PASSIVE HEATING, COOLING, AND VENTILATION SYSTEM
A ventilation system includes a turbine positioned on a building structure, wherein the turbine is configured to create a low pressure area in the building structure. A first air flow path is positioned between the turbine and an interior of the building structure, and a second air flow path is positioned between the turbine and a thermal source. The ventilation system further includes a means for independently controlling a rate of air flow within the first and second air flow paths.
This application is related by subject matter to the following three U.S. non-provisional patent applications, entitled: INTEGRATED OFF-GRID THERMAL APPLIANCE; MULTI-FUNCTION VENTILATION AND ELECTRICAL SYSTEM; and HOME-SCALE WATER & SANITATION SYSTEM which were all filed on Jul. 23, 2009, and which are incorporated by reference in their entirety. This application is further related by subject matter to PCT application entitled INTEGRATED INFRASTRUCTURE FOR SUSTAINABLE LIVING, filed on Jul. 23, 2009 and also incorporated by reference in its entirety.
BACKGROUNDThe lives of refugees, disaster victims, homeless and the poor throughout the world have been improved by low-cost mass-produced housing. Such housing may be rapidly deployed on a large scale, or on an individual basis such as at a campground, festival or as a personal living quarters. The developed world often takes for granted utilities and other infrastructures put in place to sustain its large population densities. When access to clean water, sanitation, cooking heat, electrical lighting, etc. is compromised by natural or man-made events, it can be difficult to restore these services without a massive scale effort. This can result in a significant delay for restoring these basic services for the individuals involved, with large health and safety impacts even if they have basic sheltering provided by low-cost mass-produced housing and community structures.
In some developing world or rural regions, where access to utilities may be limited or unavailable, such structures may in fact become a permanent residence or other inhabitable structure, where a chronic lack of utilities may lead to exposure, disease, and mortality as well as conflict over scarce resources. Similarly, many people living in developed countries want to reduce their environmental footprint.
Passive utility provisioning and waste disposal systems integrated into low-cost mass-produced housing would provide the ability to deliver a rapid response to these types of crises and situations, reduce the need for costly ongoing support of aid recipients, and reduce the environmental cost of temporary sheltering. The goal of low-cost mass-produced housing is to extract maximum human survival and comfort per dollar from the environment while producing as little waste or pollution as possible. The structures should require a low initial cost, low operating cost, low need for external resources, and be easily scalable to the user needs.
By eliminating the complexity of modern urban infrastructures, we can strive to start with an empty expanse of unspoiled terrain, rapidly inhabit it for short or long term without the need for purchasing scarce resources, move away, and leave no trace on the land, air, or water. A complete solution that achieves all of these goals while enabling human survival and conveniences has so far proven elusive.
The embodiments described herein address these and other concerns.
SUMMARYA ventilation system is herein disclosed, comprising a turbine positioned on a building structure, wherein the turbine is configured to create a low pressure area in the building structure. A first air flow path is positioned between the turbine and an interior of the building structure, and a second air flow path is positioned between the turbine and a thermal source. The ventilation system further comprises means for independently controlling a rate of air flow within the first and second air flow paths.
A method is herein disclosed, comprising converting wind power into a rotation of a wind turbine, wherein the wind turbine is positioned on a building structure. A low pressure region is created within the building structure and below the wind turbine. Airflow is directed through a first air flow path positioned between a vent of the building structure and the low pressure region, and airflow is directed through a second air flow path positioned between a thermal source and the low pressure region. The method further comprises independently controlling the airflow within the first and second air flow paths.
Described herein is an integrated set of passive natural resource subsystems that work together to provide a complete set of utilities for human survival and comfort using what nature provides. The resulting family-scale passive utility grid harnesses solar energy, wind, geo-cooling, gravity, convection, and rain or river water along with a minimized quantity of fossil fuel for additional thermal energy, and delivers ventilation, heating, cooling, cooking, fire ignition, exhaust ventilation, electric lighting and accessories, a complete subsystem for collecting, purifying, storing, dispensing, and reusing water, and human sanitation, in tightly integrated fashion. Novel aspects of each subsystem will be described, followed by its integration into preceding subsystems and novel features of such integration.
Passive Room and Cooking Ventilator
Turbine 10 is held above the roof surface by chimney 20 and secured to chimney 20 by inserting screws 25 through cowl 30 on turbine 10 and into chimney 20, or using any other convenient attachment means. Chimney 20 is positioned on roof 5 via a hole in roof 5, and prevents water intrusion via flashing 35 which also distributes its weight about the roof. Chimney 20 is then secured to plenum 40 via additional screws, snap fit, or other fasteners inside the structure (not shown). Plenum 40 contains an air adjustment means such as a baffle 45 with a flow adjuster 50 to control it. A ceiling vent 55 cosmetically finishes the interior of plenum 40, and ceiling vent 55 may contain an air/insect filter, which may also be located inside turbine 10 as will be later shown. Turbine 10 also may contain a mechanical brake 60, which contains a control linkage 65 to enable limitation of rotation during high winds. Since turbine 10 is at the highest point on the roof, it contains a lightning rod 70 located above an upper bearing 75 and a cable (not shown) from stationary lightning rod 70 to earth ground.
In operation, the wind spins turbine 10, which creates reduced air pressure inside shelter 2 and pulls air 115 out of the highest point in the interior of the structure through plenum 40 via ceiling vent 55. The ventilating flow can be quite significant even in light winds, and once spinning, turbine 10 acts as a flywheel, continuing to spin while buffering the effects of wind gusts, downdrafts, and calms. In addition, whenever air inside shelter 2 is warmer than the air outside turbine 10, air 115 will also rise and exit via turbine 10, increasing net air flow and additionally spinning turbine 10, although temperature differences have less air flow impact than the wind does. In cold weather, baffle 45 may be closed to retain warm air inside the shelter 2, while in warm weather baffle 45 may be opened to exhaust warm air. The warm air is replaced by cooler air from a window 120, or from an inlet vent 125, located near the cooler ground.
Additional turbine motion and ventilation may be enhanced using the solar chimney effect, wherein turbine 10 and chimney 20 are made black and heat absorbent. Solar radiation 130 from the sun 135 impinges on turbine 10 and chimney 20 directly, as well as when reflected from roof 5. This causes air inside chimney 20 to warm up, spinning turbine 10 and exhausting air 115 from shelter 2.
Where shelter 2 contains a basement 140 or other raised floor, increased cooling may be achieved using a floor inlet 145 combined with a basement inlet 150 on the shaded side of the structure, which cools incoming air as it flows over the permanently shaded ground under the shelter 2. Where terrain permits, even greater air cooling may be achieved using a qanat inlet 155 that pulls air in from a shaded place near shelter 2, cools air further underground, and releases it into basement 140 at underground inlet 160. In many climates, a swamp cooling effect may also be achieved by adding moisture 165 at any air inlet 120, 125, 145, 150, 155, or 160. Ideally, such moisture 165 exists naturally underground between qanat inlet 155 and underground inlet 160.
A key element of passive room and cooking ventilator 1 is a secondary flue 80 that leads from a vent hood 85 above a cooking stove 90 and pot 95 or an open fire 100 to an outlet port 105 inside the spinning turbine 10. As will be later described, outlet port 105 is configured to avoid fouling upper bearing 75 or other bearings within turbine 10 while opening within the low-pressure area generated by turbine 10, which draws air or fumes up from vent hood 85 through flue 80 and out of the structure via turbine 10. A flue controller 110 such as a baffle closes flue 80 when no heat is being produced. Hot fumes from flue 80 will additionally rotate turbine 10, assisting air removal from shelter 2.
In addition to general room ventilation, the combination of turbine 10, chimney 20, plenum 40, hood 85, flue 80, and outlet port 105 enable reduced fuel use, and comprise a natural solution to the problem of lung cancer in developing nations as a result of cooking over open fires inside structures. Typically, even with a flue and chimney, it can be challenging to get heat-driven exhaust of flame products moving soon enough and completely enough to achieve efficient fuel ignition or overcome smoke diffusion and subsequent inhalation. In
Turbine Solar Chimney Trombe and Solar Heating Integration
In
Trombe wall 195 may contain various elements of trombe walls and solar chimneys, including a transparent window 200, a black painted heat absorbing surface 205 that absorbs heat from the sun 135 to serve as a heat bank and help heat the air contained within Trombe wall 195, an adjustable lower room vent 210, and an upper means for exhausting heated air or delivering it to the interior space, which means may be an opening, turbine 10, or ceiling vent 55.
In a trombe wall used for heating an interior space on cold sunny days, trombe wall 195 is closed to the exterior environment at the bottom and at the top. Solar radiation 130 passing through transparent window 200 heats air inside the trombe wall 195, which causes the air inside to rise. Air from inside shelter 2 is pulled into the trombe wall 195 via lower room vent 210, is heated in trombe wall 195, and re-enters shelter 2 via an upper room vent, in this case ceiling vent 55 after taking advantage of extra heating from trombe chimney 190 but no assistance from turbine 10. This return air path is designated with airflow arrow 345.
In a trombe wall as used to provide cooling ventilation on hot sunny days, the solar chimney method is applied as follows: air from inside shelter 2 is similarly pulled into trombe wall 195 via lower room vent 210 and heated in trombe wall 195, but instead of re-circulating the heated air into the interior space via an upper vent such as ceiling vent 55, the heated air is released to the exterior environment via a vent at the roof, including turbine 10, to provide additional assistance. As the heated air rises and exits, it creates low pressure inside the shelter 2, which pulls cooler air from other openings, such as any air inlet 120, 125, 145, 150, 155, or 160. This integrates passive wind and sun powered ventilation, as designated by air flow arrow 350.
The addition of a passive turbine 10 and associated components previously described significantly improves air flow through trombe wall and solar chimney configurations such as the air heating elements here including trombe wall 195, trombe chimney 190, chimney 20, and turbine 10, without the need for an electrically powered air moving fan.
The combination of turbine 10 with trombe wall 195 and the solar chimney effects of trombe wall 195, trombe chimney 190, chimney 20, and turbine 10 enable additional 4-way functionality not known in trombe walls or solar chimneys. In a first mode of operation, Plenum 40 contains a baffle 45 that is in this case bifurcated so that the baffle 45 contains two sections, a room side baffle 215 and a chimney side baffle 220. Each such baffle 215 and 220 may be independently controlled. With both baffles in the upwards positions as shown in
In a second mode of operation, if room side baffle 215 remains in the upward position shown and chimney side baffle 220 is adjusted downwards to open trombe chimney 190 to turbine 10 but close trombe chimney 190 to ceiling vent 55 (
In a third mode of operation, if room side baffle 215 is in the downwards position while chimney side baffle is in the upwards position, the wind-assisted room air exhaust functions described in
Water Heating, Thermal Banking, and Gravity Dispensing Integration
A cold water tank 230 contained within a thermally insulated cold chamber 235 contains cold water, and a hot water tank 240 contained within a thermally insulated hot chamber 245 contains water being heated and/or maintained hot (the dividing insulation between cold chamber 235 and hot chamber 245 is omitted in
To dispense water, cold tank 230 contains a cold water outlet 275, and hot tank 240 contains a hot water outlet 280 in the upper portion of hot tank 240 where the water is warmer. A water tap 285 that may be configured for washing, showers, or other purposes mixes the hot and cold water and dispenses potable temperate water 290. If desired for additional dispensing pressure or because tap 285 is higher than cold tank 230 or hot tank 240, tap 285 may also contain a simple hand pump.
As long as the water level in the cold water tank 230 is higher than the water level in hot water tank 240, then whenever water is dispensed by water tap 285, gravity will force water to flow from the bottom of cold tank 230 via cold tank outlet 250 to hot tank inlet 255, where the cold water becomes available to be heated. This gravity fed process also helps ensure that hot tank 240 and its associated heat exchanger 225 remain full and operational. In practice, cold tank 230 would generally be located higher than hot tank 240 to facilitate gravitational water pressure.
To provide thermal banking for heating and cooling the air within shelter 2, hot chamber 240 contains a heating door 295, which when opened to the interior space of shelter 2 allows heat to radiate, conduct, and be convected from the water tank into the air in the interior space, thus heating it. Similarly, cold chamber 245 contains two doors, an interior cooling door 300 that opens to the interior of shelter 2 and an exterior cooling door 305 that opens to the exterior (hidden in
It is noted that in
As shown in
The position of the sun 135 varies during the course of the day and seasons. In the view of
To increase performance of the trombe wall and solar water heating efficiency, external mirror 330 and internal mirror 335 serve to increase the effective surface area of focusing surface 310, thus delivering more heat to trombe wall 195 and heat exchanger 225 and providing an independent aiming means for concentrating solar radiation 130. Each of external mirror 330 and internal mirror 335 may be adjusted via pivot or hinge 340, and may be combined into a single mirror without loss of generality.
Off-Grid Thermal Appliance and Integration
Once a fire is ignited solar concentrator 360 may be removed. Alternatively, if solar cooking is desired without carbon fuels,
In one embodiment, the top surface 375 of grill rack 365 may convert between a grill and a metal planar surface that seals the area 380 within the bottom of solar concentrator 360 to force smoke from open fire 100 to vent to the outside of solar concentrator 360 and thus protect the reflective surface of solar concentrator 360. A very small fire 100 or fueled stove 90 such as a gasifier would result in minimal heat loss around solar concentrator 360 and maximum assist to the solar cooking process facilitated by the solar concentrator 360, with minimal fuel use.
In
Solar radiation 130 from the sun 135 is collected and focused by focusing surface 310 adjustable by a pivot or hinge 340, reflected by internal mirror 335, and is focused to a small focused area 315 within oven chamber 405. To enter oven chamber 405, converging solar radiation 430 passes through thermal window 435 to prevent heat loss from inside oven chamber 405. A retractable, insulated thermal window cover 440 is also shown, which may be used to retain heat inside oven chamber when no solar radiation 130 is available. When solar energy 130 is available, grill adjuster 410 may be used to locate tinder at the small focused area 315, and the tinder will rapidly ignite. If grill adjuster 410 is used to locate cooking pot 95 so that small focused area 315 is within or projected upon cooking pot 95, the food inside cooking pot 95 will be heated. If nothing is placed near the small focused area 315, the converging solar radiation 430 passes through its focal point and diverges again, impinging on cooking heat exchanger 445, which is an embodiment of heat exchanger 225 previously described. In the configuration of
In
Loop valve 460 may alternatively be adjusted to a closed position via loop valve controller 480. In the closed position, heat exchanger inlet 260 is connected directly and only to interconnect 465, while oven water inlet 450 is connected directly and only to oven water outlet 455. In the closed position, loop valve 460 thus provides for a convective water heating loop using heat captured from flue 80, while simultaneously forcing heat in heat exchanger 445 to remain within it or escape into oven chamber 405. This heats oven chamber 405 and anything within it more quickly, such as for preheating before cooking. It also enables oven chamber 405 to keep cooked food warm longer once solar and fueled cooking ceases.
Since thermal window 435 comprises a small fraction of the spherical space around heat exchanger 445 into which heat can radiate from it, while the inner surface of oven chamber 405 is reflective to reject radiation, most solar radiation 130 impinging on heat exchanger 445 and then emitted, conducted, or convected as heat from heat exchanger 445 will remain within oven chamber 405 where it can be utilized, rather than escaping immediately via flue 80 or thermal window 435. Closing loop valve 460 thus enables pre-heating oven chamber 405 on hot or cold sunny days before initiating cooking, continuing with solar cooking or fueled cooking or both solar and fueled together, and in general, enables the user to assign thermal priority to cooking over water and room heating when desirable for human comfort and fuel conservation. At any time, extra room heating may be accomplished by opening hot tank door 295 (not shown) as described in
Some of the cells in the table include two possible settings, defined as follows. In each case, the first setting is a default, and the alternative setting modifies it. Hot tank door 295 is normally closed except during Room Heating, but may be opened at any time to warm the room during other operations. In the Fueled Cook and Combined Cook columns, the parenthetical settings for oven door 420 and fire door 415 allow heat to escape to the room to heat it during cooking if desired, while loop valve 460 may be closed to retain extra heat within oven chamber 405 instead of giving some up to water. In the room heating column, the first settings for air input 425, flue controller 110, and window cover 440 are for solar operation, which is the default since it uses no carbon fuel. For combined solar/fueled operation air input 425 and flue controller 110 are opened, and for fuel-only heating, window cover 440 is additionally closed. It should be appreciated that some elements such as air input 425 and flue controller 110 may be mechanically linked, or if electric power is available from a battery or other source, any or all of the controls in
The integrated cooking, heating, and ventilation subsystem 530 of
Ventilation-Integrated Electrical Subsystem
Additional detail of turbine 10 in
In addition to the additional detail described,
In
The embodiment of charge controller 710 in
For powered rotation of turbine 10, directional charge controller 710 performs an additional function to electrically disconnect generator 600 from the battery charge sensing of charge controller 710, and instead connect generator 600 to battery 725 via a user-operated bidirectional controller 735. Bidirectional controller 735 may be a potentiometer with a rotating knob, wired so that there is a center detent position connecting generator 600 to the battery sensing and charge control circuitry, and so that as bidirectional controller 735 is turned in either direction from center, one polarity or the other is applied from battery 725 to generator 600 positive turbine lead 615 and negative turbine lead 620. Doing so allows the user to turn turbine 10 in either direction at adjustable speed using power from battery 725. As should be evident from preceding discussions, electrically rotating turbine 10 in the same direction as the wind nominally turns it will move air in all the ways previously described. Electrically rotating turbine 10 in the opposite direction by changing the polarity of electrical current at positive turbine lead 615 and negative turbine lead 620 will force outside air from the roof peak into the structure.
While forcibly moving air from the exterior via electrified turbine ventilator 545 in this manner would rarely benefit a complete implementation of turbine solar chimney trombe 170 and integrated electrical system 650, it can improve comfort under some environmental conditions, such as warm, cloudy, still mornings or nights. In addition, this reversible operation provides important functionality in embodiments where the passive room and cooking ventilator 1 of
In
An example benefit of this integration is powering a gasifier heater 765 and gasifier fan 770. Conventional gasifiers for off-grid use are standalone units that require complexity because they need energy to heat wood thereby releasing volatile compounds to initiate ignition, and a fan to move the volatiles into a combustion area and remove combustion products. The result is far less wood use and dangerous fumes, but the fan and heater each require battery power, and the battery in turn requires a small electrical generator 600 or other means to generate electrical energy from rising heat to recharge the batteries. In
Additionally, security/fire alarm 660 is a smoke sensor and/or carbon monoxide sensor to protect occupants from fire that may be further connected to an intrusion sensor 765 on window 120 or entry door 770 to set the alarm off in case of unwanted intrusion. Security/fire alarm 660 may be controlled by remote controller 775 to trigger alarm 660 in case of attack, silence it in case of false alarms, or test its operation. In grid-dependent shelters, dwelling security alarms are large expensive distributed devices, while the present embodiment many be implemented for off-grid shelter applications via slight modification to the circuitry of a very low-cost mass-market smoke alarm.
Off-Grid Home-Scale Water Subsystem
In
Water subsystem 800 begins with collection, which may be accomplished in at least three ways presuming a well or water utility grid is unavailable. First and generally easiest, rainwater may be collected by a rain catchment 825 such as gutters and downspouts, which drain to water containers 805. A small shelter 2 (
Water collected from rain catchment 825 and local water sources 830 is poured through a pre-filter 845 to remove particulate matter including leaves and insects. Water containers 805 containing pre-filtered water 850 are then poured into water purifier 855. Water purifier 855 may utilize one or more known techniques to purify and sanitize water, including sand filter 860, heat pasteurization using solar heater 865 or other heat sources 870 as previously described, distiller 875, UV LED sanitizer 690, and/or other means.
In one embodiment of water purifier 855, sand filtration 860 would be followed by selection between LED sanitizer 690 and integrated heating using solar heater 865 and other heat sources 870. Such an embodiment could be achieved using the means described for off-grid thermal appliance 400 to pasteurize or distill water based on the configuration of
In clean area 810, water purifier 855 outputs purified water 840 into water containers 805. A water container 805 containing purified water 840 may be used as cold tank 830 within cold chamber 235 (
Clean area 810 shows an additional improvement wherein a water container 805 from clean area 815 may be used within a preheater 885 to generate preheated water 890 for gravity feeding into hot tank 240. In the embodiment of
As temperate water 290 is dispensed from tap 285, used, and drained into a drain 895 that may be part of a sink or shower stall, the used gray water 900 is collected into another water container 805 in a dirty area 820. Gray water 900 may be poured through a pre-filter 845 to remove particulates and then used for purposes such as growing food 910. If water scarcity is extreme, gray water 900 may be poured directly through pre-filter 845 for re-purification and reuse. To the extent particulates collected by pre-filter 845 and post-filter 905 contain organic matter, such matter may often be desiccated and then used as fuel.
For black-water generated at composting potty 590 (not shown in
In cases where local water sources 830 are used to collect water, it is possible that the collected water must be transported a significant distance. Such water transport is a significant physical challenge for hundreds of millions in the developing world, and often keeps women from income producing work or education. To facilitate transport,
In
In one embodiment of water transporter 835, old bicycle wheels are used as wheel 975. When both of wheels 975 including their bearings 970 are removed from water transporter 835, the wheels may be attached to a straight axle and used to form the basis of a cart for transporting goods. Such a cart may be used to transport lightweight foldable building structures, enabling a folding shelter as well as the entire family scale utility grid to be transported using wheels 975. This can be a critical advantage in disaster relief, as well as refugee situations where permanency is discouraged.
When water transporter 835 is used within off-grid water subsystem 800, a complete end-to-end family-scale post-disaster water infrastructure is enabled that duplicates on minimalist scale all of the functions of city-scale water utilities. Analogously, integrating water subsystem 800 with previously described subsystems passive room and cooking ventilator 1, turbine solar chimney trombe 170, off-grid thermal appliance 400, integrated cooking, heating, and ventilation subsystem 530, and/or integrated electrical subsystem 650 enables complete integration of family-scale thermal, water, power, and waste utility subsystems.
The various systems and methods described herein enable survival and comfort as well as a developing world version of prosperity, by significantly reducing fuel and water expenses while enabling productive work at night and in bad weather. It enables such potentially transformative lifestyles via sustainable production that requires non-local, rare, or expensive materials only within the solar cell 715, battery 725, and generator 600, while essentially all other components may be made from waste or recycled materials. These systems consume a small fraction of the fossil fuels or other flammable carbon resources that would otherwise be required, and limit total ongoing ecological impact of a family to extremely small carbon, global warming, and other footprints from combustion or any other sources.
Having described and illustrated the principles of the preferred embodiments, it should be apparent that the embodiments may be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims:
Claims
1. A ventilation system comprising:
- a turbine positioned on a building structure, wherein the turbine is configured to create a low pressure area in the building structure;
- a first air flow path positioned between the turbine and an interior of the building structure;
- a second air flow path positioned between the turbine and a thermal source; and
- means for independently controlling a rate of air flow within the first and second air flow paths.
2. The ventilation system according to claim 1, wherein the low pressure area is created from a rotation of the turbine due to wind outside of the building structure.
3. The ventilation system according to claim 2, wherein the rate of air flow within the first air flow path is due primarily to a difference between the low pressure area and a high pressure area within the building structure.
4. The ventilation system according to claim 3, wherein the thermal source comprises a solar collector.
5. The ventilation system according to claim 4, wherein the solar collector comprises:
- a lower vent configured to draw air from within the building structure;
- a transparent surface configured to collect solar radiation and heat air within the second air flow path; and
- an upper vent configured to transmit the heated air into the low pressure area.
6. The ventilation system according to claim 2, further comprising an air inlet configured to draw air from below the building structure, wherein the air located below the building structure is cooler than air within the low pressure area.
7. The ventilation system according to claim 2, wherein air flow through the turbine is increased by hot air flowing within the second air flow path that is heated by the thermal source.
8. The ventilation system according to claim 1, further comprising a chimney configured to absorb solar heat to increase the rate of air flow to the turbine.
9. The ventilation system according to claim 8, further comprising a reflective roof surface configured to increase an amount of solar heat that is absorbed by the chimney.
10. The ventilation system according to claim 8, further comprising a trombe wall positioned between the chimney and the thermal source, wherein the trombe wall is configured to absorb solar heat passing into the building structure.
11. The ventilation system according to claim 10, further comprising one or more mirrors positioned adjacent a transparent surface of the trombe wall, wherein the one or more mirrors are configured to increase an effective collection area of the transparent surface.
12. The ventilation system according to claim 1, wherein the turbine comprises a heat-absorbing surface configured to increase air flow through the turbine.
13. The ventilation system according to claim 1, wherein the means for independently controlling the rate of flow within the first and second air flow paths is configured to direct the air flow from the second air flow path into an interior of the structure.
14. The ventilation system according to claim 1, wherein the turbine contains at least one bearing, and wherein the second air flow path terminates above the at least one bearing.
15. The ventilation system according to claim 1, further comprising a screened mesh positioned within the turbine to prevent entry of foreign objects.
16. A method, comprising:
- converting wind power into a rotation of a wind turbine, wherein the wind turbine is positioned on a building structure;
- creating a low pressure region within the building structure and below the wind turbine;
- directing airflow through a first air flow path positioned between a vent of the building structure and the low pressure region;
- directing airflow through a second air flow path positioned between a thermal source and the low pressure region; and
- independently controlling the airflow within the first and second air flow paths.
17. The method according to claim 16, wherein the vent is configured to draw air into the first air flow path from an interior of the building structure.
18. The method according to claim 16, wherein the air flow in the second air flow path improves combustion of the thermal source.
19. The method according to claim 16, further comprising connecting the first airflow path to the second airflow path, wherein the air flow in the second airflow path comprises heated air directed from the thermal source into the first airflow path.
20. The method according to claim 16, further comprising heating water in a heat exchanger, wherein the thermal source comprises a solar collector configured to transmit solar heat to the water.
21. The method according to claim 20, wherein a water tank is connected to the heat exchanger, and wherein the method further comprises:
- circulating water from the water tank to the heat exchanger and back to the water tank through convection; and
- pressurizing the water tank by gravity flow of water from a secondary tank.
22. The method according to claim 21, wherein the water tank is thermally insulated, and wherein the method further comprises opening a door adjacent the water tank to heat an interior of the building structure.
23. The method according to claim 20, further comprising focusing solar radiation onto a focused area on the heat exchanger, wherein a position of the focused area on the heat exchanger varies according to an angle of incident sunlight.
24. The method according to claim 23, wherein the solar collector comprises a transparent surface configured to focus the solar radiation, and wherein the method further comprises increasing an effective collection area of the transparent surface by configuring one or more mirrors adjacent the transparent surface to reflect the sunlight to the heat exchanger.
25. The method according to claim 24, wherein the transparent surface comprises one or more Fresnel lenses.
26. The method according to claim 16, wherein the thermal source is located in a composting toilet.
Type: Application
Filed: Jul 23, 2009
Publication Date: Jan 27, 2011
Inventor: Arthur Louis Zwern (San Jose, CA)
Application Number: 12/508,495
International Classification: F24F 7/007 (20060101); F24J 2/46 (20060101); E04D 13/18 (20060101); F24J 2/00 (20060101);