Automatic Release Device

- ROTTEFELLA AS

The task of the present invention is to provide an improved automatic release device for a binding of a touring ski; in particular, providing a lighter touring ski binding which is very sturdy and can be economically manufactured and which ensures safe release in the event of a fall. This task is solved by an automatic release device for a touring ski binding which comprises: a mounting plate, a pivot pin connected to the mounting plate and extending substantially vertical relative said mounting plate, a frame mounted to the pivot pin so as to be rotatable about a vertical axis, a clamping lever having at least one fixing jaw arranged on the frame to be rotatable about a horizontal axis, wherein the frame comprises: a base having a vertical opening for receiving the pivot pin, a horizontal opening for receiving a tensioning device which interacts with at least one first receiving area on the pivot pin such that the frame is fixed in an initial position and is rotatable about the vertical axis into a release position upon the overcoming of a defined force, a crosspiece having at least one second receiving area for the releasable fixing of the clamping lever in a fixed position, wherein the crosspiece is integrally connected to the base by means of at least two side components.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The present invention relates to an automatic release device for a binding of a touring ski.

Touring ski bindings are known for example from EP 0 754 079 B1 and EP 1 559 455. Modern touring ski bindings support two modes, namely a climbing mode and a downhill mode. In the downhill mode, the functioning of a touring ski binding differs only slightly from a normal alpine ski binding. The heel of the ski boot as well as its front part are fixedly connected to the touring ski, indirectly or directly, in order to enable an optimum transfer of force to the ski. In the climbing mode, it is necessary to release the connection to the heel in order to allow a normal gait for climbing, wherein the ski boot is tilted about a rotational axis which is preferably close to, directly below or behind the tip of the ski boot.

In order to support these two modes, numerous touring ski bindings comprise a mounting plate on which a front jaw and a heel piece are mounted, wherein the ski boot remains fixedly connected to this mounting plate both during climbing mode as well as during downhill mode. The mounting plate is articulated at its front end to the ski. A locking mechanism is provided at the rear end of the mounting plate which enables this end of the mounting plate to be fixedly connected to the ski as well. This connection is releasable so that the binding allows a comfortable stride while on the ski. At the same time, the plate anchorage at the rear end of the ski preferably constitutes a climbing aid to particularly facilitate climbing in steep terrain.

Numerous demands are placed on modern touring ski bindings. They need to not only be easy to operate, in particular ensure a quick and simple switch between climbing mode and downhill mode, but also be very sturdy as well as lightweight. On the one hand, it is readily evident that when climbing, each additional gram to the binding costs additional strength.

On the other, when going downhill, no one wants to dispense with the familiar ease afforded by alpine skis. Touring ski bindings are preferably optimized to the ski in terms of their sturdiness and their transfer of force such that they can also be used in downhill alpine skiing. Touring ski bindings should moreover be safe enough to ensure a reliable releasing of the binding so as to avoid any injury to the skier.

Despite these numerous requirements, industrial production requires the binding to comprise a very simple automatic release device so as to enable quick and economical manufacture. Only when this criterion is met can a manufacturer of touring ski bindings remain competitive.

Based on this prior art, the present invention addresses the task of providing an improved automatic release device for a touring ski binding; in particular, a sturdier, lighter and safer automatic release device which can be manufactured economically.

This task is solved by an automatic release device in accordance with the present claim 1.

In particular, the task is solved by an automatic release device for a touring ski binding which comprises:

    • a mounting plate,
    • a pivot pin connected to the mounting plate and extending substantially vertical relative said mounting plate,
    • a frame mounted to the pivot pin so as to be rotatable about a vertical axis and configured as an integrally-formed or one-piece component,
    • a clamping lever having at least one fixing jaw arranged on the frame to be rotatable about a horizontal axis, wherein the frame comprises:
    • a base having a vertical opening for receiving the pivot pin,
    • a horizontal opening for receiving a tensioning device which interacts with at least one first receiving area on the pivot pin such that the frame is fixed in an initial position and is rotatable about the vertical axis into a release position upon overcoming a defined force,
    • a crosspiece having at least one second receiving area for the releasable fixing of the clamping lever in a fixed position, wherein the crosspiece is integrally connected to the base by means of at least two side components.

A central idea of the present invention thus consists of designing the frame or the frame element to be of integrally-formed and/or one-piece configuration. This not only ensures the binding will release horizontally, with the heel of the ski boot popping upward out of the binding, but also vertically, whereby a twist will release the boot from the ski. This enables the realizing of a substantially more sturdy configuration to the touring ski binding.

Due to the simple, compact and rugged design to the automatic release device, it is substantially lighter and can be manufactured economically.

The frame and the further components of the automatic release device can be made from metal and/or plastic. When structuring the integral frame, for example, it would be conceivable to encase a metal core in plastic. Manufacturing from plastic is substantially more economical than other materials. The individually-formed components can be manufactured in an injection molding process, for example. Moreover, plastic components do not oxidize. This ensures the longevity of the touring ski binding despite being continually used in snow.

The second receiving area can comprise pawls for the releasable fixing of the clamping lever. The pawls enable the clamping lever to be securely locked in the fixed position. The skier is thus protected against an inadvertent vertical release. The pawls can be arranged so as to ensure a very stable anchoring of the ski boot. The release process can in particular be designed such that a relatively high exertion of force is required in order to initiate the process, which then diminishes after overstepping the pawl(s). Thus, having to apply the necessary force needed for release ensures that the touring ski binding will be fully and completely released.

The horizontal opening can comprise a first horizontal open section and a second horizontal open section which run into the vertical opening and are configured symmetrical thereto. The horizontal opening for receiving the tensioning device and the vertical opening for receiving the pivot pin can thus be arranged within one plane substantially perpendicular to one another. The individual passages thus overlap and it is possible for the tensioning device to act directly on the pivot pin, its receiving area respectively. The vertical opening is preferably arranged in the center of the base, whereby a horizontal open section, open preferably outwardly, runs along both sides. The horizontal opening can thus be a continuous opening, preferably extending horizontally through the base.

It is alternatively conceivable to provide a horizontal opening which only meets with the vertical opening on one side. The providing of two horizontal open sections allows the tensioning device to be arranged symmetrically about the pivot pin. This affords a substantially better and higher-performance release mechanism. Providing the tensioning device in the horizontal opening so as to be accessible from the outside allows for simple maintenance and setting of the tensioning device to the respectively diverse release force.

The clamping lever can incorporate the crosspiece to form a swivel joint at least at some sections. Thus the rotational mounting of the clamping lever to the crosspiece can be of very simple configuration.

For the rotation of the clamping lever about the horizontal axis, sections of the crosspiece can comprise a convex outer shell, respectively be designed as part of a cylinder. The clamping lever can engage with a concave section in the convex section of the outer shell and be guided by same. The crosspiece and the clamping lever thus form a swivel joint with which the clamping lever rotates about the crosspiece.

The frame can comprise a further horizontal opening extending through the crosspiece. This saves on material when manufacturing the automatic release device, which is advantageous in terms of the weight of the touring ski binding.

The clamping lever can comprise a tensioning piston pretensioned against the crosspiece and engaging in the second receiving area at least in the fixed position. The tensioning piston and the receiving area of the crosspiece thus form the vertical automatic release device. In order to release, a spring force acting on the tensioning piston must be at least partly overcome.

The first receiving area can comprise a base section and at least one ramp section arranged, in particular parallel to the longitudinal axis of the pivot pin, such that the piston slides up the ramp section out of the initial position upon a rotation being initiated. Thus, the ramp section(s) can assume the same function as the above-described pawls. However, the ramp sections secure the binding against inadvertent horizontal release by the frame moving torsionally about the pivot pin.

The mounting plate can comprise an articulation for the rotational fixing to a ski, particularly a touring ski. Even when continual reference is made here throughout to a mounting plate, it is obvious that this mounting plate does not necessarily need to be of flat design. It is possible to use a frame atop which the pin and the automatic release device are mounted as the mounting plate. The mounting plate can also be a bar having a rounded, rectangular or square cross-section suitable for accommodating the automatic release device. Other geometrical designs to the mounting plate are conceivable and should likewise be acknowledged as a mounting plate.

The pivot pin can comprise two second receiving areas into which pivot pin pistons 42, 42′ arranged in the horizontal opening engage alternatingly to the pivot pin 50. This thus allows a higher tensioning force to be exerted on the second receiving area. The tensioning force moreover centers the pivot pin within the vertical opening, which prevents jamming during the release process.

Further advantageous embodiments are set forth in the dependent claims.

The following will reference the accompanying drawings in describing various embodiments of the invention in great detail.

Shown are:

FIG. 1 a binding for a touring ski comprising the automatic heel release device according to the invention;

FIG. 2 a cross-section along the longitudinal axis of the touring ski binding from FIG. 1;

FIG. 3 an essential component of the automatic heel release device according to the invention, namely the frame, frame element respectively;

FIG. 4 a cross-section through the automatic heel release device according to the invention along a plane perpendicular to the longitudinal direction of the ski (line of sight along the direction of travel);

FIG. 5 a sectional drawing of a further embodiment of the automatic heel release device according to the invention; and

FIG. 6 an element of the automatic heel release device from FIG. 5, namely the pivot pin.

In the following description, the same reference numerals will be used for one and the same operative components.

FIG. 1 illustrates the general construction of a touring ski binding 1 as already described above in the introduction. Same comprises a mounting plate 10 which is connectable at its front section (facing the tip of the ski) to a ski by means of a step pivot 2. The mounting plate 10 can be locked in position at its rear section by means of a plate anchorage 80. Said plate anchorage is releasable and enables switching between a climbing mode and a downhill mode. In the climbing mode, after the plate anchorage 80 opens, it can be tilted forward so as to serve in aiding climbing.

Front jaws 60 are mounted to the front area of the mounting plate 10 and an automatic heel release device 20 in accordance with the invention is mounted in the rear area. The automatic heel release device 20 comprises a clamping lever 30 which is mounted to a frame 90 so as to be rotatable. The clamping lever 30 can thus essentially be brought in two positions. In an entry position, the rear part of clamping lever 30 is titled rearward, making it possible to step into the touring ski binding 1. In a second position, the fixed position, the rear part of clamping lever 30 is in a substantially horizontal position and fixes the ski boot between the front jaws 60 and the automatic heel release device 20, in particular between the front jaws 60 and the fixing jaws 31 situated in the front area of the clamping lever 30.

As shown in FIG. 2, the swivel joint between the frame 90 and the clamping lever 30 is formed by a crosspiece 92 which has a substantially semicircular-like shape in cross-section. A lower section is of convex design; an upper section of the crosspiece 92 is flattened and forms a receiving area together with two pawls 95, 95′ (cf. FIG. 3). In the fixed position, a tensioning piston 32, which is pretensioned toward the crosspiece 92 by a (not shown) spring element, engages into this receiving area. Sufficient force must be applied when rotating the clamping lever 30 from the fixed position into the entry position to at least partly overcome the spring action of the spring element in the clamping lever 30. The tensioning piston 32 moves upward in the clamping lever and thus oversteps the rear pawl 95 at the crosspiece 92. The convex, respectively partly cylindrical, section of the plate 92 guides the clamping lever 30 in this rotational movement.

In the fixed position, the fixing jaws 31 mounted to one end of the clamping lever 30 firmly hold the (not shown) ski boot in the binding.

It is to be noted that the swivel joint formed by the tensioning piston 32 and the crosspiece 92 not only serves in the controlled entry into and exiting out of the touring ski binding 1. The swivel joint with the anchorage simultaneously constitutes a vertical automatic release device with which upon the occurrence of a predetermined force (in the vertical direction), the clamping lever 30 is disengaged from its anchoring by the tensioning piston 32 so that the ski boot is released in the entry position.

The automatic heel release device 20 in accordance with the invention likewise provides an automatic release mechanism in the horizontal plane. Meaning that the heel of the ski boot or the entire boot can perform a rotational movement, whereby it is released from the touring ski binding 1. To this end, the frame 90 is arranged on the mounting plate 10, in particular at one of its affixed pivot pins 50, so as to be rotatable about a vertical axis. The automatic heel release device 20 can likewise assume two positions within the horizontal plane, an initial position (fixing jaws 31, mounting plate 10 and front jaws 60 essentially lying on one axis) and a release position (the automatic heel release device 20 is rotated relative the mounting plate 10).

This automatic release mechanism is provided by the frame 90 and the pivot pin 50. The pivot pin 50 is mounted in a vertical axial bore 99 (cf. FIG. 3) of the frame 90. The pivot pin 50 can be an integrally-formed component of the mounting plate or be bolted or cemented to same.

The pivot pin 50 has, as FIGS. 5 and 6 show, an essentially oblong shape in the top plan view (same view plane as the mounting plate plane) which extends along the longitudinal axis of the mounting plate 10. This thus yields receiving area 54, 54′ into which the pistons 42, 42′ engage. These pistons 42, 42′ respectively consist of cylindrical shells 42a, 42b, 42a′, 42b′. For example, the first piston 42 is formed by the shells 42a, 42b inside which a spring element 49 is situated. The second piston 42′ comprises the shells 42a′ and 42b′ which enclose the second spring element 49′. The first shells 42a and 42a′ are bolted to the frame 90 such that the spring elements 49, 49′ are tensioned and their spring force presses against the second shells 42b and 42b′ which are snapped into the receiving areas 54, 54′. The spring force which acts on the second shells 42b, 42b′ can be set by rotating the first shells 42a, 42a′ in a thread provided for the purpose. The distance between the first shell 42a and the second shell 42b of the first piston 42 and that of the first shell 42a′ and the second shell 42b′ of the second piston 42 is thus shortened or lengthened, whereby the first spring element 49, the second spring element 49′ respectively, is tensioned or slackened. For the frame 90 to rotate about a vertical axis, as is apparent from FIG. 5, the spring force of the spring elements 49, 49′ must be at least partly overcome. Only then can the automatic heel release device 20 rotate into the release position. The pistons 42, 42′ are mounted in a piston bore 98 as shown in FIG. 3. The frame 90 according to the invention thus provides, additionally to the vertical axial bore 96 and the crosspiece 92, a receiving area for the spring elements 49, 49′, thus the tensioning device of the horizontal mechanism.

As shown in FIG. 3, the frame 90 consists of the crosspiece 92, the base 96 and the side components 94, 94′. The crosspiece 92 has a cavity, i.e. horizontal axial bore 97, which extends there-through parallel to the horizontal plane of the mounting plate 10. Said elements are integrally connected together, and in the present case, for example, made of plastic in an injection molding process. While the spring elements 49, 49′ can be tensioned and slackened separately from one another in the automatic heel release device 20 shown in FIGS. 3 and 4, FIG. 5 shows a cross-section through an automatic heel release device 20 in which the first shells 42a and 42a′ are connected together by means of a tensioning screw 45. The distance between the first shells 42a and 42a′ can be set via the tensioning screw 45 and a nut 46. Tightening the tensioning screw 45 tensions the spring elements 49, 49′ (not shown). Since the tensioning screw 45 essentially projects through the pivot pin 50 without friction, the tension force is uniformly dispersed to the receiving areas 54, 54′.

FIG. 6 shows the pivot pin 50 from FIG. 5 in a side view; discernable here are the flattened receiving areas 54, 54′ which are closed at their edges by ramp sections 57, 57′. The bore 55 enables the passing or introducing of the tensioning screw 45, whereby the bore 55 is configured in such a manner so as to enable a rotation of the frame 90.

The preceding embodiments each described automatic heel release devices 20 comprising two pistons 42, 42′ to bias the heel piece in an initial position. It is conceivable to only provide one piston 42.

The piston bore 98 extends perpendicular to the longitudinal direction of the mounting plate 10 in the described embodiments. It is likewise conceivable to provide a piston bore 98 which extends substantially parallel to the longitudinal direction of the mounting plate 10. The pivot pin 50 would then have to be adapted accordingly. In a further embodiment, the piston bore 98 can run into a vertical axial bore 99 at a non-orthogonal angle.

It is also conceivable for the spring elements 49, 49′ to be replaced by commensurate elastomers.

LIST OF REFERENCE NUMERALS

  • 1 touring ski binding
  • 2 step pivot
  • 10 mounting plate
  • 20 automatic heel release device
  • 22 cover
  • 30 clamping lever
  • 31 fixing jaw
  • 32 tensioning piston
  • 42, 42′, piston
  • 42a, 42b,
  • 42a′, 42b′ shell
  • 45 tensioning screw
  • 46 nut
  • 49, 49′ spring element
  • 50 pivot pin
  • 54, 54′ receiving area
  • 55 bore
  • 57, 57′ ramp section
  • 60 front jaw
  • 80 plate anchorage
  • 90 frame
  • 92 crosspiece
  • 94, 94′ side component
  • 95, 95′ pawl
  • 96 base
  • 97 horizontal axial bore
  • 98 piston bore
  • 99 vertical axial bore

Claims

1-12. (canceled)

9. An automatic release device for a binding of a touring ski, comprising:

a mounting plate (10),
a pivot pin (50) connected to the mounting plate (10) and extending substantially vertical relative said mounting plate (10),
a frame (90) mounted to the pivot pin (50) so as to be rotatable about a vertical axis,
a clamping lever (30) having at least one fixing jaw (31) arranged on the frame to be rotatable about a horizontal axis,
wherein the frame comprises:
a base (96) having a vertical opening (99) for receiving the pivot pin (50),
a horizontal opening (98) for receiving a tensioning device which interacts with at least one first receiving area (54, 54′) on the pivot pin (50) such that the frame (90) is fixed in an initial position and is rotatable about the vertical axis into a release position upon overcoming a defined force,
a crosspiece (92) having at least one second receiving area for the releasable fixing of the clamping lever (32) in a fixed position, wherein the crosspiece (92) is integrally connected to the base (96) by means of at least two side components (94, 94′) and wherein the frame (90) is configured as an integral, preferably one-piece component.

10. The automatic release device according to claim 1,

characterized in that
the frame (90) is made of metal or of plastic.

11. The automatic release device according to claim 1,

characterized in that
the second receiving area comprises pawls (95, 95′) for releasably fixing the clamping lever (45).

12. The automatic release device according to claim 1,

characterized in that
the horizontal opening (98) comprises a first horizontal open section and a second horizontal open section which run into the vertical opening (97) and are configured symmetrical thereto.

13. The automatic release device according to claim 1,

characterized in that
the horizontal opening (98) is a continuous opening through the base (96).

14. The automatic release device according to claim 1,

characterized in that
the clamping lever (30) incorporates the crosspiece (92) to form a swivel joint at least at some sections.

15. The automatic release device according to claim 1,

characterized in that
the crosspiece (92) comprises a convex outer shell at least in sections in order to provide for the rotation of the clamping lever (30) about the horizontal axis.

16. The automatic release device according to claim 1,

characterized in that
the frame (90) comprises a further horizontal opening (97) extending through the crosspiece (92).

17. The automatic release device according to claim 1,

characterized in that
the clamping lever (30) comprises a tensioning piston (32) tensioned against the crosspiece (92) and engaging in the second receiving area at least in the fixed position.

18. The automatic release device according to claim 1,

characterized in that
the first receiving area (54, 54′) comprises a base section and at least one ramp section (57) arranged, in particular parallel to the longitudinal axis of the pivot pin (50), such that the piston (42, 42′) slides up the ramp section (57) out of the initial position upon a rotation being initiated.

19. The automatic release device according to claim 1,

characterized in that
the mounting plate (10) comprises an articulation for the rotational fixing to a ski, particularly a touring ski.

20. The automatic release device according to claim 1,

characterized in that
the pivot pin (50) comprises two second receiving areas (54, 54′) into which pivot pin pistons (42, 42′) arranged in the horizontal opening engage alternatingly to the pivot pin (50).
Patent History
Publication number: 20100276908
Type: Application
Filed: Oct 30, 2009
Publication Date: Nov 4, 2010
Applicant: ROTTEFELLA AS ( Klokkarstua)
Inventors: Andreas Zbären (Herbligen), Robert Rothermann (Heimberg), Daniel Waldburger (Gwatt)
Application Number: 12/609,103
Classifications
Current U.S. Class: Pivotable About Vertical Axis Or Axes (280/629)
International Classification: A63C 9/082 (20060101);