Food Glazing Method
A food glazing system for automatically applying a glaze to an edible object. An inclined heatable surface is disposed in the path of sugar dispensed from a sugar dispenser and is positioned to heat the sugar enroute to an edible object to be glazed.
Latest Dearborn Sausage Company Patents:
This application is a divisional of application Ser. No. 11/744,514, and claims priority from provisional Application No. 60/797,428, filed May 4, 2006, and entitled “Automatic Glazing Machine”, which is incorporated by reference.
TECHNICAL FIELDThis invention relates generally to a method for automatically applying a glaze to a series of edible objects.
INVENTION BACKGROUNDIt is known to apply a sugar glaze to a ham by shaking granular sugar onto a ham while directing the flame from a torch onto the falling sugar before it reaches the ham. The heat from the torch flame caramelizes and/or melts the sugar granules as they fall and before they reach the ham.
It is also known to apply a glaze of sugar, spice, and other substances onto a ham by first dispensing melted sugar onto a ham from a reservoir of melted sugar then dispensing spice and other unmelted substances onto the ham's melted sugar coating. U.S. Pat. Nos. 6,513,450 and 6,805,747 each disclose such a system in which sugar is first dispensed onto an inclined plate that is heated to melt the sugar and is positioned to pour the melted sugar into a reservoir. The reservoir is tipped to pour melted sugar onto hams as they're carried along a conveyor beneath the reservoir. A second reservoir dispenses a spice mixture onto the sugar coating before the coating hardens so that the spice mixture will stick to the coating.
What is needed is a method and apparatus for applying sugar or sugar and spice mixture to an edible object or a series of edible objects while providing improved glaze characteristics.
INVENTION SUMMARYA method is provided for applying a glaze to an edible object. The method includes the steps of providing an edible object, dispensing sugar granules onto the edible object, and heating the sugar granules en route to the edible object by supporting an inclined heatable surface in the path of the dispensed sugar granules, and heating the heatable surface to a temperature sufficient to dispense the sugar granules from the heatable surface without having been melted.
A method may alternatively or additionally be provided for applying a glaze to an edible object where the method includes providing a plurality of inclined heatable surfaces, moving an edible object along an edible object path passing beneath each inclined heatable surface of the plurality of inclined heatable surfaces, heating the heatable surfaces, and dispensing sugar onto the heatable surfaces such that the dispensed sugar slides off the heatable surfaces onto the edible object as the edible object passes beneath the heatable surfaces.
These and other features and advantages of the invention will become apparent to those skilled in the art in connection with the following detailed description, drawings, photographs, and appendices, in which:
A first embodiment of a food glazing apparatus for automatically applying a glaze to an edible object is shown at 10 in
According to the first embodiment, and as shown in
The heatable surface 21 may be flat and disposed in an inclined attitude relative to earth gravity beneath the sugar and spice mixture dispenser 12 so that sugar falling onto the heatable surface 21 will slide down the heatable surface 21 and at least partially caramelize before falling from a lower edge 32 of the heatable surface 21 onto an edible object 30 positioned or passing below the heatable surface 21 as is, again, best shown in
As best shown in
As shown in
As is also shown in
An edible object conveyor 56 may be disposed beneath the heatable surface 21 to serially transport edible objects 30 past the heatable surface 21 along an edible object path as shown in
The apparatus 10 may further include a conveyor belt cleaner (not shown) positioned to clean and sanitize the conveyor belt 58 as the belt 58 runs along a portion of a belt path between an edible object unloading location 66 and an edible object loading location 68. The conveyor belt cleaner 64 may include a water bath.
A cooler 70 may be disposed adjacent the edible object conveyor 56 downstream from the heatable surface 21. The cooler 70 may be operable to cool edible objects 30, after they have been glazed, sufficiently to allow operators to manually remove the objects 30 from the edible object conveyor 56 at the edible object unloading location 66.
The sugar and spice mixture dispenser 12 may include a feed hopper 71 and two rotary sifters 81 as best shown in
The rotary sifters 81 may each include an elongated roller 100 supported generally transverse to the direction of edible object conveyor belt travel to dispense a curtain of sifted sugar onto and across the heatable surface 21 of the heater plates 40, 41. The configuration of the rollers 100 and wiper panels 102 of the rotary sifters 82, 83 may be selected to provide a desired volumetric flow rate of sugar and other ingredients for a given application.
The rotary sifters 81 may include respective electric sifter drive motors 82 operably connected to the roller 100 of each rotary sifter 81. Sifter speed controls 84 may be connected to the respective sifter drive motors 82 to allow an operator to adjust the rate at which sugar and other ingredients are sifted from the feed hopper 71 through each rotary sifter 81.
Because the rotary sifters 81 are spaced apart, they dispense sugar from the feed hopper 71 onto first and second spaced-apart impact areas of the inclined heatable surface 21 of the heater plates 40, 41 as shown in
In practice, a glaze may be automatically applied to a series of edible objects 30 according to the first embodiment by first providing the objects 30 on the edible object conveyor 56, providing sugar and spice mixture 16 in the dispenser feed hopper 71, and causing the edible object conveyor 56 to serially transport the objects 30 past the heatable surface 21 along the edible object path while the dispenser 12 is caused to dispense sugar and spice mixture 16 onto the edible objects 30 by actuating the rotary sifters 81. The sugar and spice mixture 16 is heated en route to the edible objects 30 by heating the heatable surface 21 of the heater plates 40, 41 supported in the paths of the dispensed sugar and spice mixture 16.
The glaze characteristics may be modified by adjusting the rate at which sugar and spice mixture 16 is dispensed onto the first and second impact areas of the heatable surface 21, by adjusting the ratio between the rates at which sugar and spice mixture 16 is dispensed onto the respective first and second impact areas, by adjusting the inclination of the heatable surface 21, by adjusting the temperature of the heatable surface 21, and/or by adjusting the speed of the edible object conveyor 56.
According to the second embodiment, and as shown in
As best shown in
A temperature sensor such as a thermal coupler 52′ may be carried by each of the heater plates 41′, 42-48 as shown in
To obtain desired glaze characteristics such as color, consistency, and depth of penetration, and also as required to compensate for variations in ambient room temperature, different ones of the heater plates 41′, 42-48 may be maintained at different temperatures. For example, a first upstream heater plate 41′ of the heater plates 41′, 42-48 may be heated to a temperature that will melt the sugar, e.g., to approximately 410 degrees Fahrenheit, to melt the sugar granules sufficiently to cause the resulting base layer to adhere more securely to the hams passing beneath. Also, melting the sugar may allow the sugar to soak more completely into edible objects 30′ passing beneath, i.e., before sugar falling from successive heater plates 42-48 is allowed to form a shell on the edible objects 30′.
The second through 7th heater plates 42-47 may be heated to approximately 380-390 degrees Fahrenheit to allow sugar granules to be dispensed from the second through 7th heater plates without having been melted, providing a desirable glaze texture on the hams passing beneath. The 8th heater plate 48 may be heated to approximately 410 degrees Fahrenheit to give the glaze a golden color when deposited on the surfaces of hams passing beneath.
As best shown in
A conveyor belt cleaner 64′ is positioned at a wash station 118 disposed along a belt return portion of a belt path between an edible object unloading location 66′ and an edible object loading location 68′ of the apparatus 10′. The wash station 118 includes components configured to clean and sanitize the edible object conveyer belt 58′ as the belt runs along the belt return portion of a belt path. The conveyor belt cleaner 64′ includes a power washer 120 comprising upper and lower 4-nozzle spray bars 122, 124 supported transversely within an open-topped wash station box 126. Nozzles 128 of the lower spray bar 124 are aimed upward at the conveyor belt 58′ from under the conveyor belt return path and the nozzles 128 of the upper spray bar 122 are aimed downward at the conveyor belt 58′ from above the conveyor belt return path. The upper spray bar 122 is supported transversely above the conveyor belt return path.
The conveyor belt cleaner 64′ also includes a scraper blade 130 disposed within the wash station box 126 in the path of water sprayed from the power washer spray bars 122, 124 in a position to scrape encrusted sugar mixture 16′ from the conveyer belt 58′. The scraper blade 130 is positioned just downstream from the power washer spray bars 122, 124. Sugar tailings cleaned from the conveyor belt 58′ may be collected in the wash station box 126 and drained from the box 126 through a drain tube 132 and discarded.
As best shown in
The wiper panels 102′ may be cut from USDA-approved urethane flat belting having a high resistance to abrasion. As is best shown in
Each rotary sifter 81′ may include a sifter drive motor 82′ operably connected to the feed roller 100′ of each rotary sifter 81′. Sifter speed control relays 84′ may be connected to each of the sifter drive motors 82′ as shown in
As shown in
As shown in
As best shown in
A sugar and spice mixture level sensor 160 of any suitable type such as the model U10003 photo sensor available from IFM Efector, Inc. of Exton, Pa., may be disposed about half way down one side of the first, or “upstream” feed hopper 71′ disposed below the second end 154 of the trough 148 as shown in
The conveyor belt 58′ of the edible object conveyor 56′ may be an 18 inch-wide wire or rod-type metal stainless steel belt such as a Sani-Grid® belt available from Cambridge, Inc. of Cambridge, Md., which comprises a plurality of closely-spaced parallel transverse metal T-304 stainless steel 5 gauge belt rods and UBAR-style flights. In the second embodiment such a Sani-Grid® belt has been modified to include a plurality of ham supports spaced along a length of the belt and shaped and positioned to support edible objects 30′ such as hams in respective desired positions and attitudes for glazing. The supports comprise laterally opposing pairs of 2 inch-high triangle-shaped flights 164 comprising metal T-304 stainless steel support rods bent and welded to the metal belt rods to form right isosceles triangle shapes as best shown in
The control panel 108, located adjacent an upstream end of the glazer apparatus 10′ as shown in
In practice, glaze may be applied to an edible object 30′ or a series of edible objects 30′ according to the second embodiment by first supporting the edible object conveyor 56′ beneath the heater plates 41′, 42-48 in a position where sugar and spice mixture 16′ falling from the heatable surfaces 21′, 22-28 of the heater plates 41′, 42-48 will land on the edible objects 30′ as the edible object conveyor 56′ serially transports the edible objects 30′ past the heater plates 41′, 42-48 along the edible object path. The plates are heated, the feed system is activated, and a plurality of edible objects 30′ is provided via the edible object conveyor 56′.
Desired glaze characteristics may be obtained by adjusting the speed of the edible object conveyor 56′, adjusting the number of feed hoppers 71′, 72, 73, 74, sifters 81′, and heatable surfaces 21′, 22-28 from which heated sugar is dispensed onto an edible object 30′ passing beneath the heatable surfaces 21′, 22-28, by adjusting the temperatures of the heatable surfaces 21′, 22-28, by adjusting the inclination angles of the heatable surfaces 21′, 22-28, and/or by maintaining at least one of the heatable surfaces 21′, 22-28 at a temperature different from the other heatable surfaces 21′, 22-28. Glaze adhesion to the edible object 30′ may be improved by heating at least one of the first few upstream heatable surfaces 21′, 22-33 to a temperature sufficient to melt the sugar. A golden glaze color may be provided by heating at least one of the final few downstream heatable surfaces 24-28 to a temperature sufficient to melt the sugar. A desired texture may be provided by heating at least one of the heatable surfaces 21′, 22-28 to a temperature sufficient to dispense sugar from the at least one surface without having been melted. For example, the temperature of a first upstream heatable surface 21′ of the heatable surfaces 21′, 22-28 may be adjusted to approximately 410 degrees Fahrenheit, the temperatures of each of second, third, fourth, fifth, and sixth heatable surfaces 22-26 downstream of the first surface 21′ may be adjusted to a temperature in the range of approximately 380 to 390 degrees Fahrenheit, and the temperature of a final eighth downstream surface 28 may be adjusted to approximately 410 degrees Fahrenheit.
This description, rather than describing limitations of an invention, only illustrates (an) embodiment(s) of the invention recited in the claims. The language of this description is therefore exclusively descriptive and is non-limiting.
Obviously, it's possible to modify this invention from what the description teaches. Within the scope of the claims, one may practice the invention other than as described above.
Claims
1. A method for applying a glaze to an edible object, the method including the steps of:
- providing an inclined heatable surface;
- providing an edible object below the inclined heatable surface; and
- heating the heatable surface and dispensing sugar onto the heatable surface such that at least some of the dispensed sugar slides off the heatable surface onto the edible object without having been melted.
2. A method as defined in claim 1 in which the step of dispensing sugar onto the heatable surface includes:
- providing a dispenser comprising a feed hopper;
- providing a rotary sifter adjacent the feed hopper;
- providing sugar in the feed hopper;
- operating the rotary sifter; and
- dispensing sugar from the feed hopper through the rotary sifter onto the heatable surface.
3. A method as defined in claim 1 in which the step of providing an edible object includes providing a plurality of edible objects via an edible object conveyor disposed beneath the heatable surface in a position where sugar falling from the heatable surface will land on the edible objects as the edible object conveyor serially transports the edible objects past the heatable surface along an edible object path.
4. A method as defined in claim 2 including the additional step of obtaining desired glaze characteristics on the edible objects by adjusting the speed of the conveyor.
5. A method as defined in claim 2 including the additional step of obtaining desired glaze characteristics on the edible objects by adjusting the rate at which sugar is dispensed onto the heatable surface.
6. A method as defined in claim 2 including the additional step of obtaining desired glaze characteristics on the edible objects by adjusting the temperature of the heatable surface.
7. A method for applying a glaze to an edible object, the method including the steps of:
- providing a plurality of inclined heatable surfaces;
- moving an edible object along an edible object path passing beneath each inclined heatable surface of the plurality of inclined heatable surfaces;
- heating the heatable surfaces; and
- dispensing sugar onto the heatable surfaces such that the dispensed sugar slides off the heatable surfaces onto the edible object as the edible object passes beneath the heatable surfaces.
8. A method as defined in claim 7 including the additional step of obtaining desired glaze characteristics by adjusting the number of heatable surfaces from which sugar is dispensed onto an edible object passing beneath the heatable surfaces.
9. A method as defined in claim 7 including the additional step of obtaining desired glaze characteristics by adjusting the temperatures of the heatable surfaces.
10. A method as defined in claim 9 including the additional step of obtaining desired glaze characteristics by maintaining at least one of the heatable surfaces at a temperature different from the other heatable surfaces.
11. A method as defined in claim 9 in which the step of adjusting the temperatures of the heatable surfaces includes improving glaze adhesion to the edible object by heating at least one of the heatable surfaces to a temperature sufficient to melt at least some of the sugar.
12. A method as defined in claim 9 in which the step of adjusting the temperatures of the heatable surfaces includes providing a golden glaze color by heating at least one of the final few downstream heatable surfaces to a temperature sufficient to caramelize the sugar.
13. A method as defined in claim 9 in which the step of adjusting the temperatures of the heatable surfaces includes providing a desired texture by heating at least one of the heatable surfaces to a temperature sufficient to melt at least some of the sugar.
14. A method as defined in claim 9 in which the step of adjusting the temperatures of the heatable surfaces includes:
- adjusting the temperature of a first upstream one of the heatable surfaces to approximately 410 degrees Fahrenheit;
- adjusting the temperatures of each of intermediate heatable surfaces downstream of the first surface to approximately 380 to 390 degrees Fahrenheit; and
- adjusting the temperature of a final eighth downstream surface to approximately 410 degrees Fahrenheit.
Type: Application
Filed: Oct 28, 2010
Publication Date: Feb 17, 2011
Applicant: Dearborn Sausage Company (Dearborn, MI)
Inventors: Clifford Todd Meier (South Lyon, MI), Michael C. Kosch (Troy, MI)
Application Number: 12/914,531
International Classification: A23P 1/08 (20060101);