and the sponge portion of the cleaning tool are desirably latex-free to avoid possible allergic reactions with either the user or a patient.

According to another preferred embodiment of the invention, a cleaning and disinfecting tool for attachment surfaces of fluid connector devices used in medical applications is provided that comprises a housing with a defined open end and a flexible insert disposed inside the housing, the insert further comprising a cleaning or disinfecting composition that is released or releasable upon contact with one or more attachment surfaces of a fluid connector. The flexible insert can be unitarily formed or can be assembled from a plurality of elements, which elements can be either fixed or moveable relative to each other. The flexible insert can be made with or without a centrally disposed recess adapted to receive one or more attachment surfaces of a fluid connector. The flexible insert is preferably heat-staked to the inside of the housing, but can also be attached by use of any available adhesive, welding technique or other attachment method that is suitable for use with the materials and methods utilized for making the housing, flexible insert and cleaner or disinfectant.

According to another preferred embodiment of the invention, a cleaning tool for attachment surfaces of fluid connector devices used in medical applications is provided that comprises a housing containing a flexible insert as described above, and has an attached polymeric handle with flexible side walls, a closed end and a hollow interior cavity with an open end that is in fluid communication with the flexible insert. The frangible ampule or another similarly effective fluid reservoir is desirably disposed inside handle and preferably contains an amount of cleaning and disinfecting fluid that is sufficient to partially saturate flexible insert and effectively clean and disinfect the exposed free end of a frontal attachment inserted into surrounding contact by the insert. A lever arm with a blunt edge is desirably provided on the outside of the handle to facilitate the selective application of manual force against the side wall of handle, causing it to flex sufficiently to cause fracturing of the relatively rigid sidewalls of the ampule, thereby releasing cleaning and disinfecting fluid to flow downwardly by gravity into the flexible insert.

According to another preferred embodiment of the invention, a tool for mechanically cleaning and/or applying fluid to attachment surfaces of fluid connector devices used in medical applications is provided that comprises a generally cylindrical housing having two distinct cavities, one forwardly facing and the other rearwardly facing, with open ends and with an opening establishing fluid communication between them. A compressible, flexible insert preferably having a cellular internal structure is secured inside the forwardly facing cavity. Another substantially cylindrical receptacle having a closed rearwardly facing end and an open forwardly facing end sealed with a removable closure slidably engages the open end of the rearwardly facing housing cavity. The housing and receptacle are desirably cooperatively configured so that an application of force to the closed, rearwardly facing end of the receptacle will cause projecting prongs to dislodge the closure. When this occurs, a cleaning and/or disinfecting fluid such as isopropyl alcohol or chlorhexidine that is stored in the receptacle can flow either by gravity flow or by a piston effect as described below to saturate the flexible insert immediately prior to contacting the insert with the attachment surfaces of the fluid connector device being cleaned.

BRIEF DESCRIPTION OF THE DRAWINGS

The apparatus of the invention is further described and explained in relation to the following drawings wherein:

FIG. 1 is a perspective view of one embodiment of a housing that is part of a preferred tool useful for cleaning and disinfecting the exposed attachment surfaces of a frontal attachment device such as, for example, a CLAVE® connector, to another medical device such as, for example, a needleless syringe;

FIG. 2 is a top plan view of the housing of FIG. 1;

FIG. 3 is a front elevation view of the housing of FIG. 1;

FIG. 4 is a side elevation view of the housing of FIG. 1;

FIG. 5 is a bottom plan view of the housing of FIG. 1;

FIG. 6 is a cross-sectional elevation view taken along line 6-6 of FIG. 2;

FIG. 7 is a perspective view of one embodiment of a preferred chemically treated cleaning sponge that is insertable into and attachable to the housing of FIG. 1;

FIG. 8 is a top plan view of the chemically treated cleaning sponge of FIG. 7;

FIG. 9 is a cross-sectional elevation view taken along line 9-9 of FIG. 8;

FIG. 10 is a cross-sectional elevation view of a preferred embodiment of the cleaning and disinfecting tool of the invention;

FIG. 11 is a front elevation view, partially in section and partially broken away, of the tool of FIG. 10 being used to clean and disinfect the attachment surfaces of a fluid connector device;

FIG. 12 is a perspective view of another embodiment of a preferred tool useful for cleaning and disinfecting the exposed attachment surfaces of a fluid connector device such as, for example, a CLAVE® connector, to another medical device such as, for example, a needleless syringe;

FIG. 13 is an exploded perspective view illustrating the component parts of the tool of FIG. 12;

FIG. 14 is a front elevation view of the tool of FIG. 12;

FIG. 15 is a bottom plan view of the tool of FIG. 12;

FIG. 16 is a cross-sectional elevation view taken along line 16-16 of FIG. 14, showing the central portion of the sponge in a first position;

FIG. 17 is a cross-sectional elevation view substantially as shown in FIG. 16, but with the central portion of the sponge in a second position that is elevated in relation to the first position;

FIG. 18 is a perspective view of one embodiment of a preferred chemically treated cleaning sponge that is configured differently from the sponge depicted, for example, in FIG. 13;

FIG. 19 is a cross-sectional elevation view of another embodiment of the preferred tool of the invention that is similar to the tool of FIG. 16 but includes a housing that is configured to receive a chemically treated cleaning sponge having a configuration like that of the sponge shown in FIG. 18;

FIG. 20 is a top perspective view of an array comprising a plurality of housings suitable for use in making a preferred embodiment of the cleaning tool of the invention prior to separating them from a web connecting them during manufacture;

FIG. 21 is front elevation view of a single housing that has been inverted following separation from the array of FIG. 20;

FIG. 22 is a cross-sectional elevation view taken along line 22-22 of FIG. 21;

FIG. 23 is bottom plan view of the housing of FIG. 21;

FIG. 24 is an exploded bottom perspective view of a cleaning tool made using the housing of FIG. 21 in combination with a flexible insert;

FIG. 25 is a cross-sectional elevation view taken along line 25-25 of FIG. 24;

FIG. 26 is a front elevation view, partially in section, of the tool of FIG. 24 being used to clean and disinfect the attachment surfaces of a fluid connector;

FIG. 27 is an inclined view, partially in section, of another embodiment of the subject cleaning tool being used to clean and disinfect the attachment surfaces of a fluid connector, the tool comprising a handle with a reservoir containing a cleaning and disinfecting composition that is selectively releasable into the flexible insert;

FIG. 28 is a perspective view of another embodiment of the subject cleaning tool;

FIG. 29 is an exploded perspective view of the cleaning tool of FIG. 28;

FIG. 30 is a front elevation view of the cleaning tool of FIG. 28;

FIG. 31 is a top plan view, partially broken away, of the cleaning tool of FIG. 28;

FIG. 32 is a cross-sectional front elevation view of the cleaning tool of FIG. 28 prior to use;

FIG. 33 is a cross-sectional front elevation view of the cleaning tool of FIG. 28 after the fluid receptacle is depressed relative to the housing to dislodge the stopper and release the cleaning and disinfecting fluid;

FIG. 34 is a cross-sectional front elevation view taken along line 34-34 of FIG. 31, in which the fluid receptacle is exploded upwardly relative to the housing;

FIG. 35 is a top plan view, partially broken away, of a preferred embodiment of another cleaning tool, having a single longitudinally extending slot in the housing;

FIG. 36 is a cross-sectional front elevation view taken along line 36-36 of FIG. 35, in which the fluid receptacle is exploded upwardly relative to the housing;

FIG. 37 is a cross-sectional front elevation view of the housing of a preferred embodiment of another cleaning tool of the invention;

FIG. 38 is a cross-sectional front elevation view of the housing of FIG. 37, with a cleaning fluid disposed inside a receptacle in the housing and a closure sealing the opening of the receptacle;

FIG. 39 is a is a cross-sectional front elevation view of a preferred embodiment of another cleaning tool of the invention, comprising the housing of FIG. 37 and the cleaning fluid and closure of FIG. 38, with an absorbent flexible insert disposed inside the portion of the housing below the closure;

FIG. 40 is a bottom perspective view of the flexible insert of FIG. 39;

FIG. 41 is bottom perspective view of the closure of FIGS. 38 and 39;

FIG. 42 is an enlarged detail view taken from a position substantially as shown in FIG. 37;

FIG. 43 is a bottom perspective view of another closure as shown in FIGS. 44-46;

FIG. 44 is a is a cross-sectional front elevation view of a preferred embodiment of another cleaning tool of the invention;

FIG. 45 is a cross-sectional front elevation view of the cleaning tool of FIG. 44 that is taken transversely to the cross-sectional view in FIG. 44;

FIG. 46 is a cross-sectional front elevation view of the cleaning tool of FIG. 44 being used to clean the attachment end of a fluid connector;

FIG. 47 is a bottom perspective view of a flexible insert as shown in FIGS. 44-46; and

FIG. 48 is a cross-sectional front elevation view of a preferred embodiment of another cleaning tool of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIGS. 1-6, a preferred embodiment of the cleaning and disinfecting tool of the invention comprises housing 10 that is preferably unitarily molded, stamped or thermoformed from a polymeric composition, thin metallic material or laminate. If molded or thermoformed, housing 10 preferably comprises a polymeric material that can be glued or sonically welded. Housing 10 preferably further comprises projecting tab or handle 12 that is easily graspable by a user, and a substantially cylindrical body having coaxially aligned upper body section 14 and adjacent lower body section 16. It should be appreciated that “substantially cylindrical,” as used in this disclosure, can include sections having different inside or outside diameters and such slopes or tapers as may be needed or appropriate in view of the particular configuration and the method and material of construction that are used in making housing 10. Taken together, upper and lower sections 14, 16 define an open interior space 20 having a stepped inside diameter, with upper section 14 preferably having an inside diameter that is less than the inside diameter of lower section 16. Lower section 16 preferably comprises an open end opposite upper section 14 that is surrounded and stabilized by flange 18 having annular face 22. Upper body section 14 further comprises closed end wall 28 connected to handle 12. The transition between upper and lower body sections 14, 16 is preferably defined by inclined annular shoulder 26 at the interior edge of annular stop surface 24.

Referring to FIG. 10, a preferred embodiment of tool 44 of the invention is made by inserting and preferably securing a flexible insert such as a compressible sponge 30 inside open interior space 20 of the cylindrical body of housing 10, as discussed above in relation to FIGS. 1-6. Sponge 30 can be secured inside opening 20 of housing 10 by any suitable means such as, for example, by use of an adhesive. Desirably, sponge 30 will be constrained inside housing 10 sufficiently that sponge 30 (and especially its outside wall) will not be easily rotatable or translatable relative to the inside walls of housing 10 once sponge 30 is installed. This will facilitate the use of rotational and axial movement of tool 44, applied through handle 12, to clean and scrub the exterior attachment surfaces of a frontal attachment device as described in greater detail below in relation to FIG. 11. Alternatively, it will be appreciated by those of ordinary skill in the art upon reading this disclosure that the structure of housing 10 can be modified by the addition of other structural elements to constrain the movement of sponge 30 relative to the inside walls of housing 10 frictionally and without the use of an adhesive if desired.

Referring again to FIGS. 10-11, sponge 30 preferably has a configuration that is receivable within the cylindrical body of housing 12, and that also comprises an opening having a defined shape into which the attachment surfaces at the free end of a frontal attachment device such as a CLAVE® connector are receivable for cleaning and disinfecting. Sponge 30 is desirably made of a compressible, open-cell material adapted to receive, retain and release a composition containing a disinfectant when sponge 30 is placed in contact with or compressed against an attachment surface of a frontal attachment device such as a CLAVE® connector. Most preferably, sponge 30 will comprise open-cell polyurethane foam or another similarly effective non-latex, open-cell material. The dimensions and configuration of sponge 30 are desirably such that sponge 30 can be positioned and secured snugly inside housing 10, and, with some compression, will receive and contact substantially all the surface area of the attachment surfaces of a frontal attachment device to promote cleaning and disinfecting of the attachment surfaces.

Although the flexible insert disposed inside the housing of the invention is principally referred to as a “sponge” throughout this disclosure, it should be appreciated by those of ordinary skill in the art upon reading this disclosure that other similarly effective molded, woven, porous or layered materials can likewise be used within the scope of the invention provided that such materials are capable of retaining prior to use and subsequently releasing during use an amount of cleaning chemical or disinfectant that is effective for decontaminating any contacted surfaces of a frontal attachment to a medical device with which the subject tool is used. In some cases it can be desirable for a cleaning agent or disinfectant to be adsorbed into or encapsulated in recesses or voids disposed inside the flexible insert of the invention.

Referring again to FIGS. 6-10, sponge 30 preferably comprises upper cylindrical section 32, lower cylindrical section 34, top surface 36 that abuts and can be adhered to end wall 28 of housing 10, annular surface 38 that abuts and can be adhered to annular stop surface 24 of housing 10 and interior space 42 having an opening defined by bottom surface 40 of lower cylindrical section 34. Although upper and lower cylindrical sections 32, 34, respectively, of sponge 30 are depicted in FIGS. 9 and 10 as being two distinct elements, it should be appreciated that they can be unitarily formed, or formed separately and joined by any suitable means known to those of ordinary skill in the art, such as, for example, by thermal or other welding techniques, by the use of commercially available adhesives, or the like. Alternatively, as discussed below in relation to FIGS. 12-17, the

Referring to FIGS. 9-11, when tool 44 is removed from its own sterile wrapper, sponge 30 is preferably already impregnated, substantially saturated or coated with a sufficient amount of a disinfectant-containing composition, most preferably isopropyl alcohol or another similarly effective liquid or powder, to achieve a desired level of decontamination. Tool 44 is then preferably used by placing it over the attachment surfaces 48 of a frontal attachment device, such as a CLAVE® connector that is already connected by tubing 52 to an extension set or IV catheter (not shown). Once attachment surfaces 48 are disposed inside the interior space 42 of tool 40, the inwardly facing side and end walls of sponge 30 are desirably compressed sufficiently to contact all the external area of attachment surfaces 48, and upon compression, will release the disinfectant-containing composition disposed inside sponge 30 directly onto attachment surfaces 48. By grasping handle 12, tool 44 can then be manipulated by the user to scrub attachment surfaces 48 by reciprocating tool 48 in an axial direction as demonstrated by arrows 54 and rotationally as indicated by arrows 56. Such scrubbing is believed to provide better and more effective cleaning and disinfecting than is achievable using prior art alcohol wipes or napkins.

Although one embodiment of the apparatus of the invention that is particularly intended for use with the attachment surfaces of CLAVE° connectors is disclosed above, it will be appreciated that other alterations and modifications of the invention will likewise become apparent to those of ordinary skill in the art upon reading this specification in view of the accompanying drawings, and it is intended that the scope of the invention disclosed herein be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled.

For example, referring to FIGS. 12-17, another preferred embodiment of the invention is disclosed wherein cleaning and disinfecting tool 60 further comprises housing 62 and a flexible insert 64 that is retained inside housing 60 by retainer ring 74. Retainer ring 74 can be snapped or pressed into an annular recess 82 on the inside of flange member 72. In this embodiment, housing 62 comprises upper portion 66, lower portion 68 having a plurality of circumferentially spaced, radially extending ribs 70, and flange 72. The external portions of radially extending ribs 70 provide a gripping surface for the user, and the internal portions of ribs 70 assist in resists rotational movement of flexible insert 64 inside housing 62. Although lower portion 68 of housing 62 as shown is substantially cylindrical, it should be appreciated that housings having other polygonal cross-sections can likewise be used in the cleaning and disinfecting tools of the invention.

Referring to FIGS. 13, 16 and 17, flexible insert 64 comprises an outer section 76 having a centrally disposed cylindrical bore that is plugged by cylindrical element 78. Outer section 76 has an octagonal perimeter defined by a plurality of flat surfaces 84, each of which is preferably sized and configured to conform substantially to and cooperate with internal ribs 70 of housing 62 to resist rotational movement of outer section 76 relative to lower portion 68 of housing 62 as cleaning and disinfecting tool 60 is manipulated by a user while cleaning a frontal attachment. As with cleaning and disinfecting tool 44 described above in relation to FIG. 11, tool 60 is also desirably manipulated both axially and rotationally relative to a frontal attachment during use. Although a lower portion 76 having a hexagonal perimeter is a preferred structure for use in the invention, other polygonal configurations can also be used within the scope of the invention provided that any flexible insert so configured will conform substantially to and cooperate with the inside structure and configuration of the associated housing so that the resultant cleaning and disinfecting tool can function substantially as disclosed herein. Flexibility is desired to permit the surfaces that engage a frontal attachment during use to flex around and contact various portions of the frontal attachment.

Flexible insert 64 desirably comprises any suitable material substantially as disclosed above for use in making sponge 30 of the invention, and is desirably sufficiently compressible to be inserted into defined interior space 80 of housing 62. If desired, adhesive can also be used to help hold flexible insert 64 in place. Retainer ring 74 is desirably seated in annulus 82 of housing 62, and is preferably pressed or snapped into position to assist in maintaining outer section 76 of flexible insert 64 in a preferred axial position inside housing 62 during use. Retainer ring 74 can be made of rubber, plastic or metal, and can be continuous, contain a gap, or comprise projections or bosses that cooperate with housing 62 to retain ring inside annular recess 82.

As shown in FIGS. 16 and 17, cylindrical element 78 is preferably made of the same flexible, compressible material as outer section 76 of flexible insert 64. As shown in FIG. 16, cylindrical element 78 is axially positioned so that its top and bottom ends are substantially flush with the corresponding ends of outer section 76, and interior 86 of upper portion 66 is open. Then, when cleaning tool 60 is pressed against the tip of a frontal attachment, cylindrical element 78 can slide upwardly relative to outer section 76 until cylindrical element 78 engages the closed end wall of upper portion 66. This provides a substantially cylindrical space 88 inside housing 62 where portions of flexible insert 64 face the frontal attachment on three sides in substantially the same way as is depicted in FIG. 11.

Still another preferred embodiment of the invention is depicted and described in relation to FIGS. 18-19. Flexible insert 90 can be made of materials as described above in relation to other preferred flexible inserts or sponges of the invention, and like flexible insert 64, comprises an outer section 94 having a polygonal perimeter that is preferably sized and configured to cooperate with internal portions of housing 104 to resist rotational movement of outer section 94 relative to lower portion 108 of housing 104 as cleaning and disinfecting tool 102 is manipulated by a user while cleaning a frontal attachment. In this embodiment, however, cylindrical element 92 is initially disposed above the top of outer section 94, and a cylindrical open space 100 is disposed below it to receive a portion of a frontal attachment (not shown) that is inserted inside it during use. Cylindrical element 92 preferably seats against end wall 106 of housing 104, and can be unitarily made with outer section 94 or not, as desired.

As with cleaning and disinfecting tool 44 described above in relation to FIG. 11, tool 102 is also desirably manipulated both axially and rotationally relative to a frontal attachment during use. Although a lower portion 94 having a hexagonal perimeter comprising side walls 96 is a preferred structure for use in the invention, either cylindrical or other polygonal configurations can also be used within the scope of the invention for either the upper or lower portions of housing 104 provided that any flexible insert so configured will cooperate with the inside structure and configuration of the associated housing so that the resultant cleaning and disinfecting tool can function substantially as disclosed herein. Flexibility is desired to permit the surfaces that engage a frontal attachment during use to flex around and contact various portions of the frontal attachment. If desired, either element 92 or outer portion 94, or both can also be attached to the inwardly facing surface of sidewall 108 of housing 104. As with housing 62, side wall 108 of housing 104 can also function as a handle for use in manipulating cleaning and disinfecting tool 102 relative to a frontal attachment.

FIG. 20 depicts an array 120 of polymeric housings 122 suitable for use in making an embodiment of the cleaning tool of the invention. As shown, housings 122 are interconnected by a substantially continuous web from which they can be separated by any suitable conventional method or device such as, for example, by die cutting around the phantom lines that are intended to represent the flange perimeters of each respective housing as described below. Depending upon the material of construction, the depth of each housing 122, and the side wall configuration of each, array 120 can be injection molded, thermoformed, or otherwise fabricated using known manufacturing methods. Referring to FIGS. 21-23, each housing 122 preferably further comprises annular flange 124 around an opening of defined shape, a continuous, substantially cylindrical side wall 126, bottom 128, and an inside wall comprising a plurality of flutes 130.

Referring to FIGS. 24-26, housing 122 as described above is desirably configured to receive a flexible insert 132, most preferably made from a resilient, spongy or elastomeric material having a side wall 134 that is compressible to facilitate insertion into interior space 125 of housing 122, whereupon side wall 134 desirably expands slightly to conform substantially to the inside wall of housing 122 and into engagement with flutes 130, or to be heat-staked to some portion of the wall, or to a shelf or other surface adjacent to the wall. Alternatively, other functionally equivalent methods of attachment, such as sonic welding, gluing or the like, can also be used. Where flexible insert 132 is attached to the wall, the presence of flutes or other irregularities on the surface of the inside wall are not needed to resist rotational movement of the insert inside the housing, although surface texturing on the outside can still be desirable to facilitate gripping. The insertion of flexible insert 132 into housing 122 forms cleaning tool 150, which can then be impregnated or at least partially saturated with a composition as previously described that is suitable for use in cleaning and disinfecting a frontal attachment. A slit 140 can be provided in facing surface 136 of flexible insert 132 and continuing upward to continuous web 144 to create opposed facing surfaces 142 that permit the insertion of frontal attachment 152 into cleaning tool 150 as shown in FIG. 26. As shown, frontal attachment 152 is a CLAVE® connector attached to tubing segment 158. The forwardly extending threaded portion of frontal attachment 152 is desirably cleaned by manipulating cleaning tool 150 up and down as indicated by opposed arrows 156, and by manually rotating cleaning tool 150 relative to frontal attachment 152.

Another preferred embodiment of the invention is disclosed in relation to FIG. 27. According to this embodiment of the invention, cleaning tool 160 is shown in relation to frontal attachment 194 attached to tubing segment 196. Cleaning tool 160 preferably further comprises a housing 186 containing a flexible insert 188, and has an attached polymeric handle 162 with flexible side walls, a closed end 164 and a hollow interior cavity with an open end 166 that is in fluid communication with flexible insert 188. Frangible ampule 180 or another similarly effective fluid reservoir is desirably disposed inside handle 162 and preferably contains an amount of cleaning and disinfecting fluid 182 that is sufficient to partially saturate flexible insert 188 and effectively clean and disinfect the exposed free end of frontal attachment 194. Lever arm 168 with blunt edge 170 is desirably provided on the outside of handle 162 to facilitate the selective application of manual force against the side wall of handle 162, causing it to flex sufficiently to cause fracturing of the relatively rigid sidewalls of ampule 180, thereby releasing cleaning and disinfecting fluid 182 to flow downwardly by gravity into flexible insert 188.

Referring to FIGS. 28-34, according to another preferred embodiment of the invention, a tool 200 for contacting and/or applying a fluid to attachment surfaces of fluid connector devices used in medical applications is provided that comprises a generally cylindrical housing 202 having two distinct cavities with open ends and with an opening 228 establishing fluid communication between them. A flexible insert 204 is desirably secured to the inside wall of the forwardly facing cavity by use of an adhesive or other similarly effective means. Substantially cylindrical fluid receptacle 212 having a closed rearwardly facing end and an open forwardly facing end sealed with a removable stopper 216 slidably engages the open end of the upper cavity. Fluid receptacle 212 is preferably made of plastic but, alternatively, can be made of a different material, such as glass. Removable stopper 216 is preferably made of a rubber but, alternatively, can be made of another similarly effective polymeric material, cork, or a rupturable membrane that is substantially impermeable to the liquid contained in receptacle 212. Housing 202 and fluid receptacle 212 are desirably cooperatively configured so that an application of manual force against the closed, rearwardly facing end of receptacle 212 will cause stopper 216 to be dislodged from the opening at the lower end upon contact with prongs 230, 232, which can be of the same or different lengths. When stopper 216 is dislodged, a cleaning and disinfecting fluid 220 stored in the receptacle can flow through opening 228 between the two cavities of housing 202 to saturate flexible insert 204 prior to contacting the insert with the frontal attachment to be cleaned. A removable flexible seal or cover 206 is desirably provided over flange 208 at the open end of the forwardly facing cavity of housing 202 to prevent inadvertent contamination of flexible insert 204 prior to use.

Referring particularly to FIGS. 31-33, prongs 230, 232 or one or more other similarly effective structural members are desirably provided in the rearwardly facing cavity of housing 202 to assist in dislodging stopper 216 from its normal sealing position across the opening at the bottom of fluid receptacle 212 when receptacle 212 is moved forwardly relative to housing 202. The use of one longer prong 230 at one side of stopper 216 is particularly preferred because it concentrates the manual force being applied downwardly on receptacle 212 on a limited area to assist in dislodging stopper 216 to release cleaning and disinfectant 220 to flow through opening 228 into the porous, spongy flexible insert 204. When two or more prongs 230, 232 are used, a combination of one longer prong with the remainder of the prongs being spaced apart circumferentially and slightly shorter than the first will help maintain stopper 216 in a nearly horizontal position, thereby causing stopper 216 to function as a piston that will help force released liquid that has moved past stopper 216 through opening 228 and into flexible insert 204.

Referring particularly to FIGS. 29 and 31-34, according to a particularly preferred embodiment of the invention, structure is provided that prevents fluid receptacle 212 from being depressed relative to housing 202 prematurely, thereby causing stopper 216 to be dislodged from the opening at the bottom end of receptacle 212, until such time as it is desired to saturate flexible insert 204. The rear cavity of housing 202 preferably further comprises two parallel, longitudinally extending slots 222, 224 that cooperate with lug 214 on the lower circumference of receptacle 212 to allow receptacle 212 to be fully depressed only when lug 214 of receptacle 212 is rotationally aligned with longer channel 224. This is desirably achieved by rotating receptacle 212 slightly while grasping housing 202 with the other hand to reposition lug 214 from alignment with channel 222 into alignment with longer channel 224.

Referring to FIGS. 35 and 36, a cleaning tool 200′ is disclosed that is in all respects like that previously described in relation to FIGS. 28-34 except that it has only a single longitudinally extending slot 224 and does not include shorter slot 222 as described in relation to the embodiment of FIGS. 28-34. Accordingly, receptacle 212 is not rotatable relative to housing 202, and the tool is activated by forcing receptacle 212 toward prongs 230, 232 until closure 216 is displaced, allowing fluid 220 to flow into flexible insert 204. Cleaning tool 200′ is then ready for use when flexible seal or cover 206 is removed.

Referring to FIGS. 37-43, another preferred embodiment of the invention is disclosed wherein cleaning tool 252 comprises a unitary housing with upper and lower sections 254, 256, respectively. Upper section 254 defines cavity 258 having a closed end 260 and an open end defined by annular collar 264. Collar 264 preferably has tapered shoulders 282, 283 (seen in FIG. 42) to facilitate introduction and removal of a tool during molding of the housing, and to facilitate placement and removal of closure 270. Lower section 256 comprises cavity 262 having a bottom opening with an annular flange 266 that further comprises an annular recess 268. Housing 252 is desirably unitarily molded from any suitable polymeric resin and is then inverted to introduce cleaning and/or disinfecting liquid 274 into cavity 258. Because liquids are substantially incompressible, sufficient headspace should be left unfilled in cavity 258 to permit the subsequent disengagement of closure 270 from collar 264 as described below.

After liquid 274 is in place inside cavity 258, removable closure 270 is desirably installed to seal the opening defined by annular collar 264. Removable closure 270 is preferably made of an elastomeric or compressible polymeric material to provide a fluid-tight seal when engaged with annular collar 264. Although the use of a removable closure is preferred, it should be understood that any similarly effective means for sealing liquid 274 into cavity 258 can likewise be used provided that it can be perforated, dislodged or otherwise modified to permit the release of liquid 258 prior to use of tool 252. Following installation of closure 270, flexible insert 276 is desirably inserted into cavity 262 of lower section 256, and is attached to the inside wall of lower section 256 by heat-staking or by other known attachment methods that will serve to resist rotation of the outside wall of flexible insert 276 inside lower section 256.

Flexible insert 276 is preferably made from a cellular polymeric material having sufficient porosity or liquid-retaining capability to receive and hold liquid 274 flowing into cavity 262 from cavity 258 following displacement of closure 270, and also having the ability to release or discharge liquid 274 onto an attachment surface of a fluid connector with which flexible insert 276 is placed in contact during use of cleaning tool 252. As shown in FIGS. 39 and 40, flexible inert 276 preferably further comprises a cylindrical recess 278 that is configured to receive the attachment end of a fluid connector device for cleaning and/or disinfecting during use of tool 252. Flexible insert can be held in place by a retainer ring 280 insertable into annular recess 268, although the use of such a retainer ring is not required if flexible insert 276 is attached to the inside of lower section 256 as previously described. Although not shown in FIG. 29, it will be appreciated that a seal or cover as previously described in relation to cover 206 of FIGS. 32-34, 36 is desirably applied across the open end of lower section 256 following assembly of tool 252 as described above. Such a seal or cover will maintain the open end of tool 252 in a sanitary condition until removed just prior to use, and can be conveniently attached by pressure-sensitive adhesive or the like to the underside of flange 266. Where tool 252 is entirely packaged inside a sanitary wrap, the use of another seal or cover across the opening of lower section 256 is not needed.

To use cleaning tool 252, following removal of the sanitary wrap or cover, the free end of the fluid connector device having the attachment surfaces to be cleaned is desirably inserted into recess 278 of flexible insert 276, and is forced upwardly, causing the upper surface of flexible insert 276 to contact prongs 272 of closure 270, best seen in FIGS. 38 and 41. The continued application of upwardly directed force to the fluid connector will displace closure 270, thereby releasing cleaning and/or disinfecting fluid 274 downwardly into flexible insert 276. The configuration of prongs 272 and the material used to make them are desirably such that they will transmit to the body of closure 270 enough force to displace closure 270 from the opening defined by annular collar 264. Alternatively, closure 284 having a single projection 286 with a slightly stepped-in diameter relative to body 288 can be substituted for closure 270 if desired.

Referring to FIGS. 44-47, another cleaning tool 300 is disclosed that is made similarly to tool 252 of FIGS. 37-42, but utilizes a stopper 314 made as shown in FIG. 43. Tool 300 comprises housing 302 with upper section 304 having a closed end 306, and a lower section 308 having annular flange 310 at its base, and an annular recess 324 inside flange 310. In this embodiment, flexible insert 320 is made as shown in FIG. 47, with a larger-diameter base 338 and a transverse slit 322 extending upwardly into, but not through the top of body section 340. Referring to FIG. 46, when flexible insert 320 is made with a slit 322 instead of a recess 278 as shown in FIG. 39, attachment surfaces such as threads 336 of fluid connector 328, here attached to a fluid flow line 334, can be forced upwardly into slit 322, causing top surface 332 to contact and displace closure 314. This in turn allows cleaning and/or disinfecting liquid 316 as previously described to flow downwardly as indicated by arrows 330 to saturate flexible insert 320. Attachment surfaces 336 of fluid connector 328 are then cleaned by moving tool 300 both axially and rotationally in relation to fluid connector 328.

Referring to FIG. 48, cleaning tool 350 is another embodiment of the invention wherein a flexible insert 362 made as described in relation to FIGS. 44-47. In this embodiment, housing 352 has substantially parallel inside and outside walls that continue from flange 356 to closed end 354 of the upper cavity. Annular collar 358 is desirably made substantially as described in relation to FIG. 42 to facilitate insertion and removal of a core pin in the molding tool (not shown) and to facilitate installation and displacement of closure 360. In this embodiment, fluid 364 must again have sufficient headspace to allow displacement of closure 360. However, where closure 360 is a membrane that is ruptured, torn or perforated, little if any headspace is required.

It will be appreciated that the cleaning tools of the invention are desirably packaged and sterilized so that they will remain sterile until removed from the packages immediately prior to use. Desirably, where the cleaning tool is shipped and stored with a flexible insert that is already at least partially saturated with a cleaning and disinfecting fluid, a barrier material should be used as part of the packaging treatment to insure that the fluid does not evaporate prior to use.

Other alterations and modifications of the invention disclosed herein will likewise become apparent to those of ordinary skill in the art upon reading this disclosure, and it is intended that the scope of the invention be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled.

Claims

1. A tool useful for contacting and applying a cleaner to attachment surfaces of a fluid connector device used in medical applications, comprising:

a housing with a substantially cylindrical or polygonal inside wall, an open end having a defined shape during storage and use, and a closed end opposite the open end;
a flexible insert disposed inside the housing and conforming substantially to the inside wall, the flexible insert containing the liquid cleaner prior to contacting the attachment surfaces and being sufficiently compressible against the attachment surfaces to discharge said cleaner.

2. The tool of claim 1 when used to mechanically clean a fluid connector device.

3. The tool of claim 1 wherein the cleaner also disinfects.

4. The tool of claim 4 wherein the cleaner is selected from the group consisting liquids including alcohol and chlorhexidine.

5. The tool of claim 1 wherein the fluid connector device comprises a luer connector.

6. The tool of claim 1 wherein the fluid connector device comprises a Clave® connector.

7. The tool of claim 1 wherein the flexible insert has a porous cellular structure.

8. The tool of claim 1 wherein the flexible insert is attached to the housing.

9. The tool of claim 1 wherein the flexible insert further comprises a recess.

10. The tool of claim 1 wherein the flexible insert further comprises a transverse slit.

11. The tool of claim 1 wherein the housing comprises two cavities separated by an annular collar having an inside diameter less than that of either cavity.

12. The tool of claim 11 wherein the annular collar has at least one tapered shoulder.

13. The tool of claim 12 wherein the annular collar has two tapered shoulders.

14. The tool of claim 1 1 wherein one cavity has a closed end that is part of the housing.

15. The tool of claim 11 wherein one cavity has a closed end that is a releasable closure.

16. The tool of claim 11 wherein one cavity is configured to slidably engage a receptacle.

17. The tool of claim 16 wherein a liquid cleaner is disposed inside the receptacle.

18. The tool of claim 11 wherein the annular collar defines an opening that is sealed by a releasable or rupturable closure.

19. The tool of claim 11 wherein the annular collar defines an opening that is sealed by a removable closure.

20. The tool of claim 1 wherein the inside wall has sections with different diameters.

21. The tool of claim 1 wherein the inside wall is tapered.

22. The tool of claim 19 wherein the annular collar comprises at least one projection.

23. The tool of claim 22 wherein the annular collar comprises two projections.

24. The tool of claim 19 wherein the removable closure comprises at least one projection.

25. The tool of claim 24 wherein the removable closure comprises two projections.

26. The tool of claim 1, further comprising a releasable closure and a projection engageable with the flexible insert.

27. The tool of claim 16 wherein the receptacle is slidable rotationally in relation to the cavity.

28. The tool of claim 16 wherein the receptacle is slidable longitudinally in relation to the cavity.

29. A tool useful for cleaning and disinfecting attachment surfaces of a fluid connector device used in medical applications, the tool further comprising:

a housing having a body with a substantially cylindrical or polygonal inside wall, an open end having a defined shape, a closed end; and
a flexible insert disposed inside the body and conforming substantially to the inside wall, the flexible insert carrying or containing a composition selected from the group consisting of cleaning agents and disinfectants, and being configured and sufficiently compressible to receive, contact, clean and disinfect the attachment surfaces.

30. The tool of claim 29 wherein the fluid connector device is part of a luer connector.

31. The tool of claim 29 wherein the fluid connector device is part of a CLAVE® connector.

32. The tool of claim 29 wherein the fluid connector device communicates with a needleless syringe, an extension set or an intravascular catheter.

33. The tool of claim 29 wherein the body is substantially cylindrical and further comprises coaxially aligned and adjacent first and second portions having different inside diameters, the inside diameter of the first portion being greater than the inside diameter of the second portion.

34. The tool of claim 29 wherein the housing comprises a moldable polymeric material.

35. The tool of claim 34 wherein the moldable polymeric material can be glued or sonically welded.

36. The tool of claim 29 wherein the flexible insert comprises a sponge adapted to receive, store and apply to the attachment surfaces a composition comprising a disinfectant.

37. The tool of claim 36 wherein the sponge comprises polyurethane.

38. The tool of claim 36 wherein the disinfectant is selected from the group consisting of isopropyl alcohol and chlorhexidine.

39. The tool of claim 29 wherein the body has a polygonal inside wall.

40. The tool of claim 39 wherein the polygonal inside wall comprises a plurality of circumferentially disposed sidewall sections, with each adjacent pair of sidewall sections being separated by a rib.

41. The tool of claim 39 wherein the polygonal inside wall is octagonal.

42. The tool of claim 29 wherein inside wall of the body is fluted.

43. The tool of claim 29 wherein the inside wall of the body is substantially cylindrical.

44. The tool of claim 29 wherein the flexible insert comprises cooperatively sized and aligned inner and outer elements.

45. The tool of claim 29 wherein the housing and flexible insert are cooperatively configured to resist relative rotational motion between adjacent surfaces of each.

46. The tool of claim 45 wherein at least part of the flexible insert is secured to part of the housing body.

47. The tool of claim 44 wherein the inner element is slidable relative to the outer element.

48. The tool of claim 29 wherein the housing comprises an open space adjacent to a part of the flexible insert.

49. The tool of claim 29 wherein the flexible insert is retained inside the housing by a retainer element attachable to the housing.

50. The tool of claim 29 wherein the flexible insert comprises a face substantially coextensive with the defined open end and at least one slit extending axially away from the face.

51. The tool of claim 29 wherein the defined shape is substantially circular.

52. The tool of claim 29 wherein the housing further comprises a handle portion graspable by a user.

53. The tool of claim 52 wherein the handle portion comprises a reservoir from which the composition is selectively releasable into the flexible insert.

54. A tool useful for cleaning and disinfecting attachment surfaces of a fluid connector device used in medical applications, the cleaning tool further comprising:

a housing having a body with a substantially cylindrical or polygonal inside wall, an open end having a defined shape, a closed end, and a handle; and
a flexible insert disposed inside the body and conforming substantially to the inside wall, the flexible insert being configured and sufficiently resilient to receive and subsequently discharge a composition selected from the group consisting of cleaning agents and disinfectants, for use in contacting, cleaning and disinfecting the frontal attachment surfaces.

55. The tool of claim 54, further comprising a reservoir containing a composition selected from the group consisting of cleaning agents and disinfectants.

56. The tool of claim 55 wherein the composition comprises is selected from the group consisting of alcohol and chlorhexidine.

57. The tool of claim 56 wherein the alcohol comprises isopropyl alcohol.

58. The tool of claim 54 wherein the reservoir is a frangible ampule.

59. The tool of claim 54 wherein the handle further comprises a flexible side wall, an internal cavity in fluid communication with the flexible insert, a frangible ampule disposed inside the cavity and containing the composition, and an activation member that is manually depressible against the flexible side wall to fracture the frangible ampule and release the composition.

60. The tool of claim 54 wherein the fluid connector device comprises a luer.

61. The tool of claim 54 wherein the fluid connector device comprises a Clave connector.

62. A tool for cleaning attachment surfaces of a fluid connector device used for a medical application, the tool comprising:

a generally cylindrical housing having first and second cavities with open ends and an opening establishing fluid communication disposed between them;
an absorbent, flexible insert secured to the inside wall of the lower cavity; and
a substantially cylindrical fluid receptacle having a closed rear end and an open front end with a removable stopper or rupturable sealing membrane, the receptacle slidably engaging the open end of the second cavity, the receptacle containing a cleaning and disinfecting liquid;
wherein the housing and receptacle are cooperatively configured so that an application of manual force against the closed end of the fluid receptacle will cause the stopper or membrane to be displaced from the open front end, thereby allowing the cleaning and disinfecting liquid to flow into the flexible insert.

63. The tool of claim 62 wherein the fluid connector device comprises a CLAVE connector.

64. The tool of claim 62 wherein the fluid connector device comprises a luer connector.

65. The tool of claim 62 wherein the fluid connector device comprises a threaded section.

66. The tool of claim 62 wherein the flexible insert comprises a split or recess to receive at least part of the frontal attachment.

67. The tool of claim 62 wherein the open front end of the receptacle further comprises a radially projecting lug.

68. The tool of claim 67 wherein the second cavity comprises two parallel, proximally positioned slots of different lengths to receive the lug.

69. The tool of claim 62 wherein the second cavity further comprises at least one prong that is engageable with the stopper or membrane to displace the stopper or membrane from the opening of the receptacle.

70. The tool of claim 62, further comprising a seal or cover disposed across the open end of the first cavity.

71. The tool of claim 62 wherein the cleaning and disinfecting liquid is selected from the group consisting of isopropyl alcohol and chlorhexidine.

Patent History
Publication number: 20100000040
Type: Application
Filed: Jul 3, 2008
Publication Date: Jan 7, 2010
Inventors: Thomas J. Shaw (Frisco, TX), Mark Small (Leonard, TX), Ni Zhu (Plano, TX)
Application Number: 12/167,343
Classifications
Current U.S. Class: Sponge Or Sponge With Holder (15/244.1)
International Classification: A47L 13/42 (20060101);