Implants And Procedures For Supporting Anatomical Structures For Treating Conditions Such As Incontinence
An implantable system for supporting anatomical structures and, more particularly, a sling-like implant for the treatment of incontinence and method of implementing the same is provided. The implant comprises a support portion and at least one anchor portion extending therefrom. The anchors are inserted through the supporting portion and have a removable filament extending therefrom. An end of the removable filament extends from an entry point into the patient's body and can be used so as to guide the delivery tool back to the anchor of the implant in the event that it is necessary to adjust the anchor.
Latest Patents:
This application claims priority to U.S. Provisional Application Ser. No. 61/142,604 filed Jan. 5, 2009, entitled Implantable Anchors For Use With Mesh Within The Body, and is related to U.S. application Ser. No. (Not yet assigned), filed Jan. 5, 2010, entitled Implants And Procedures For Supporting Anatomical Structures For Treating Conditions Such As Pelvic Organ Prolapse, and U.S. application Ser. No. (Not yet assigned), filed Jan. 5, 2010, entitled Implants And Procedures For Supporting Anatomical Structures, all of which are hereby incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention pertains to the field of medical devices for anchoring and supporting anatomical structures and, more particularly, to implantable slings that are operative to provide support for a portion of a urethra of a patient.
BACKGROUND OF THE INVENTIONThere are an estimated 19 million North American adults suffer from urinary incontinence, ranging in severity from partial to complete loss of bladder control. Adults with light incontinence, for example, may experience minimal leakage during the occurrence of a provocative event, such as laughing or coughing, whereas adults with heavy incontinence may experience continuous urine leakage. Moveover, the degree to which an adult is afflicted may change over time.
Generally, urinary incontinence is not considered a disease, but rather a symptom or side effect of another medical condition. For example, female incontinence may be caused by weakened and (or) stretched pelvic muscles, which is associated with child-birth, pregnancy, trauma, prior surgical procedures, and estrogen loss.
Each case of incontinence, however, is unique and no two people are affected by incontinence in the same way. There are, however, well-recognized types of incontinence and various ways to treat the same. Stress incontinence, which is a common type of incontinence, may be characterized as urine leakage during a provocative event such as sneezing, laughing, lifting heavy objects, or when the patient engages in any type of exercise that puts pressure on the bladder. Urge incontinence occurs when the patient wants to urinate but is incapable of exercising restraint until reaching a restroom. Additional types of incontinence include overflow incontinence, which occurs when the quantity of urine exceeds the capacity of the patient's bladder, and functional incontinence, which occurs when the patient has knowledge of the need to urinate but simply cannot access a restroom quickly enough due to a physical obstruction or debilitation.
To treat urinary incontinence, several options are available. Among the more effective types of recognized treatment include behavioral techniques, such as biofeedback, bladder training, and pelvic muscle exercises, and modifications of the patient's diet and fluid intake. With respect to the latter, it is known that eliminating or cutting back on certain types of substances, such as caffeine and alcohol, can help alleviate incontinence. Additionally, there are medications available, such as dicyclomine (Bentyl), flavoxate (Urispas), hyoscyamine sulfate (Anaspaz), imipramine (Tofranil), oxybutynin (Ditropan), tolterodine (Detrol), and propantheline (Pro-Banthine), phenylpropanolamine (Dexatrim), and pseudoephedrine (Sudafed) that are helpful in controlling urinary incontinence.
Surgery may additionally be an option to treat urinary incontinence. Along these lines, surgical implants are available that provide structural support to the urethra for the treatment of stress incontinence. In this regard, the implant is operative to provide structural support to the urethra such that during a provocative event, the device will provide structural support to the urethra thus causing the urine to be retained within the bladder and not leak through the urethra. Implants for females, such as the In-Fast Ultra device, produced by American Medical Systems, Inc., of Minneapolis, Minn. is a commercially available surgical implant that may be operative to provide structural support to the urethra for the treatment of stress incontinence.
Utilizing these supportive or sling implants to treat incontinence, however, has been known to have numerous drawbacks. Securing suburethral sling implants into position typically requires the use of bone screws, which are well-known in the art to be difficult and time consuming to deploy, and can result in significant patient discomfort, especially within the first couple of weeks following the surgical implantation.
In addition, implanting suburethral slings are often times difficult to secure into position with the optimal degree of tension. Indeed, the implantation of suburethral slings for the treatment of incontinence is well-recognized as complex, time consuming and can produce suboptimal clinical outcomes. Moreover, it is well recognized among surgeons that perform such implant procedures that sutures attached to bone anchors and/or sutures attached to bone screws utilized to secure the sling into position frequently break and that often times additional bone anchors or screws must be secured into position. In fact, each suture attached to bone anchors and or bone screws must typically be re-tensioned two to three times before optimal sling positioning and structural support to the urethra is achieved.
Accordingly, there is a substantial need in the art for a suburethral sling implant for the treatment of incontinence that is substantially easier to surgically secure into position and that can further provide an optimal degree of urethral support to thus effectively treat urinary incontinence. There is additionally a need in the art for an implant that is of simple construction, easy to surgically manipulate, and can be manufactured at relative low cost utilizing known implant materials, whether it be synthetic materials, natural tissues, or combinations thereof. There is yet a further need in the art for such an implant that can be secured into position such that the implant defines a suburethral sling portion operatively positioned at or distal to the mid-urethral region that remains securely anchored following implantation.
OBJECTS AND SUMMARY OF THE INVENTIONThe present invention addresses and alleviates the above-identified deficiencies in the art. In this regard, the present invention is directed to an implant for supporting an anatomical structure comprising a support member and a plurality of anchors extending through the support member proximate the ends of the support member. The present invention is further directed to a system for implanting an implant for supporting an anatomical structure comprising an implant having a support member and at least one anchor and a delivery tool comprising a handle, a shaft and a cavity for engaging the implant. The present invention is also directed to a method for supporting an anatomical structure comprising the steps of engaging an implant with a delivery tool; and advancing the tool to a target tissue and securing the implant in the target tissue.
These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The implant according to the present invention may, for example, be employed to provide suburethral support and thereby prevent or minimize the leakage of urine or incontinence. In this respect, the implant is operative to act as a suburethral sling, as is known in the art, but is advantageously operative to be more easily secured into position than prior art sling implants. The implant of the present invention is further capable of being deployed in a manner that is far less traumatic than prior art sling implants and methods of surgically implanting the same, and further utilizes a novel attachment approach that provides for optimal suburethral positioning of the implant.
As shown in
With respect to the support member 20, the support member 20 is a piece of material having a generally rectangular or oblong shape. The support member 20 may be fabricated of a synthetic material, such as surgical mesh and the like, natural tissues, such as tissues harvested from either an animal, cadaverous source or the patient himself, and/or combinations of synthetic and natural materials. In a preferred embodiment, the support member 20 is fabricated of a mesh or weave. The support member 20 may, for example, be 5-30 mm wide by 30-150 mm long, and preferably 8-15 mm wide by 50-90 mm long.
As seen in
Turning next to
The distal portion 60 of the anchor 30 employs a piercing tip 62 for penetrating tissue and a tissue-retention protrusion 64 proximal of the piercing tip 60 that anchors or secures the distal portion 30 within tissue. The distal portion 60 may have, for example, an arrowhead-like shape as shown in
The proximal portion 70 of anchor 30 comprises a shoulder 72 for providing a back-stop for the support member 20 and a guide member 74 for engagement with a delivery system, as discussed in greater detail below. The proximal portion 70 may, optionally, further employ recesses 76 and eyelet 78. The anchor suture 40 passes through the eyelet 78 and is, for example, secured back to itself to form a loop. The recesses 76 may be positioned on one or both side of the eyelet 78 and configured so as to accept the anchor suture 40 such that the presence of the anchor suture 40 does not add to or change an outer dimension of the guide member 74.
The anchor 30 may be formed from a variety of materials, including but not limited to metal alloys, such as titanium, stainless steel, or cobalt-chome alloys, polymeric materials, such as polyethylene (PE), polypropylene (PP), polysulfone, polyether ether ketone (PEEK), polyether imide (PEI), and biodegradable materials, such as polylactic acid (PLA) and polyglycolic acid (PGA) based materials. The anchor 30 may be formed of a single material or a combination thereof. For example, as illustrated in
Turning next to
In an alternative embodiment of the present invention, as shown in
In certain other embodiments of the present invention, the assembled implant 10 as described above may be subjected to additional fabrication steps. For instance, as shown in
Turning now to the delivery system of the present invention. Broadly speaking, the delivery system is configured to receive a portion of the anchor 30 of the assembled implant 10.
Referring now to
A portion of the slot 146 penetrates radially through the shaft 140 into the cavity 174 and extends axially along a length of the distal portion 142 of the shaft 140. Preferably, the slot 146 extends axially along the shaft 140 to a greater extent than the cavity 174. The slot 146 thereby receives and forms a channel through which the anchor suture 40 of anchor 30 is positioned along an axis of the shaft 140.
A method for deploying or implanting the implant 10 according to certain embodiments of the present invention will now be described. First, a single incision or entry point is made in the patient followed by blunt dissection as necessary or desired. For example, the entry point may be made in the anterior wall of the vagina. One side of the implant 10 that is engaged with the delivery system 120, as previously described, is then inserted through the entry point and the anchor 30 that is engaged with the delivery system 120 is forced into or through a portion of the target tissue. The delivery system 120 is retracted away from the anchor 30 that has penetrated the target tissue thereby breaking the engagement between the delivery system 120 and the anchor 30. During this process and particularly while the delivery system 120 is being retracted, the user secures the corresponding anchor suture 40 such that the delivery system 120 is retracted while an end of the anchor suture 40 is maintained extending out from the entry point. A second side of the implant 10 that is engaged with the delivery system 120 is then implanted as described with regard to the first side. Substantially concurrent with the implantation of the second side of the implant 10, the support member 20 of the implant 10 is positioned so as to support the desired organ, for example a portion of the urethra. The support member suture 50, shown in
Should it be determined that greater tension is desired or if it is otherwise desirable to reengage of the delivery system 120 with one of the anchors 30, the present invention provides a particularly advantageous means for achieving such. As shown in
Upon completion of the implantation of the implant 10, the anchor sutures 40 and support member sutures 50 can be left in place for possible use in a follow-up procedure or may be removed from the patient.
While the present invention has been described for use in slings for treating incontinence, it would be understood by one of skill in the art that the present invention, either in part in its entirety, can also be used for treating pelvic floor disorders, for supporting a broad range of organs within the body, and for fixing tissue or implants within the body.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Claims
1. A system for supporting an anatomical structure comprising:
- a supporting member having a first end and a second end;
- a first anchor extending through the support member proximate to the first end; and
- a second anchor extending through the support member proximate to the second end.
2. The system of claim 1 wherein the supporting member is mesh.
3. The system of claim 1 wherein the supporting member comprises at least one fold.
4. The system of claim 3 wherein the at least a portion of said at least one fold is attached to itself.
5. The system of claim 1 wherein at least one removable filament extends from the supporting member.
6. The system of claim 1 wherein a removable filament extends from an approximate mid-portion of the supporting member.
7. The system of claim 1 wherein the first and second anchors extend through an opening formed through the support member.
8. The system of claim 1 wherein at least one of said first and second anchors comprises at least one eyelet from which a filament extends.
9. The system of claim 1 wherein a portion of at least one of said first and second anchors is arrow shaped.
10. The system of claim 1 wherein at least one of said first and second anchors comprises a shoulder formed by a pin inserted through an eyelet.
11. The system of claim 1 wherein a portion of at least one of said first and second anchors comprises a polymer.
12. The system of claim 1 wherein a portion of at least one of said first and second anchors is biodegradable.
13. A system for implanting an implant for supporting an anatomical structure comprising:
- an implant having a support member and at least one anchor extending through the support member proximate an end of the support member, said anchor having a proximal protrusion; and
- a delivery tool comprising a handle and a shaft, said shaft having a cavity formed within a distal portion, the cavity having a cross-sectional shape complementary to a cross-sectional shape of the proximal protrusion of the anchor.
14. The system of claim 13 wherein the distal portion of the delivery tool comprises a slot that extends axially along at least a portion of the shaft.
15. The system of claim 14 wherein a removable filament extends from the proximal protrusion of the anchor through the slot of the delivery tool when the proximal protrusion of the anchor is inserted within the cavity of the delivery tool.
16. The system of claim 14 wherein a removable filament extends from an eyelet formed in the proximal protrusion of the anchor.
17. The system of claim 14 wherein a removable filament extends through a recess formed in the proximal protrusion of the anchor.
18. The system of claim 13 wherein the proximal protrusion of the anchor forms a friction fit with the cavity of the delivery tool.
19. A method for supporting an anatomical structure comprising:
- (a) engaging a first anchor of an implant with a tool;
- (b) introducing a removable filament extending from said first anchor into a guide slot of said tool;
- (c) advancing said tool engaged with said first anchor to a first target tissue;
- (d) securing said first anchor of said implant to said target tissue;
- (e) withdrawing said tool from said first target tissue;
- (f) repeating steps (a) through (e) with a second anchor of said implant at a second target tissue.
20. The method of claim 19 further comprising the steps of:
- reintroducing said removable filament through said guide slot of said tool;
- reengaging one of said first or second anchors of said implant with said tool; and
- advancing said tool engaged with said anchor further into said target tissue thereby increasing a tension between said first and second portion of said implant.
21. The method of claim 19 further comprising the steps of pulling said removable filament extending form one of said first or second anchors thereby releasing a portion of a tension between said first and second anchors of said implant.
22. The method of claim 19 further comprising the step of determining a position of said implant relative to said first and second target tissue by a removable filament attached to said implant.
23. The method of claim 19 further comprising the steps of pulling a removable filament extending from a support member of said implant thereby releasing a portion of a tension between said first and second portion of said implant.
Type: Application
Filed: Jan 5, 2010
Publication Date: Jul 29, 2010
Applicant:
Inventors: Stéphane Gobron (Thousand Oaks, CA), Anand Vermuri (Thousand Oaks, CA)
Application Number: 12/652,640
International Classification: A61F 2/00 (20060101);