METHOD FOR RADIAL TRACKING IN AN OPTICAL DISC DRIVE
A method for radial tracking in an optical disc drive (1) is described. A DTD tracking error signal (S3) is derived from the wobble-induced signal components (WA, WB, WC, WD) of the optical detector signal (SR). This tracking error signal is relatively insensitive to beamlanding errors, and to differences in the signal amplitudes K of the output signal of individual detector segments. Further, the need for a 3-spot grating is eliminated. A distinction is made between on the one hand a situation where the track being followed is empty and on the other hand a situation where the track being followed is written. In case the track being followed is empty, a DTD tracking error signal is derived from the wobble-induced signal components of the optical detector signal, whereas, in case the track being followed is written, a DTD tracking error signal is derived from the data-induced signal components of the optical detector signal.
Latest KONINKLIJKE PHILIPS ELECTRONICS N.V. Patents:
- METHOD AND ADJUSTMENT SYSTEM FOR ADJUSTING SUPPLY POWERS FOR SOURCES OF ARTIFICIAL LIGHT
- BODY ILLUMINATION SYSTEM USING BLUE LIGHT
- System and method for extracting physiological information from remotely detected electromagnetic radiation
- Device, system and method for verifying the authenticity integrity and/or physical condition of an item
- Barcode scanning device for determining a physiological quantity of a patient
This is a divisional of U.S. Ser. No. 10/557,636, filed Nov. 17, 2005 and is incorporated by reference herein.
FIELD OF THE INVENTIONThe present invention relates in general to a disc drive apparatus for writing/reading information into/from an optical storage disc; hereinafter, such disc drive apparatus will also be indicated as “optical disc drive”.
BACKGROUND OF THE INVENTIONAs is commonly known to persons skilled in the art, an optical storage disc comprises at least one track, either in the form of a continuous spiral or in the form of multiple concentric circles, of storage space where information may be stored in the form of a data pattern.
For writing information into the storage space of the optical storage disc, or for reading information from the disc, an optical disc drive comprises, on the one hand, rotating means for receiving and rotating an optical disc, and on the other hand optical means for generating an optical beam, typically a laser beam, and for scanning the storage track with said laser beam.
For optically scanning the rotating disc, an optical disc drive comprises a light beam generator device (typically a laser diode), an objective lens for focussing the light beam into a focal spot on the disc, and an optical detector for receiving the reflected light reflected from the disc and for generating an electrical detector output signal.
During operation, the focal spot should remain aligned with a track or should be capable of being positioned with respect to a new track. To this end, at least the objective lens is mounted radially displaceable, and the optical disc drive comprises radial actuator means for controlling the radial position of the objective lens.
The electrical detector output signal contains information on the tracking error, i.e. the radial distance from the centre of the focal spot to the centre of the track being followed. This electrical detector output signal is received by a control circuit, which processes the electrical detector output signal in order to generate a control circuit for the radial actuator.
One well-known method to process the electrical detector output signal is to generate a push/pull signal. The push/pull method has some disadvantages.
One disadvantage of the push/pull method is the sensitivity to beamlanding errors, i.e. a displacement of the light spot with respect to the optical detector.
A well-known solution to this problem is the three-spot push/pull method. Although the three-spot push/pull method solves the beamlanding-sensitivity problem of the one-spot push/pull method, it introduces other disadvantages. For one, it is necessary to use hardware equipment for generating three spots, i.e. a three-spot grating, which also needs to be aligned; this adds to the complexity and costs of the optical system. Further, a three-spot grating effectively splits one laser beam into three, namely one main beam and two auxiliary beams, resulting in a reduced light intensity of the main beam.
U.S. Pat. No. 6,388,964 discloses a tracking method where a tracking error signal is generated from the detector output signal on the basis of a differential phase detection method. The method as described in this document applies to ROM-drives, i.e. applies to discs containing data. This means that the method as disclosed in said document can not be applied directly in a drive suitable for handling writable discs, because writable discs may have tracks without data.
SUMMARY OF THE INVENTIONIt is a general purpose of the present invention to provide a new radial tracking method as alternative to the push/pull tracking methods. Specifically, the present invention aims to provide a radial tracking method which can be used as an alternative to the three-spot push/pull method, having the advantages of the three-spot push/pull method without having the disadvantages thereof.
Particularly, the present invention aims to provide a radial tracking method which is less sensitive, ideally insensitive, to beamlanding errors.
Further, the present invention aims to provide a radial tracking method which can be implemented with a simplified optical system without the need for a three-spot grating.
Further, the present invention aims to provide a radial tracking method which can be applied to discs having tracks without data.
According to an important aspect of the present invention, a tracking error signal is generated on the basis of a wobble signal. Thus, the method of the present invention can be applied in all cases of writable discs which have a wobbled pre-groove. The wobble signal is available even if the track is empty.
It may be that, in practice, the tracking method is affected disadvantageously if the track is not empty, i.e. if the track contains data. In such case, according to a further important aspect of the present invention, a tracking error signal is preferably generated on the basis of a data signal.
These and other aspects, features and advantages of the present invention will be further explained by the following description of a preferred embodiment of a disc drive apparatus according to the present invention with reference to the drawings, in which same reference numerals indicate same or similar parts, and in which:
The present invention relates particularly to writable discs, indicated as R/RW discs, and thus relates particularly to R/RW disc drives, i.e. disc drives capable of reading and/or writing R/RW discs; examples of such discs are: CD-R, CD-RW, DVD-RW, DVD+RW, DVD+R, BD+RW. Therefore, the present invention will hereinafter specifically be explained for R/RW disc drives. However, it is explicitly noted that the reference to R/RW disc drives is by way of example only, and that it is not intended to restrict the scope of the present invention in any way to such example, because the gist of the present invention is also applicable to read-only discs. Particularly, the present invention is applicable to disc drives which are only capable of reading discs, whether it be a writable disc or not. Also, the present invention is applicable to disc drives which are only capable of reading read-only discs.
Since the technology of optical discs in general, the way in which information can be stored in an optical disc, and the way in which optical data can be read from an optical disc, is commonly known to persons skilled in this art, it is not necessary here to describe this technology in more detail.
For rotating the disc 2, the disc drive apparatus 1 comprises a motor 4 fixed to a frame (not shown for sake of simplicity), defining a rotation axis 5. For receiving and holding the disc 2, the disc drive apparatus 1 may comprise a turntable or clamping hub 6, which in the case of a spindle motor 4 is mounted on the spindle axle 7 of the motor 4.
The disc drive apparatus 1 further comprises an optical system 30 for scanning tracks of the disc 2 with an optical beam. The optical system 30 comprises a light beam generating means 31, typically a laser such as a laser diode, arranged to generate a light beam 32. In the following, different sections of the optical path of the light beam 32 will be indicated by a character a, b, c, etc added to the reference numeral 32.
The light beam 32 passes a beam splitter 33, a collimator lens 37 and an objective lens 34 to reach (beam 32b) the disc 2. The light beam 32b reflects from the disc 2 (reflected light beam 32c) and passes the objective lens 34, the collimator lens 37 and the beam splitter 33 (beam 32d) to reach an optical detector 35.
The objective lens 34 is designed to focus the light beam 32b in a focal spot F on an information layer (not shown for sake of simplicity) of the disc 2.
During operation, the focal spot should remain aligned with a track or should be capable of being positioned with respect to a new track. To this end, at least the objective lens 34 is arranged radially displaceable, and the optical disc drive apparatus 1 comprises a radial actuator 51 arranged for radially displacing the objective lens 34 with respect to the disc 2. Since radial actuators are known per se, while further the design and operation of such radial actuator is no subject of the present invention, it is not necessary here to discuss the design and operation of such radial actuator in great detail.
The disc drive apparatus 1 further comprises a control circuit 90 having an output 93 coupled to a control input of the radial actuator 51, and a read signal input 91 for receiving a read signal SR from the optical detector 35. The control circuit 90 is designed to generate at its output 93 a control signal SCR for controlling the radial actuator 51.
SD=A+B+C+D (1)
Further, a push-pull tracking error signal STE can be obtained by summation of the signals A and D from all individual detector segments 35a and 35d on one side of the centre line 36, summation of the signals B and C from all individual detector segments 35b and 35c on the other side of the centre line 36, and taking the difference of these two summations, according to
STE=(A+D)−(B+C) (2a)
In order to compensate light intensity variations of the beam as a whole, this error signal can be normalised by division by the data signal to obtain a normalised tracking error signal RES, according to
RES=STE/SD (2b)
In a case of a disc having tracks in the form of wobbled pregrooves, as is known per se, the four signals A, B, C, D will contain a signal component having a frequency equal to the linear scanning speed divided by the wobble period. This frequency is the same for all four signals A, B, C, D, but in general the four oscillations are not in phase.
The wobble-induced signal components will be indicated as WA, WB, WC, WD, respectively, and can mathematically be written as
WA=KA·cos(τ−τA) (3a)
WB=KB·cos(τ−τB) (3b)
WC=KC·cos(τ−τC) (3c)
WD=KD·cos(τ−τD) (3d)
wherein KA, KB, KC, KD are the respective amplitudes and
wherein τA, τB, τC, τD are the respective phases.
τ=2πx/1w is the tangential scanning variable, wherein x represents the track distance travelled by the beam 32, and wherein 1w represents the wobble period.
It can be shown that the respective phases depend on the radial scanning variable φ=2πy/tp, wherein tp represents track pitch, and wherein y represent the radial error, i.e. the radial distance between the centre of the spot and the centre of the track.
For any pair of signals P, Q (P and Q representing A, B, C, D), the mutual delay Δ(P,Q) can be defined as
Δ(P,Q)=τP−τQ (4)
A preferred suitable tracking error signal derived from the wobble-induced signal components is defined as
DTD4R=Δ(A,B)+Δ(C,D) (5)
It is noted that in the simulation it was assumed that two neighbouring tracks have their respective wobbles mutually in phase. Normally, this will not be the case in practice, which may lead to a different shape of the error signal DTD4R. Nevertheless, in a range of φ around zero, DTD4R remains proportional to φ to a good approximation, so that DTD4R can still be used as tracking error signal.
The DTD4R signal as defined by formula 5 is not the only signal potentially capable of functioning as tracking error signal. In an alternative embodiment, a signal DTD4T is used, defined as
DTD4T=Δ(A,D)+Δ(C,B) (6)
However, when comparing the DTD4R and DTD4T signals, the DTD4R signal is preferred because it introduces less noise in the final error signal than the DTD4T signal.
In another alternative embodiment, a signal DTD2 is used, defined as
DTD2=Δ(A+C,B+D) (7)
However, when comparing the DTD4R and DTD2 signals, the DTD4R signal is preferred because it introduces less noise in the final error signal than the DTD2 signal. Further, the DTD2 signal is more sensitive to beamlanding errors.
The method as described above, i.e. the use of a wobble-derived signal as tracking error signal, works well if a track is empty, i.e. for a track which does not contain any data written in it. If, however, a track does contain data, the data introduce noise into such wobble-derived signal. In order to eliminate or at least reduce this noise, it is possible to use, at the control circuit input, a suitable filter which is designed to pass a frequency range comprising a signal component useable as tracking error signal, and to stop a frequency range comprising the disadvantageous noise components; indeed such an embodiment is an embodiment within the scope of the present invention.
However, if a track does contain data, it is preferred as tracking error signal to use a signal derived from the data signal. Then, the wobble-derived signal becomes an undesired signal component, which can be eliminated or at least reduced by using a suitable filter which is designed to pass a frequency range comprising a data signal component useable as tracking error signal, and to stop a frequency range comprising the wobble-derived signal.
Thus, in order to be able to handle a disc which contains written tracks as well as virgin tracks, it is desirable to use a controllable filter device which is capable of being controlled to have a first filter characteristic suitable for use in the case of a written track and capable of being controlled to have a second filter characteristic suitable for use in the case of a virgin track.
The first delay calculator 120 has a first input 121 coupled to the output 112a of the first controllable filter device 110a, and has a second input 122 coupled to the output 112d of the fourth controllable filter device 110d. At its output 123, the first delay calculator 120 provides a signal S1 representing the delay Δ(A,D) between the signals A and D of the first and fourth detector segments 35a and 35d, respectively.
The second delay calculator 130 has a first input 131 coupled to the output 112b of the second controllable filter device 110b, and has a second input 122 coupled to the output 112c of the third controllable filter device 110c. At its output 133, the second delay calculator 130 provides a signal S2 representing the delay Δ(B,C) between the signals B and C of the second and third detector segments 35b and 35c, respectively.
Further, the control circuit 90 comprises a first adder 140, having an output 143. The first adder 140 has a first input 141 coupled to the output 123 of the first delay calculator 120, and has a second input 142 coupled to the output 133 of the second delay calculator 130. At its output 143, the first adder 140 provides a signal S3 representing the DTD4R signal.
Further, the control circuit 90 comprises a second adder 150, having four inputs 151a, 151b, 151c, 151d coupled to the respective signal inputs 91a, 91b, 91c, 91d of the control circuit 90. At an output 152, the second adder 150 provides a signal S4 representing the central aperture signal CA of the optical detector 35, i.e. the sum signal of the four detector quadrants. Further, the control circuit 90 comprises a filter controller 160, having an input 161 coupled to receive the output signal S4 of the second adder 150. The filter controller 160 has an output 162, coupled to respective control inputs 113a, 113b, 113c, 113d of the controllable filters 110a, 110b, 110c, 110d.
Alternatively, the filter controller 160 may have four separate outputs 162a, 162b, 162c, 162d (not shown), each coupled to the respective control inputs of the controllable filters 110a, 110b, 110c, 110d.
The filter controller 160 is designed to evaluate its input signal to determine whether or not the current track contains data. In a suitable embodiment, this is done on the basis of the frequency spectrum of this signal.
It is noted that these graphs are only showing idealized contours of the frequency spectrum, for illustrating some qualitative aspects in general. In reality, such spectra have a more complicated shape, as will be understood by persons skilled in this art.
In the following, the index A and B, respectively, to a reference numeral will be used to specify the case of an unwritten track and the case of a written track, respectively, whereas the reference numeral without such index will be used to indicate the corresponding feature in any case.
When comparing
Further, the frequency spectrum 170 always contains a second significant peak 172 in a range around the wobble frequency, which typically is in the range of 1 MHz in case of a 1×DVD+RW system. This peak 172 will be indicated by the phrase “wobble-peak”. When comparing
Further, in the case of a written track, the frequency spectrum 170B contains a third significant peak 173B in the range corresponding to data frequencies, typically in the range of 1-10 MHz in case of a 1×DVD+RW system. This third significant peak will be indicated by the phrase “data-peak”. Since an unwritten track does not contain data, the first frequency spectrum 170A does not contain such data-peak.
The filter controller 160 may be designed to use any of the above-mentioned, or possible other, differences to decide whether or not the current track contains data, and to generate at its output 162 a filter control signal SFC of which the value depends on the outcome of this decision such as to switch the filter characteristics of the controllable filters 110. For instance the filter control signal SFC may have a first value (e.g. a high level or a digital “1”) if the filter controller 160 finds that data is present, and it may have a second value (e.g. a low level or a digital “0”) if the filter controller 160 finds that data is not present.
In one embodiment, the filter controller 160 may be designed to monitor the DC-peak 171 of the CA-signal (or more precisely: to measure the signal power in a low frequency range), and to compare the height of the DC-peak 171 with a predetermined reference level, indicated at 174 in
In a second embodiment, the filter controller 160 may be designed to monitor the data-peak 173 (or more precisely: to measure the signal power in the frequency range corresponding to data frequencies), and to compare the height of the data-peak 173 with a predetermined reference level, indicated at 175 in
The above two embodiments have the characteristic that at any time the filter controller 160 finds the current status of the track: YES DATA or NO DATA. However, a difficulty may be to define a suitable value for the reference level, especially in the first embodiment. In an alternative embodiment, based on the same principles as the first embodiment, the filter controller 160 again is designed to monitor the DC-peak 171 of the CA-signal, but, instead of comparing the current height of the DC-peak 171 with a predetermined reference level, the filter controller 160 monitors variations of the DC-peak 171.
After the drop at time t1, the height of the DC-peak 171 remains substantially constant again at said lower level L, until time t2, when the height of the DC-peak 171 suddenly rises significantly to the higher level H. The filter controller 160 may take such rise as indicating a transition from a written track to an empty track.
It is also possible that the filter controller 160 is designed to calculate a time-derivative of the DC-peak 171, indicated as lower graph 176 in
Alternatively, instead of the DC-peak 171, the filter controller 160 may use the data-peak 173 for finding sudden drops and rises, of for calculating a time-derivative and to find peaks in such time derivatives. It should be clear that, in this case, a transition from an unwritten track portion to a written track portion is associated with a rise of the data-peak 173 and with a time-derivative exceeding a positive threshold level, while a transition from a written track portion to an unwritten track portion is associated with a drop of the data-peak 173 and with a time-derivative exceeding a negative threshold level.
Each filter 115, 116 has its input 115a, 116a coupled to the input 111 of the controllable filter device 110, and filter 115, 116 has its output 115b, 116b coupled to a respective input 117a, 117b of a controllable switch 117. The controllable switch 117 has an output 117c coupled to the output 112 of the controllable filter device 110. The controllable switch 117 has a control input 117d coupled to the control input 113 of the controllable filter device 110. The controllable switch 117 is responsive to the control signal received at its control input 117d to switch between a first operative state where its output 117c is connected to its first input 117a and a second operative state where its output 117c is connected to its second input 117b. Thus, depending on the operative state of the controllable switch 117, either the first filter 115 or the second filter 116 is active, which means that the controllable filter device 110 as a whole either shows the filter characteristics of the first filter or the filter characteristics of the second filter 116.
Further, in this embodiment, the control circuit 290 comprises a second branch of filter devices 410a to 410d, delay detectors 420, 430, and adder 440, connected in a manner comparable to the first branch. Likewise, these components may be identical to the components 110, 120, 130, 140 in the above-described embodiment of control circuit 90, with the exception that the filter devices 410a to 410d are not controlled and therefore do not need to be controllable filter device; in fact, these filter devices 410a to 410d may each be identical to the second filter 116 described above.
The filter devices 310a to 310d and the filter devices 410a to 410d have their respective inputs 311a-d and 411a-d connected in parallel to the respective inputs 291a-d of the control circuit 290. Thus, the first adder 340 of the first branch provides the wobble-derived DTD4 signal, while the second adder 440 of the second branch provides the data-derived DTD4 signal.
The control circuit 290 further comprises a controllable switch 299, which has its two inputs coupled to the outputs of the adders 340 and 440, respectively, and which is controlled by the controller 160, to switch between a first operative state where its first input is connected to its output and a second operative state where its second input is connected to its output. So, in this embodiment, too, either the wobble-derived DTD4 signal or the data-derived DTD4 signal is used as tracking error signal.
While the above description clearly explains the principles of the present invention, in practice it may be advantageous to invert one of the signals of the signal pairs for which the delay A is calculated, which may result in an improved smoothness of the DTD4 signal in the range around φ=0. Such inversion is equivalent to a delay of π. Thus, in a more general form, formula (5) can be written as:
DTD4R=Δ(A,sB)+Δ(C,sD) (8)
wherein s is either +1 or −1.
In
The delay calculator device 120 of this example further comprises an actual delay calculating unit 126, having a first input 126a coupled to the first device input 121, a second input 126b coupled to the output 125d of the controllable switch 125, and an output 126c coupled to the device output 123, which actual delay calculating unit 126 is designed to calculate the delay between the signals arriving at its two inputs and generating an output signal representing this delay.
Thus, the present invention provides a method for radial tracking in an optical disc drive, wherein a DTD tracking error signal is derived from the wobble-induced signal components of the optical detector signal. This tracking error signal is relatively insensitive to beamlanding errors, and to differences in the signal amplitudes K of the output signal of individual detector segments. Further, the need for a 3-spot grating is eliminated.
In a preferred embodiment, a distinction is made between on the one hand a situation where the track being followed is empty and on the other hand a situation where the track being followed is written. In case the track being followed is empty, a DTD tracking error signal is derived from the wobble-induced signal components of the optical detector signal, whereas, in case the track being followed is written, a DTD tracking error signal is derived from the data-induced signal components of the optical detector signal.
It should be clear to a person skilled in the art that the present invention is not limited to the exemplary embodiments discussed above, but that various variations and modifications are possible within the protective scope of the invention as defined in the appending claims.
For instance, the filter controller may be designed to decide whether or not the current track contains data on the basis of another criterion.
Further, in the above, the present invention has been explained for a case where an optical detector 35 produces four output signals, corresponding to four detector segments, all four of these signals being used. However, it is also possible that the optical detector 35 has a different number of detector segments, hence produces a different number of output signals. It is also possible that the tracking error signal is derived from only some of the detector output signals.
In the above, the present invention has been explained with reference to block diagrams, which illustrate functional blocks of the device according to the present invention. It is to be understood that one or more of these functional blocks may be implemented in hardware, where the function of such functional block is performed by individual hardware components, but it is also possible that one or more of these functional blocks are implemented in software, so that the function of such functional block is performed by one or more program lines of a computer program or a programmable device such as a microprocessor, microcontroller, etc.
Claims
1. Method for radial tracking in an optical disc drive (1), wherein a tracking error signal (S3) is derived from wobble-induced signal components (WA, WB, WC, WD) of an optical detector output signal (SR).
2. Method according to claim 1, wherein the tracking error signal (S3) is generated according to the formula
- DTD4R=Δ(A,B)+(C,D), wherein
- Δ(A,B) represents the delay τA−τB between signals WA=KA•cos(τ−τA) and WB=KB•cos(τ−τB),
- Δ(C,D) represents the delay τC−τD between signals WC=KC•cos(τ−τC) and WD=KD•cos(τ−τD), wherein
- KA, KB, KC, KD are respective amplitudes
- τA, τB, τC, τD are respective phases
- τ is the tangential scanning variable
- and wherein WA, WB, WC, WD represent the amount of light received at respective segments of an optical detector (35).
3. Method according to claim 1, wherein the tracking error signal is generated according to the formula
- DTD4T=Δ(A,D)+(C,B), wherein
- Δ(A,D) represents the delay τA−τD between signals WA=KA•cos(τ−τA) and WD=KD•cos(τ−τD),
- Δ(C,B) represents the delay τC−τB between signals WC=KC•cos(τ−τC) and WB=KB•cos(τ−τB), wherein
- KA, KB, KC, KD are respective amplitudes
- τA, τB, τC, τD are respective phases
- τ is the tangential scanning variable
- and wherein WA, WB, WC, WD represent the amount of light received at respective segments of an optical detector (35).
4. Method according to claim 1, wherein the tracking error signal is generated according to the formula
- DTD2=Δ(A+C,B+D), wherein
- Δ(A+C,B+D) represents the delay τA+C−τB+D between signals WA+WC=KA+C•cos(τ−τA+C) and WBWD=KB+D•cos(τ−τB+D), wherein
- KA, KB, KC, KD are respective amplitudes
- τA, τB, τC, τD are respective phases
- τ is the tangential scanning variable
- and wherein WA, WB, WC, WD represent the amount of light received at respective segments of an optical detector (35).
5. Method for radial tracking in an optical disc drive (1), wherein, if the track being followed is non-written, a tracking error signal (S3) is derived from wobble-induced signal components (WA, WB, WC, WD) of an optical detector output signal (SR) in accordance with claim 1, and wherein, if the track being followed is written, a tracking error signal (S3) is derived from data-induced signal components of the optical detector output signal (SR).
6. Method according to claim 5, wherein the optical detector output signal (SR) is evaluated to determine whether the track being followed is non-written or written.
7. Method according to claim 6, wherein the determination whether the track being followed is non-written or written is made on the basis of the signal power contents of a low-frequency part (171) of the central aperture signal (CA).
8. Method according to claim 7, wherein the signal power contents of the low-frequency part (171) of the central aperture signal (CA) is monitored, and wherein, in case a substantial drop in signal power is detected, tracking error signal generation is switched to deriving the tracking error signal from data-induced signal components whereas, in case a substantial rise in signal power is detected, tracking error signal generation is switched to deriving the tracking error signal from wobble-induced signal components (WA, WB, WC, WD) of an optical detector output signal.
9. Method according to claim 6, wherein the determination whether the track being followed is non-written or written is made on the basis of the signal power contents of a data-frequency part (173) of the central aperture signal (CA).
10. Method according to claim 9, wherein the signal power contents of the data-frequency part (173) of the central aperture signal (CA) is monitored, and wherein, in case a substantial rise in signal power is detected, tracking error signal generation is switched to deriving the tracking error signal from data-induced signal components whereas, in case a substantial drop in signal power is detected, tracking error signal generation is switched to deriving the tracking error signal from wobble-induced signal components (WA, WB, WC, WD) of an optical detector output signal.
11-24. (canceled)
Type: Application
Filed: Oct 1, 2009
Publication Date: Jan 28, 2010
Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V. (EINDHOVEN)
Inventor: Sjoerd Stallinga (Eindhoven)
Application Number: 12/571,472
International Classification: G11B 20/18 (20060101);