ADJUSTABLE PLASTER RING COVER
A power distribution system has an electrical box configured to attach a power cable, a plaster ring releasably mounted to the box and one or more electrical devices installed. A pre-wired ground extends from a first end physically and electrically connected to a ground terminal on the electrical device. The plaster ring is movable between a closed position proximate the box and an open position distal the box. The pre-wired ground is configured as a lanyard so as to support the plaster ring as a wiring platform in the open position for connecting wires between the power cable and the electrical device or devices.
Latest ProtectConnect, Inc. Patents:
This application is a continuation of U.S. patent application Ser. No. 12/176,828, filed Jul. 21, 2008 and entitled ADJUSTABLE PLASTER RING COVER, which is a continuation of U.S. patent application Ser. No. 11/829,796, filed on Jul. 27, 2007, and entitled “PRE-WIRED POWER DISTRIBUTION SYSTEM,” which claims priority from U.S. Provisional Application No. 60/833,966, filed Jul. 29, 2006 and entitled “PRE-WIRED POWER DISTRIBUTION SYSTEM,” each of which is incorporated by reference herein in its entirety.
INCORPORATION BY REFERENCEWiring modules and corresponding functional modules are described in U.S. Pat. No. 6,884,111 entitled Safety Module Electrical Distribution System, issued Apr. 26, 2005; U.S. Pat. No. 6,341,981 entitled Safety Electrical Outlet And Switch System, issued Jan. 29, 2002; and U.S. Pat. No. 6,894,221 entitled Safety Outlet Module, issued May 17, 2005. Modular electrical devices, electrical boxes and adjustable mounts are described in U.S. patent application Ser. No. 10/924,555 entitled Universal Electrical Wiring Component, filed Aug. 24, 2004. A wiring support platform is described in U.S. patent application Ser. No. 11/108,005 entitled Hinged Wiring Assembly, filed Apr. 16, 2005. All of the above-referenced patents and patent applications are hereby incorporated herein by reference.
BACKGROUND OF THE INVENTIONA power distribution system may comprise an electrical box, a plaster ring and an electrical device, such as an outlet or switch. During a roughing phase of construction, electrical boxes with attached plaster rings are mounted to wall studs at predetermined locations. A journeyman electrician routes power cables through building framing to the appropriate box. Then power cables are fed through openings in the rear or sides of the boxes and folded back inside. During a trim phase, electrical devices are mounted to the plaster rings.
SUMMARY OF THE INVENTIONConventional electrical distribution systems consist of either prefabricated components customized for particular electrical distribution points within a building or individual components that must be planned for, ordered, allocated to building locations and then attached together and wired during installation at each electrical distribution point. Further, it is impractical to test each wired installation for conformance to construction standards.
A pre-wired power distribution system, in contrast, advantageously combines installation flexibility, convenience and verifiability. A combination electrical box, plaster ring, one or more electrical devices installed in the plaster ring and one or more pre-wired grounds between the electrical box and the electrical device or devices provides for a pre-tested ground path. In an embodiment, the electrical device is a wiring module configured to accept any of various functional modules. The pre-wired ground also functions as a lanyard between the electrical device and the electrical box, allowing the plaster ring to be pivoted to, and supported in, an open position to provide hands-free connection of power wires to the electrical device. This feature is particularly useful for wiring gang electrical boxes housing multiple electrical devices. In an embodiment, a ground bus bar mounted to the electrical box provides further flexibility by accommodating multiple grounds for power cables routed to the electrical box. In this manner, an electrical box, a plaster ring and wiring module or other electrical device or devices may be manufactured, assembled, distributed and/or installed as a pre-wired power distribution component, by itself or in combination with an adjustable mount.
In some embodiments, the electrical device 160 is a wiring module that is configured to connect to a source of electrical power via a plurality of cables (e.g., hot, neutral, and ground cables). The plurality of cables (not shown) are fed through the electrical box 120 and connected to a wiring portion of the wiring module, as disclosed herein. In some embodiments, once the wiring module is connected to power cables and fully installed within the electrical box 120, the wiring portion of the wiring module is substantially enclosed by the electrical box 120 and the adjustable plaster ring 140, and is inaccessible to users. The wiring module also includes a user-accessible portion that removably accepts a functional module (not shown) that provides a selected electrical power distribution function. For example, the functional module may be an outlet receptacle or a switch. The user-accessible portion of the wiring module includes shielded connectors, or sockets, that mate with the functional module. The shielded connectors help reduce the risk of electrical shock to users when a functional module is not installed in the wiring module. In
In some embodiments, the electrical device 160 (e.g., a wiring module) is mounted to the adjustable plaster ring 140. The adjustable plaster ring provides for an adjustable distance between the electrical device 160 and the electrical box 120. For example, the adjustable plaster ring may include adjusting screws that can be turned to increase or decrease the distance between the electrical device 160 and the electrical box 120. In this way, the depth of the electrical device 160 within a wall can be adjusted to result in the desired fit with the wallboard.
One lanyard end 182 is connected to a box ground junction 122 and another lanyard end 184 is connected to an electrical device terminal 162. The plaster ring 140 can be releasably attached to the electrical box 120. The plaster ring 140 is movable between an open position
In an embodiment, the ground lanyard 180 is a ground wire connected between a single point ground 222 (
The connections between the ground lanyard 180 and the electrical box 120 can be formed using any type of connection known in the art. For example, a connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 may comprise an electrical screw terminal or a push-in connector. In some embodiments, the electrical screw terminal is treated with a threadlocker material once the connection is made to improve the mechanical reliability of the connection. The ground lanyard 180 can also be soldered or clamped to the electrical box 120 or the electrical device 160. Advantageously, in cases where the electrical device 160 is a wiring module, the connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 can be made substantially permanent because the wiring module need not be removed to replace an outlet receptacle, switch, or other similar functional module. In contrast, it would generally be undesirable to form a permanent ground connection between a conventional outlet receptacle or switch and an electrical box 120 because doing so may prevent the replacement of the conventional outlet receptacle or switch. The fact that the connections between the ground lanyard 180 and the electrical device 160 or the electrical box 120 can be made substantially permanent can also allow the connections to be made stronger (allowing the ground lanyard to support the weight of the electrical device 160 and adjustable plaster ring 140, as described herein) and more reliable, both from a mechanical and an electrical standpoint.
The pre-wired ground lanyard 180 can be advantageously tested at the manufacturer. In an embodiment, the ground lanyard 180 is subjected to a mechanical pull test and an electrical continuity test. In a particular embodiment, the pull-test has at least a 20 lb. force. The mechanical pull test and the electrical continuity test would otherwise be too cumbersome to perform on ground connections installed by an electrician at a worksite. However, since the ground connection between the electrical device 160 and the electrical box 120 is installed at the manufacturer, these tests can be performed more efficiently than can be done at a worksite. Moreover, these tests can be performed using equipment that is too expensive or bulky to use at a worksite where the ground connection might otherwise be installed. In some embodiments, however, the ground lanyard 180 is not pre-wired but is instead configured to be connected upon installation of the electrical device 160 within the electrical box 120.
Since the ground connection between the electrical device 160 and the electrical box 120 acts as a pull-tested lanyard 180, the plaster ring 140 can be supported in an open position (
The internal push-wire connectors 407 are particularly advantageous in situations where space within the electrical box 160 is limited or in any other setting where it is desirable to conserve space within the electrical box 160. This may be true, for example, in relatively shallow walls (e.g., walls measuring less than about 3° from the outside edge of a wall stud to the back wall). The internal push-wire connectors 407 conserve space within the electrical box 160 (or allow for the usage of a shallower depth electrical box 160) because they do not include a length of wire between the wiring module and a connector as is the case for the embodiment illustrated in
Advantageously, the bus bar 550 is configured to allow the attachment of multiple ground wires 580 so as to provide ground connections for not only wiring modules, but also power cables routed in and out of the electrical box 520. The bus bar 550 has a plurality of sections 552 and individual terminals 551 within each section. In an embodiment, there is one section 552 corresponding to each of the wiring modules 560 and multiple terminals 551 in each section. Each of the sections can be in electrical contact or electrically isolated. In this manner, ground wiring capacity increases with the size and electrical device mounting capacity of the electrical box 520. Each terminal 551 is configured to accept a ground wire 580 from either a wiring module 560 or an attached power cable. In a 3-gang embodiment, the bus bar 550 has three sections corresponding to three wiring modules, and each section has four terminals configured to accept up to four ground wires, though other numbers of sections and terminals are also possible. The bus bar 550 advantageously eliminates the need for pigtail ground connections or the equivalent use of electrical device terminals. The bus bar 550 can be configured for use with external push wire connector wiring modules 260 (
Although described and illustrated herein with respect to 1- and 3-gang embodiments, a pre-wired power distribution system can be configured for any number of electrical devices, including 2-gang, 4-gang, and other many-gang embodiments. A pre-wired power distribution system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.
A universal electrical wiring component combining modular electrical devices and an adjustable, modular mount is described with respect to
A universal electrical wiring component has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.
Claims
1. An apparatus for use in an electrical distribution system, the apparatus comprising:
- an electrical box configured to accept at least one electrical power cable;
- a plaster ring configured to be mounted to the electrical box, wherein the plaster ring has an open front face that provides access to an interior of the electrical box;
- an electrical wiring module within the interior of the electrical box, the electrical wiring module including one or more conductors that couple the electrical wiring module to one or more of the power cables, the electrical wiring module further including one or more connectors to electrically couple to a functional module;
- a first cover configured to protect one of more of the connectors on the wiring module; and
- a second cover configured to substantially cover the open front face of the plaster ring.
2. The apparatus of claim 1, wherein at least one of the wiring module conductors is electrically connected to the electrical box.
3. The apparatus of claim 2, wherein the wiring module conductors are configured with wire connectors.
4. The apparatus of claim 1, wherein the second cover is attached to the plaster ring with one or more screws.
5. The apparatus of claim 4, wherein the second cover includes a plate.
6. The apparatus of claim 1, where one of the first and second covers is flexible.
7. The apparatus of claim 1, wherein the first cover is flexible and the second cover is hard.
8. The apparatus of claim 1, further comprising mounting brackets configured to mount the apparatus to ensure the center of the functional module when coupled with the wiring module will be between 10 and 24 inches from the floor.
9. The apparatus of claim 1, further comprising mounting brackets configured to mount the apparatus to a construction stud allowing the box to be moved to a variety of positions vertically on the stud or to move the apparatus horizontally between two studs on a wall, ceiling or floor.
10. The apparatus of claim 1, wherein the electrical box is configured to be mounted to a hard surface or within a hard surface.
11. The apparatus of claim 1, wherein the first cover must be removed to electrically couple a functional module with the wiring module.
12. The apparatus of claim 1, wherein the second cover must be removed to electrically connect the functional module.
13. The apparatus of claim 1, wherein the second cover protects the wiring module, the first cover and one or more of the conductors.
14. The apparatus of claim 1, further comprising a functional module.
15. An electrical apparatus manufacturing method comprising:
- placing one or more electrical wiring modules within an interior of an electrical box, each electrical wiring module including one or more fixed conductors that couple the electrical wiring module to one or more power cables, the electrical wiring module further including one or more connectors disposed thereon that are configured to electrically couple to a functional module;
- mounting a plaster ring to the electrical box wherein the plaster ring includes an open front face that provides access to the interior of the electrical box; and
- mounting a hard protective cover to the plaster ring.
16. The electrical apparatus manufacturing method of claim 15, wherein the plaster ring is removeably mounted with two or more screws.
17. The electrical wiring method of claim 9, wherein the hard protective cover is attached with two or more screws.
18. The electrical apparatus manufacturing method of claim 15, further comprising: respectively mounting a functional module to each wiring module.
19. The electrical apparatus manufacturing method of claim 9, wherein at least one of the wiring modules fixed conductors is connected to the electrical box with a screw or wire connector.
20. The electrical apparatus manufacturing method of claim 9, wherein at lease one conductor from each of the wiring modules is connected to the electrical box via a wire connector or screw.
Type: Application
Filed: May 12, 2010
Publication Date: Sep 2, 2010
Applicant: ProtectConnect, Inc. (Tigard, OR)
Inventors: Steve Purves (Costa Mesa, CA), Dennis L. Grudt (Long Beach, CA), John Karns (Victorville, CA)
Application Number: 12/778,886
International Classification: H02G 3/14 (20060101); H05K 13/04 (20060101);