MAGNETIC POSITION SENSOR
The invention relates to a magnetic position sensor (1) consisting of a non-electroconductive, non-magnetic carrier (2) on which a resistive layer (3) is arranged, in addition to a pick-off layer (4) which is located at a distance from the resistive layer and at least partially overlaps the same. The distance between the two layers is selected in such a way that contact is established between the two layers by means of a magnetic device (5) that can be moved along the overlapping regions of the resistive layer (3) and the pick-off layer (4). According to the invention, the pick-off layer (4) is a film which consists of a ferromagnetic material and is electroconductive at least on one side.
The invention relates to a magnetic position sensor, consisting of a dielectric and nonmagnetic support carrying a resistive layer in addition to a contact layer spaced from and at least partially overlying the resistive layer, the spacing being such that contact is made between the two layers by a magnet that can be moved along the overlying regions of the resistive layer and the contact layer according to the characteristics of the introductory clause of claim 1.
Position sensors detecting the position of an element relative to a reference position are generally known. An example of such a position sensor is disclosed in DE 43 39 931. However, this position sensor has the disadvantage that it operates mechanically under pressure such that the position sensor is subjected to a high degree of wear and tear.
In order to reduce the wear effect, magnetic position sensors have been known, such as from DE 196 48 539 [U.S. Pat. No. 6,070,337] or DE 10 2004 004 102 [U.S. 2007/0152658].
A generic, passive magnetic position sensor is known from DE 195 26 254 [U.S. Pat. No. 5,798,640]. This position sensor consists of a dielectric and nonmagnetic support carrying a resistive layer in addition to a contact layer spaced from and at least partially overlying the resistive layer. The contact layer is a bending beam structure shaped like a meander and mounted between two spacers. The spacing between the contact layer and the resistive layer is selected such that with the effect of a magnet, in this case a permanent magnet, that can be moved along the overlying regions of the resistive layer and the contact layer, contact is created between the resistive layer and the contact layer, thus resulting in a detectable change of resistance upon application of an electric current on the resistive layer that represents a measure of the relative position of the permanent magnet with respect to the position sensor.
Although such a sensor will reduce the wear effects to a minimum, it is still disadvantageous with regard to the extensive construction thereof, since the contact layer can be produced only at great effort in the shape of a bending beam structure having a meander shape. Furthermore, it is necessary to mount the meander-shaped bending beam structure between two spacers, providing a further disadvantage in that the meander-shaped bending beam structure may be damaged during operation of the position sensor due to mechanical stresses.
The invention is therefore based on the object of providing a magnetic position sensor that operates free of any wear and that is improved with respect to its manufacture. In particular, the invention seeks to reduce the installation height of such a position sensor and also to simplify its manufacture.
The object is attained by the characteristics of patent claim 1.
The invention provides that the contact layer is a film consisting of a ferromagnetic material, and is electrically conductive at least on one face. The use of film of ferromagnetic material as the contact layer has the advantage that the film is substantially more robust with regard to mechanical outside influences on the position sensor, and such a film is substantially easier to produce (as opposed to a meander-shaped bending beam structure) and easier to handle during production. Since the contact layer consists of ferromagnetic material, it may optimally be used in the region of the magnetic effect on the resistive layer such that the desired detectable change of resistance results. In this manner it is possible to use a smaller magnet and to reduce the installation height of the position sensor, since the smaller magnet may be brought closer to the position sensor. Furthermore, with appropriate shaping of the support, the resistive layer and the contact layer may be mounted on the support, e.g. attached thereto, such that the required spacers known from the prior art may be omitted. This also results in a reduction of the installation height of the entire position sensor.
The support, resistive layer, contact layer and a cover of the support are formed from a rigid or flexible film in a particularly advantageous manner, thus reducing the entire installation height of the position sensor.
In a further embodiment of the invention the contact layer is protected by a cover that is connected to the support of the position sensor. In this manner simple manufacture of the position sensor is possible, since to start with the support is made and equipped with a resistive layer, subsequently the contact layer is applied, and then the entire arrangement of the already functional position sensor is protected from outside influences by an additional cover. This further has the advantage that a position sensor may be produced this way of any desired length. If these elements of the position sensor consist of a flexible film, it is further possible in an advantageous manner to produce, for example, the basic shape of the position sensor on a roll in this manner, the continuous material being simply cut off depending on the desired length of the position sensor to be produced, and may further be processed into a finished position sensor. The further processing is carried out by attaching end pieces to the ends of the cut-off piece of the position sensor, a cable being connected to one of the end pieces and there connected to the resistive layer and the contact layer, a plug-in connector being provided at the end of the cable, for example, which, however, is not mandatory. The position sensor may be connected to an analysis unit via the plug-in connector, to which the position sensor is connected, and that is set up to detect the changes of resistance in a relative movement of the magnet to the position sensor.
In a further embodiment of the invention it is essential that the cover be a flux-conducting plate, or have a flux-conducting plate. Such a flux-conducting plate can increase the magnetic effect and enhance the sensitivity of the position sensor, or the magnetic force of the magnet, and thus the size thereof. In this embodiment it is conceivable that the cover is, for example, a plastic housing in which a suitable flux-conducting plate is provided and attached. The attachment may be carried out, for example, by gluing or caulking. Furthermore, it is conceivable to produce the cover in an injection-molding process, the flux-conducting plate being at least partially, or particularly also completely, injection molded together with the plastic material that forms the cover. As an alternative it is further conceivable that the cover be a rigid plastic part or a flexible plastic part, particularly a film, the flux-conducting plate being formed by an element that is an integral part whose position is to be detected. One example is that the position sensor is attached to a seat rail of a seat of a vehicle so the magnet is moved relative to the position sensor that is attached, for example to the chassis (frame) of the vehicle.
In a further embodiment of the invention a combination of a contact layer (sensor film) and a resistive layer is used on an opposite partner film. The resistive side is constructed in the following manner: the base is a ferromagnetic film. It is thinly coated using a dielectric. This in turn is thinly coated using a resistive varnish. The sensor film and the partner film form contact springs and a coil together with the resistance path applied. Contact is made by a magnetic field acting from the outside, which is generated by a permanent magnet that has been placed nearby, or is electrically generated in an associated magnetic coil. The two contact guides (peak and trough) attract one another due to the magnetic field, contact each other at their crowns, and thus close the electric circuit in which the resistive layer is located. As soon as the magnetic field drops, or falls below a certain force (particularly if the magnet is moved away perpendicularly from the position sensor) the contact reopens due to the spring effect, e.g. the trough separates from the peak. Since the contact guides are energized only in the region of the magnet, a potentiometer-like circuit is formed. However, if the magnet moves longitudinally relative to the position sensor, the wave of the contact layer and/or of the resistive layer rolls across longitudinally along the position sensor.
The position sensor according to the invention may have the following applications (without claiming everything):
linear and rotational 360°
linear, also axially wound about a shaft
Form of installation: straight, wavy, curved, 3D installation
Sensor is fixed and magnet is moved, or vice versa
Use preferably in vehicles in:
-
- sunroof
- seat adjustment
- cargo base
- sliding door
- door
- hatch
- convertible roof
- cylinder, hydraulic and gas
- fender, spoiler adjustment
- window
- gearstick, joystick
- strut
- fluid level
- back rest
- lock angle
- pedal travel and angle
- switch fuzzy logic
Possible configurations:
-
- straight
- nonstraight
- wavy
- curved
- linear
- rotational
In an alternate embodiment of the invention it is conceivable that the resistive layer and/or the contact layer are configured in the shape of a finger. The fingers are project transversely from an elongated position sensor and overlie each other at least partially so that they may engage each other on the action of the magnetic field of the magnet. The fingers—or a comb-shaped embodiment of the resistive layer, or of the contact layer are present only, for example, in the side end region (e.g. facing away from the region in which, for example, the contact layer is clamped into the spacer), or may also project toward or even into the region in which the respective layer is attached to the respective element.
Another substantial advantage of the position sensor according to the invention is that due to the construction and material choice thereof, sticking of the resistive layer to the contact layer will not occur, even if the magnet has been located at the same location for a longer period of time. In this regard it should be mentioned by way of example that the position sensor can be attached to a seat rail of a seat of a vehicle so the position of the seat with respect to the chassis of the vehicle can be detected by the position sensor. To this end the magnet is attached to the seat. In this case it would be conceivable that the seat is not moved over a longer period of time, since the vehicle is always controlled by the same driver. If the seat is moved away from the initial set position after a long period of time, there is no worry that the deflected wave (trough or peak) of the contact layer gets stuck to the resistive layer. Due to the changing magnetic field as a result of the displacement of the seat the peak or the trough also move away from the original position thereof such that the contact layer thereby do not get stuck to the resistive layer although they have engaged each other for the purpose of detecting the position, and thus of the resistance of the position sensor.
Further embodiments of the invention representing corresponding advantages are listed in the sub-claims. Furthermore, a description of the characteristics of the sub-claims follows within the context, including the figures.
In the figures, inasmuch as details are illustrated, a magnetic position sensor is shown at 1.
A further embodiment of the position sensor 1 is illustrated in
As in
While only individual magnets 5, 8, and 11 have been shown in the above mentioned figures as each being provided on one side or on the same side of the position sensor, a single magnet 12 having an alternating pole sequence within the magnet 12 is shown in
Connection of the resistive layer 4 and of the contact layer 3 (sensor film) to the outside is carried out through a seal, for example, a heat seal, conductive adhesive, rivet connection, the bent-over edges shown, or comparable means or methods. As an alternative connection of the resistive layer 4 and of the contact layer 3 (sensor film) toward the outside may also be exposed through a conductive seal, soldering, welding, or the like.
By installing an interface, such as a voltage interface, on connection, the sensor data may be made to comply with the different requirements of customer-specific analysis units. The sensor is thus also protected from overloads and switching errors caused by the customer. Furthermore, damage to a sensor may be detected, and reported to the analysis unit.
The figures always show a permanent magnet 5 whose one pole points toward the position sensor 1 and whose other pole faces away from it. Furthermore, the magnet is always provided on the one or on the other side of the position sensor 1. As an alternative it is also possible with such a position sensor 1 in a longitudinal or other configuration that the magnet wraps around the position sensor 1 in a partially annular or annular, or geometrically complementary configuration (such as in the shape of a horseshoe). It is further conceivable to arrange the poles on the position sensor 1 in a distorted manner to the alignment shown by 90°, either longitudinally or transversely. In addition to the alignment of the poles of the magnet parallel or transverse to the axis of the position sensor 1 other arrangements deviating from it (alignment at an angle) are also conceivable that, however, do not represent the preferred alignment, since the forces effective on the contact layer are the greatest with alignment of the poles of the magnet parallel or transversely to the axis of the position sensor 1.
Claims
1. A magnetic position sensor consisting of a dielectric and nonmagnetic support carrying a resistive layer and a contact layer spaced from and at least partially overlying the resistive layer, the spacing being selected such that contact is made between the resistive layer and the contact layer by a magnet that can be moved along the overlying regions of the resistive layer and the contact layer the contact layer being a film of a ferromagnetic material and is electrically conductive at least on one face.
2. The position sensor according to claim 1 wherein the contact layer is protected by a cover connected to the support.
3. The position sensor according to claim 1 wherein the cover is or has a flux-conducting plate.
4. The position sensor according to claim 2 wherein the contact layer is mounted on the support or on the cover via an edge spacer.
5. The position sensor according to claim 2 wherein the contact layer is magnetically held on the cover in an at least partially detached manner, and the cover consists of a ferromagnetic material.
6. The position sensor according to wherein at least two contact layers are provided that interact with the resistive layer.
7. The position sensor according to wherein the contact layer is held between two spacers, or is held by one spacer on the cover and/or the support.
8. The position sensor according to claim 1 wherein the position sensor has a protective housing made from a nonmagnetic metal.
9. The position sensor according to claim 7 claim 1 wherein the protective housing has bent-over edges on the sides that laterally envelope the cover and/or the support.
10. The position sensor according to claim 7 claim 1 wherein the protective housing consists of two parts, the position sensor being mounted between the two parts and the protective housing being closed on the edges by gluing, soldering, welding, or caulking.
11. The position sensor according to claim 1 wherein the position sensor is equipped with an interface.
Type: Application
Filed: Nov 16, 2007
Publication Date: Feb 11, 2010
Patent Grant number: 8330450
Inventor: Gerhard Peter (Sulz)
Application Number: 12/515,299
International Classification: G01B 7/00 (20060101);