FEMORAL AND TIBIAL BASE COMPONENTS
Various embodiments are directed to base components that are usable with implantable mechanical energy absorbing systems. According to one embodiment, the base component includes a low-profile body having a elongate, straight portion at a first end and a curved body portion at a second end. The second end is elevated as compared to the first end. An inner surface of the low-profile body has a raised portion extending along the elongate, straight portion of the low-profile body. The base component also includes a plurality of openings positioned along the low-profile body for alignment and purposes of affixation to body anatomy.
Latest MOXIMED, INC. Patents:
This application is a continuation-in-part of U.S. application Ser. No. 11/743,097, filed May 1, 2007, a continuation-in-part of U.S. application Ser. No. 11/743,605, filed May 2, 2007, a continuation-in-part of U.S. application Ser. No. 11/775,139, filed Jul. 9, 2007, a continuation-in-part of U.S. application Ser. No. 11/775,149, filed Jul. 9, 2007 and a continuation-in-part of U.S. application Ser. No. 11/775,145, filed Jul. 9, 2007, the entire disclosures of which are expressly incorporated herein by reference.
FIELD OF EMBODIMENTSVarious embodiments disclosed herein are directed to structure for attachment to body anatomy, and more particularly, towards approaches for providing mounting members for extra-articular implantable mechanical energy absorbing systems.
BACKGROUNDJoint replacement is one of the most common and successful operations in modern orthopaedic surgery. It consists of replacing painful, arthritic, worn or diseased parts of a joint with artificial surfaces shaped in such a way as to allow joint movement. Osteoarthritis is a common diagnosis leading to joint replacement. Such procedures are a last resort treatment as they are highly invasive and require substantial periods of recovery. Total joint replacement, also known as total joint arthroplasty, is a procedure in which all articular surfaces at a joint are replaced. This contrasts with hemiarthroplasty (half arthroplasty) in which only one bone's articular surface at a joint is replaced and unincompartmental arthroplasty in which the articular surfaces of only one of multiple compartments at a joint (such as the surfaces of the thigh and shin bones on just the inner side or just the outer side at the knee) are replaced. Arthroplasty as a general term, is an orthopaedic procedure which surgically alters the natural joint in some way. This includes procedures in which the arthritic or dysfunctional joint surface is replaced with something else, procedures which are undertaken to reshape or realigning the joint by osteotomy or some other procedure. As with joint replacement, these other arthroplasty procedures are also characterized by relatively long recovery times and their highly invasive procedures. A previously popular form of arthroplasty was interpositional arthroplasty in which the joint was surgically altered by insertion of some other tissue like skin, muscle or tendon within the articular space to keep inflammatory surfaces apart. Another previously done arthroplasty was excisional arthroplasty in which articular surfaces were removed leaving scar tissue to fill in the gap. Among other types of arthroplasty are resection(al) arthroplasty, resurfacing arthroplasty, mold arthroplasty, cup arthroplasty, silicone replacement arthroplasty, and osteotomy to affect joint alignment or restore or modify joint congruity. When it is successful, arthroplasty results in new joint surfaces which serve the same function in the joint as did the surfaces that were removed. Any chodrocytes (cells that control the creation and maintenance of articular joint surfaces), however, are either removed as part of the arthroplasty, or left to contend with the resulting joint anatomy. Because of this, none of these currently available therapies are chondro-protective.
A widely-applied type of osteotomy is one in which bones are surgically cut to improve alignment. A misalignment due to injury or disease in a joint relative to the direction of load can result in an imbalance of forces and pain in the affected joint. The goal of osteotomy is to surgically re-align the bones at a joint and thereby relieve pain by equalizing forces across the joint. This can also increase the lifespan of the joint. When addressing osteoarthritis in the knee joint, this procedure involves surgical re-alignment of the joint by cutting and reattaching part of one of the bones at the knee to change the joint alignment, and this procedure is often used in younger, more active or heavier patients. Most often, high tibial osteotomy (HTO) (the surgical re-alignment of the upper end of the shin bone (tibia) to address knee malalignment) is the osteotomy procedure done to address osteoarthritis and it often results in a decrease in pain and improved function. However, HTO does not address ligamentous instability—only mechanical alignment. HTO is associated with good early results, but results deteriorate over time.
Other approaches to treating osteoarthritis involve an analysis of loads which exist at a joint. Both cartilage and bone are living tissues that respond and adapt to the loads they experience. Within a nominal range of loading, bone and cartilage remain healthy and viable. If the load falls below the nominal range for extended periods of time, bone and cartilage can become softer and weaker (atrophy). If the load rises above the nominal level for extended periods of time, bone can become stiffer and stronger (hypertrophy). Finally, if the load rises too high, then abrupt failure of bone, cartilage and other tissues can result. Accordingly, it has been concluded that the treatment of osteoarthritis and other bone and cartilage conditions is severely hampered when a surgeon is not able to precisely control and prescribe the levels of joint load. Furthermore, bone healing research has shown that some mechanical stimulation can enhance the healing response and it is likely that the optimum regime for a cartilage/bone graft or construct will involve different levels of load over time, e.g. during a particular treatment schedule. Thus, there is a need for devices which facilitate the control of load on a joint undergoing treatment or therapy, to thereby enable use of the joint within a healthy loading zone.
Certain other approaches to treating osteoarthritis contemplate external devices such as braces or fixators which attempt to control the motion of the bones at a joint or apply cross-loads at a joint to shift load from one side of the joint to the other. A number of these approaches have had some success in alleviating pain but have ultimately been unsuccessful due to lack of patient compliance or the inability of the devices to facilitate and support the natural motion and function of the diseased joint. The loads acting at any given joint and the motions of the bones at that joint are unique to the body that the joint is a part of. For this reason, any proposed treatment based on those loads and motions must account for this variability to be universally successful. The mechanical approaches to treating osteoarthritis have not taken this into account and have consequently had limited success.
Prior approaches to treating osteoarthritis have also failed to account for all of the basic functions of the various structures of a joint in combination with its unique movement. In addition to addressing the loads and motions at a joint, an ultimately successful approach must also acknowledge the dampening and energy absorption functions of the anatomy, and be implantable via a minimally invasive technique. Prior devices designed to reduce the load transferred by the natural joint typically incorporate relatively rigid constructs that are incompressible. Mechanical energy (E) is the action of a force (F) through a distance (s) (i.e., E=Fxs). Device constructs which are relatively rigid do not allow substantial energy storage as the forces acting on them do not produce substantial deformations—do not act through substantial distances—within them. For these relatively rigid constructs, energy is transferred rather than stored or absorbed relative to a joint. By contrast, the natural joint is a construct comprised of elements of different compliance characteristics such as bone, cartilage, synovial fluid, muscles, tendons, ligaments, etc. as described above. These dynamic elements include relatively compliant ones (ligaments, tendons, fluid, cartilage) which allow for substantial energy absorption and storage, and relatively stiffer ones (bone) that allow for efficient energy transfer. The cartilage in a joint compresses under applied force and the resultant force displacement product represents the energy absorbed by cartilage. The fluid content of cartilage also acts to stiffen its response to load applied quickly and dampen its response to loads applied slowly. In this way, cartilage acts to absorb and store, as well as to dissipate energy.
With the foregoing applications in mind, it has been found to be necessary to develop effective structure for mounting to body anatomy. Such structure should conform to body anatomy and cooperate with body anatomy to achieve desired load reduction, energy absorption, energy storage, and energy transfer. The structure should also provide a base for attachment of complementary structure across articulating joints.
For these implant structures to function optimally, they must not cause a disturbance to apposing tissue in the body, nor should their function be affected by anatomical tissue and structures impinging on them. Moreover, there is a need to reliably and durably transfer loads across members defining a joint. Such transfer can only be accomplished where the base structure is securely affixed to anatomy. Therefore, what is needed is an approach which addresses both joint movement and varying loads as well as complements underlying anatomy and provides an effective base for connecting an implantable extra-articular assembly.
SUMMARYBriefly, and in general terms, the disclosure is directed to base components that are mountable to a bone and may be used for cooperation with an implantable extra-articular system. In one approach, the base components facilitate mounting an extra-articular implantable link or mechanical energy absorbing system.
According to one embodiment, the base components of the link or energy absorbing system are contoured to the bone surfaces of the femur and tibia and are secured with bone screws on the medial cortices of the femur and the tibia. The bases can also be attached to lateral sides of the bones of a knee joint or on either side of members defining other joints. The base components are also designed to preserve the articulating joint and capsular structures of the knee. Accordingly, various knee procedures, including uni-compartmental and total joint replacement, may be subsequently performed without requiring removal of the base components.
In one specific embodiment, the base component includes a body having an inner surface that is contoured to mate with a bone surface. The inner surface contacts the bone surface and may be porous, roughened or etched to promote osteointegration. The inner surface can be coated with an osteointegration composition. Optionally, or additionally, the base component is secured to a bone surface with a plurality of fastening members. The base component is also shaped to avoid and preserve structures of the knee. Moreover, the base component is configured to locate a mounting member on the bone in order to position a kinematic load absorber for optimal reduction of forces on a joint. The base component is a rigid structure that may be made from titanium, cobalt chrome, or polyetheretherketones (PEEK). In an alternate approach, the base can be formed at least partially from flexible material.
It is contemplated that the base component includes a low-profile body having an elongate, straight portion at a first end portion and a curved body portion at a second end portion. The second end portion is elevated as compared to the first end portion and occupies a plane displaced from the first end. An inner surface of the low-profile body has a raised portion extending along the elongate, straight portion of the body. The base component also includes a plurality of openings positioned along the elongate portion of the body. Additionally, the body can include two openings positioned side-by-side on the curved portion thereof.
According to another embodiment, the base component is a generally curved body having a first end, a second end, an outer surface, and an inner surface. The curved body is non-planar such that the second end of the body is elevated as compared to the first end of the body. In an application relating to treating a knee joint, the inner surface of the body includes a raised portion that is contoured to the medial surface of the femur above the medial epicondyle. The body also includes a plurality of openings, wherein two openings are positioned side-by-side near the second end. Additionally, the openings provide differing trajectories for receiving fastening members.
In one particular approach, the disclosed base has an osteointegration surface area greater than 39 mm2. More specifically, a femoral base component can embody a surface area of 971 mm2 and a tibial component can have a surface area of approximately 886 mm2. The bases can further be coated with a titanium plasma spray having a thickness of 0.033 inches plus or minus 0.005 inches. Alternatively, an hydroxyapatite plasma spray resulting in a 35 μm plus or minus 10 μm thickness is contemplated.
Moreover, it is contemplated that various sized bases be made available. In that regard, due to expected variability in anatomy, up to five or more femoral base sizes and two or more tibial base sizes can be available to a physician.
The bases can be configured so that relative motion between a base component and a mating bone is less than 150 microns. For certain applications, the durability of the base to bone connection as well as material should be such that the structure can withstand five million cycles of functional loading.
Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example, the features of the various embodiments.
Various embodiments are disclosed which are directed to base components for attachment to body anatomy. In a preferred approach, femoral and tibial base components are provided for attachment to extra-articular implantable link or mechanical energy absorbing systems.
In a specific embodiment, the femoral and tibial base components are contoured to the medial surfaces of the femur and tibia, respectively. The base components have a low-profile design and contoured surfaces thereby minimizing the profile of the base components when mounted to the bone surface and enabling atraumatic soft tissue motions over the bone components. The base component is secured to a bone surface with one or more fastening members. Optionally, or additionally, the inner surface of the base components may be modified to promote osteointegration of the base component into bone. Osteointegration is a process of bone growth onto and about an implanted device that results in integrating the implant to the bone, thereby facilitating the transfer of load and stress from the implant directly to the bone. After osteointegration, fasteners used to initially attach the base component to bone no longer are needed to carry the load and stress from the implant.
The base component can be configured to be an anchor for the extra-articular implantable link or mechanical energy absorbing system used to reduce forces on the knee or other joints (e.g., finger, toe, elbow). The base component can be also designed to distribute loads onto the bone from an extra-articular implantable link or mechanical energy absorbing system while avoiding articulating joint and capsular structures.
Various shapes of bases are contemplated and described. Moreover, it is contemplated that various sized and similar shaped bases be made available to a physician so that a proper fit to variably sized and shaped bones can be accomplished. In that regard, it is contemplated that up to five or more different femoral bases and two or more different tibial bases can be available to a physician.
The base components disclosed herein are structures that are different and distinct from bone plates. As defined by the American Academy of Orthopedic Surgeons, bone plates are internal splints that hold fractured ends of bone together. In contrast, the base components disclosed herein are designed to couple to and transfer loads from a link of an implanted extra-articular system to the bones of the joint. Furthermore, the loading conditions of a bone plate system are directly proportional to the physiological loads of the bone it is attached to, by contrast the loading conditions of a base is not directly proportional to the physiological loading conditions of the bone but is directly proportional to the loading conditions of the link to which it is coupled. In various embodiments, the base component is configured to transfer the load through a combination of the fastening members used to secure the base component to the bone and/or one or more osteointegration areas on the base component.
Further, previous approaches and studies on osteointegration surfaces have not considered cyclic loading. Thus, the approaches to the bases disclosed herein address needs in this area and in particular, provides an approach which achieves extra-cortical boney in-growth under cyclic loading. In certain disclosed applications, a shear strength of about 3 MPa or more can be expected.
Referring now to the drawings, wherein like reference numerals denote like or corresponding parts throughout the drawings and, more particularly to
Turning now to
It is contemplated that the inner surface of the base component 1 be contoured to directly contact the bone surface. The inner surface may be curved in an anterior to posterior direction as well as superior to inferior directions. According to one embodiment, the inner surface includes one or more compositions that induce osteointegration to the cortex of long bones in the body. The inner surface represents the base component 1 to bone surface area required to support expected shear forces resulting from 40 lbs. of load carrying. Alternatively, the inner surface 5 is roughened or etched to improve osteointegration.
The surface area of the osteointegration area is proportional to the forces being carried at a joint by the extra-articular mechanical energy absorbing system. For example, the surface area of the inner surface is at least 39 mm2 for a secure fixation to the femur and in order to carry 40 pounds in 4 mm of compression of a kinematic load absorber. A safety factor may be built into base component as larger surfaces may be used in other embodiments. For example, a femoral base component can include an osteointegration surface area of approximately 971 mm2. Alternatively, a tibial base component includes an osteointegration surface area of approximately 886 mm2.
In certain embodiments, the load transferred from the absorber to the base component can change over time. For example, when the base component is initially fixed to the bone, the fastening members carry all the load. Over time, as the base component osteointegrates with the underlying bone, both the fastening members and the osteointegrated surface carry the load from the implanted system. Once the base component is completely osteointegrated with the underlying bone, the osteointegration area carries most (if not all) the load. Due to the same, the energy absorbing system may be configured in an inactive state, only later activating the device once sufficient osteointegration has occurred.
Alternatively, the implant may be intended for temporary use and so removability of the components is important. In these instances boney in-growth is not desirable. To prevent boney in-growth no porous coating is applied and alternative surface geometry and/or material may be used that does not encourage bone growth, additionally the fasteners are designed to carry 100% of link loads for duration of implantation.
The base component also includes a plurality of openings 7 that are sized to receive fastening members used to permanently secure the base component to the bone. The openings 7 define through-holes that may receive fastening members such as compression screws and/or locking screws. As shown in
As shown in
Turning now to
As shown in
Additionally, two openings 22, 24 are provided on the curved portion 14 of the body. The openings 22, 24 are positioned such that fastening members inserted there through (as shown in
Additionally, the openings 20, 21, 22, 24 can be oriented to provide fastening member trajectories that maximize pull out forces thereby minimizing the possibility that the base component is separated from the bone. According to one embodiment, the trajectories of the openings are oriented such that the opening trajectories are normal or approximately normal to the shear loading forces on the base component 10. For example, the two openings 22, 24 on the curved portion 14 of the body have differing fastening member trajectories as the posterior opening 22 orients a fastening member at a downward trajectory (See
The openings 20, 21, 22, 24 can be countersunk to allow the fastening members to sit below the surface of the base body as shown in
In a preferred embodiment, two openings 20 on the elongated portion of the base component 10 are sized and threaded to accommodate 3.5 mm bicortical compression screws. The most inferior opening 21 on the elongated portion of the base component is sized to accommodate a 6.5 mm unicortical compression screw. The openings 22, 24 on the curved portion 14 of the body are sized and threaded to accommodate 4.5 mm locking screws.
While screws are used to fix the base component 10 to the bone, those skilled in the art will appreciate that any fastening members known or previously developed may be used to secure a base component to a bone. For example, in other embodiments, a fastening device similar to a moly bolt or a toggle bolt is used to secure the base component to a bone. Additionally,
Referring back to
As shown in
Additionally, as best seen in
Additionally, as shown in
With reference to
The base component 10 shown in
A presently preferred embodiment of base component 60 that is mountable to the medial surface of the tibia is depicted in
As shown in
Additionally, the openings 70, 72, 74 are oriented to provide differing trajectories for fastening members that maximize pull forces thereby minimizing the possibility that the base component 60 is separated from the bone. According to one embodiment, the opening trajectories are oriented such that the hole trajectories are normal or approximately normal to the shear loading forces on the base component 10. For example, as shown in
The openings 70, 72, 74 can be countersunk to allow the heads of fastening members to sit below the surface of the body as shown in
While screws are used to fix the femoral and tibial base components 10, 60 to the bone, those skilled in the art will appreciate that any fastening members known or developed in the art may be used to accomplish desired affixation. Although the base components 10, 60 depicted in
As shown in
With reference to
The tibial base component 60 shown in
The various embodiments of the base component may be made from a wide range of materials. According to one embodiment, the base components are made from metals and alloys such as, but not limited to, Titanium, stainless steel, Cobalt Chrome. Alternatively, the base components are made from thermo-plastic materials such as, but not limited to, polyetheretherketones (PEEK). Various embodiments of the base components are rigid structures.
Various other embodiments of bases are contemplated. Such bases can incorporate one or more of the previously described features or can embody structure separate to itself.
In particular, as shown in
Moreover, a base 136 can be configured to attach to cortical bone as shown in
In yet other approaches, the base component can include structure which relies on surrounding anatomy for additional support. For example, as shown in
Similarly, as depicted in
Turning now to
Finally, as shown in
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claimed invention. Those skilled in the art will readily recognize various modifications and changes that may be made to the claimed invention without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the claimed invention, which is set forth in the following claims. In that regard, various features from certain of the disclosed embodiments can be incorporated into other of the disclosed embodiments to provide desired structure.
Claims
1-9. (canceled)
10. An implantable extra-articular mechanical energy absorbing system, comprising:
- an absorber, the absorber configured to absorb a predetermined load; and
- a base including a low-profile body having a mounting portion configured to be operatively connected to the absorber and a bone contacting surface having a selected surface area configured to promote a bone response such as osteointegration.
11. The system of claim 10, wherein the mounting portion is elevated above the bone surface to position the absorber outside the joint capsule.
12. The system of claim 10, further comprising one or more projections extending from the bone contacting surface.
13. The system of claim 10, further comprising one or more through holes positioned along the low-profile body, the through holes configured to receive fastening members.
14. The system of claim 10, wherein osteointegration is promoted by a coating applied to the bone contacting surface.
15. The system of claim 10, wherein osteointegration is promoted by providing the base contacting surface with a roughened surface.
16. The system of claim 10, wherein the bone contacting surface is contoured for a medial portion of a femur or a tibia.
17. The system of claim 10, wherein the bone contacting surface is contoured for a femur or tibia.
18. The system of claim 10, wherein the selected surface area is about 39 mm2 or greater.
19. The system of claim 10, wherein the bone response is mechanical interlocking into the base.
20. The system of claim 10, wherein the bone response is chemical bonding onto the base.
21. The surface of claim 10, wherein the interface between the osteointegrated surface and bone has a shear strength of about 3 MPa or greater without support from fasteners.
22. The system of claim 10, wherein the shear strength of the base-bone interface is greater than the shear stress applied by the forces of the absorber.
23. An implantable extra articular system comprising a base including a periosteum contacting surface and a mounting surface, the mounting surface configured to operatively connect to a link wherein the mounting surface overlies bone and is displaced from the bone.
Type: Application
Filed: Feb 9, 2010
Publication Date: Jun 3, 2010
Applicant: MOXIMED, INC. (Hayward, CA)
Inventors: Anton G. Clifford (Mountain View, CA), Joshua Makower (Los Altos, CA), Michael E. Landry (Austin, TX), Clinton N. Slone (San Francisco, CA)
Application Number: 12/702,599
International Classification: A61F 2/30 (20060101);