METHODS FOR ACCURATE USE OF FINITE DYNAMIC RANGE MEASUREMENT DATA IN RADIO PATH LOSS PROPAGATION MODEL CALIBRATION
Methods for accurately predicting radio propagation from signal strength measurements. Dynamic range limitations in the measurement data are explicitly taken into account. The resulting propagation models accurately predict signal strength for calculation of coverage and interference.
Latest NEWFIELD WIRELESS, INC. Patents:
- METHODS FOR ACCURATE USE OF FINITE DYNAMIC RANGE MEASUREMENT DATA IN RADIO PATH LOSS PROPAGATION MODEL CALIBRATION
- Methods for accurate use of finite dynamic range measurement data in radio path loss propagation model calibration
- METHODS FOR ACCURATE USE OF FINITE DYNAMIC RANGE MEASUREMENT DATA IN RADIO PATH LOSS PROPAGATION MODEL CALIBRATION
- Methods for accurate use of finite dynamic range measurement data in radio path loss propagation model calibration
- Methods for interactive, real-time adjustments of antenna and other network state elements in a wireless network
This application is a continuation of U.S. patent application Ser. No. 11/372,154 entitled “Methods for Accurate Use of Finite Dynamic Range Measurement Data in Radio Path Loss Propagation Model Calibration”, by Nathan Hunt et al., filed Mar. 9, 2006, which claims priority to U.S. Provisional Patent Application No. 60/661,128 entitled “Methods for Accurate Use of Finite Dynamic Range Measurement Data in Radio Path Loss Propagation Model Calibration”, by Nathan Hunt et al., filed Mar. 11, 2005.
COPYRIGHT NOTICEA portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
FIELD OF THE INVENTIONThis invention relates to the field of calibrating data parameter sets for application to a signal propagation model describing data of limited dynamic range.
BACKGROUND OF THE INVENTIONThe effectiveness of predictive design and optimization of cell phone networks depends on the accuracy of predicted radio signal strength over the geographic area where service is to be provided. The prediction is made with a mathematical model called a propagation model. Propagation models typically predict radio signal strength given the transmitting antenna pattern and digital terrain maps and clutter maps, although they may also use additional descriptions of the physical environment such as vector data and building databases. Propagation models have a number of parameters whose values are determined by calibrating the model with measurement data. Once a model is calibrated for a particular geographic area, the required signal strength and interference predictions can be carried out.
Model calibration is required to give specific loss characteristics to the physical environment description. For example, the average properties of clutter categories may vary between markets or be unknown altogether. Model calibration assigns optimal values to each clutter category.
The signal strength measurement data used for model calibration is usually either Continuous Wave (CW) data or scanner data. To collect CW data, a clear frequency is selected and a continuous signal is transmitted at that frequency. Data is collected over a drive route. A receiver set to the transmitting frequency collects the data in conjunction with position information from a GPS receiver.
Scanner data is also collected on a drive with simultaneous collection of GPS data. Scanner data is distinct from CW data in that the actual pilot signals from the network are detected, rather than the separate monotone signal used for CW. Signals can be collected from many sites simultaneously, depending on the scanner configuration.
Model calibration is conventionally carried out by finding the parameter set that gives the minimum least-squares (or OLS, for Ordinary Least Squares) fit to the measurement data. Under certain simple assumptions (i.e. that the errors in the data are normally distributed, and that data is an unbiased sample of the underlying population), the OLS fit is the best prediction that can be made.
All measurement data has a finite dynamic range. This generally introduces bias into the measurement data set. Models created by OLS fit to the data may therefore be biased and will not give the best prediction possible.
The effects of the bias due to finite dynamic range are shown in
The example data in
The invention consists of approaches to calibrating propagation models that removes the bias inherent in using data that is of limited dynamic range. It also covers means of implementing these methods in software.
The invention describes treating two types of measurement data, truncated data and censored data. Truncated data is data where observations outside of given limits are lost. A simple example of truncated data is shown in
Censored data is similar to truncated data, the difference being that the location of the points falling outside the receiver dynamic range is given. For example, in the case of the data in
The invention describes how to obtain truncated data and truncation levels from measurement data. It also describes how to obtain censored data, censoring levels, and censored observations from measurement data. It describes how to obtain optimal models for truncated and censored data sets using Maximum Likelihood (ML).
CW measurements can be treated as truncated data by using the signal sensitivity threshold as the lower truncation level, and the top end of the receiver linear range as the upper truncation level. Any observations outside these limits are excluded from the data set.
Scanner data can be treated as truncated data by excluding measurements above the linear range or below the receiver sensitivity. The sensitivity limit for scanner data differs from the limit for CW data in that, for scanner data, the sensitivity is often limited by interference. Therefore the lower truncation levels are determined from the interference level measured at each data point. The lower truncation level at a point in the case of CDMA or UMTS is the measured value of I0 (in dBm) at a point plus the minimum Ec/I0 (in dB) that the scanner can reliably measure. For the case of GSM data, the lower truncation level is the measured value of I (in dBm) at a point plus the minimum value of C/I (in dB) that the scanner can reliably measure.
Given a truncated data set, the optimum or unbiased propagation model is obtained as follows.
To help define notation, we start by giving the formulation for the OLS solution. Vector quantities are shown in bold. The OLS solution is given by finding the vector β minimizing the quantity
Σ(yi−xiβ)2 (1)
where the sum is taken over all observations i, yi is the ith measured value, xi is a vector of the variables used in the calibration (the dependent variables, such as log distance, diffraction, effective antenna height, clutter terms, etc.), and β is a vector of the parameters to be optimized (constant term or intercept, slope, diffraction multiplier, clutter parameters, etc).
The OLS problem can be reformulated as a maximum likelihood (ML) problem, where the log of the likelihood to be maximized is
L=Σi log(2πσ)−1/2−Σi(yi−xiβ)2/(2 σ2) (2)
where yi, xi and β are as in equation (1) and σ, an estimate of the dispersion, is an additional model parameter to be optimized along with the components of β. The maximum likelihood solution of (2) will yield the same solution β as (1), with the optimum value of a equal to the standard deviation of the measurements, yi.
The optimum parameter set for the truncated problem is obtained by maximizing the log of the likelihood L,
L=Σi log(2πσ)−1/2−Σi(yi−xiβ)2/(2σ2)−Σi log Φ[(ci−xiβ)/σ]−Σi log Φ[(xiβ−di)/σ] (3)
where yi, xi, β and σ are as in (2), the ci are the upper truncation values, the di are the lower truncation values, and Φ is the standard normal distribution function.
Censored data can be generated from CW data by using the positions of points where the measurement falls below the sensitivity limit of the receiver (left censored observations) or above the receiver's linear range (right censored observations). Censored data is generated from scanner data in the same way, but the lower limit is usually determined by the measured interference at each point. The lower censoring level at a point in the case of CDMA or UMTS is the measured value of I0 (in dBm) at a point plus the minimum Ec/I0 (in dB) that the scanner can reliably measure. For the case of GSM data, the lower censoring level is the measured value of I (in dBm) at a point plus the minimum value of C/I (in dB) that the scanner can reliably measure.
The optimum parameter set for the censored problem is obtained by maximizing the log of the likelihood, L
L=Σi log(2πσ)−1/2−Σi(yi−xiβ)2/(2σ2)−Σi log Φ[(xjβ−cjβ)/σ]−Σk log Φ[(dk−xkβ)/σ] (4)
where the summations over i are sums over the uncensored observations, the summations over j are over the right-censored observations, the summations over k are over the left-censored observations, yi, xi, β and σ are as in (3), cj and dk are the upper and lower censoring limits, respectively, and xk is the vector of dependent variables at the kth censored observation.
Claims
1. A method of accurately calculating an unbiased parameter set for application to a radio signal propagation model describing data of limited dynamic range, comprising the steps of:
- a) representing a set of N data points of radio signal data collected by a receiver as a truncated data set, wherein said truncated data set is truncated using a set of N lower truncation limits, wherein a lower truncation limit is calculated for each data point according to a sensitivity threshold of the radio signal data determined by said receiver, and wherein said truncated data set is further truncated using an upper truncation limit calculated according to an upper limit of the linear range of said receiver;
- b) excluding from said truncated data set all data outside a range defined by said lower and upper truncation limits; and
- c) based on said truncated data set, based on said lower and upper truncation limits, and based on a radio signal propagation model, calculating an unbiased parameter set maximizing the accuracy with which said radio signal propagation model describes said data set.
2. The method of claim 1, wherein said step of calculating comprises maximizing the likelihood of said signal propagation model to calculate radio path signal loss, given said data, said lower truncation limit, and said upper truncation limit.
3. The method of claim 1, wherein said step of representing comprises representing the signal strength of the radio signal data.
4. The method of claim 1, wherein said step of representing comprises representing the set of N data points as collected by a cellular phone network.
5. The method of claim 4, wherein said step of representing comprises representing the signal strength of the radio signal data.
6. The method of claim 1, wherein said step of calculating is performed using a maximum likelihood (ML) fit.
7. A method of accurately calculating an unbiased parameter set for application to a radio signal propagation model describing data of limited dynamic range, comprising the steps of:
- a) representing a set of data points of radio signal data collected by a receiver as a censored data set, wherein said censored data set comprises a set of uncensored observations, a set of left-censored observations, and a set of right-censored observations;
- b) defining the set of uncensored observations as all measured data points with signal level within the linear range of said receiver;
- c) defining the set of right-censored observations as the set of all measured points with a measured signal level above the linear range of said receiver;
- d) defining the set of left-censored observations as the set of all signals not detected due to being below the minimum detection level of said receiver;
- e) defining an upper censoring limit as equal to the upper limit on the linear range of said receiver;
- f) defining a lower censoring limit as equal to the minimum detection level of said receiver; and
- g) based on said censored data set, based on said lower and upper censoring limits, and based on a radio signal propagation model, calculating an unbiased parameter set maximizing the accuracy with which said radio signal propagation model describes said data set.
8. The method of claim 7, wherein said step of calculating comprises maximizing the likelihood of said radio signal propagation model to calculate radio path signal loss, given said data, said lower censoring limit, and said upper censoring limit.
9. The method of claim 7, wherein said step of representing comprises representing the signal strength of the radio signal data.
10. The method of claim 7, wherein said step of representing comprises representing the set of data points as collected by a cellular phone network.
11. The method of claim 7, wherein said step of calculating is performed using a maximum likelihood (ML) fit.
Type: Application
Filed: Dec 8, 2009
Publication Date: Apr 8, 2010
Applicant: NEWFIELD WIRELESS, INC. (Berkeley, CA)
Inventors: Nathan Hunt (Berkeley, CA), Marc Bensadoun (Berkeley, CA)
Application Number: 12/633,113
International Classification: G06F 17/10 (20060101);