ILLUMINATION DEVICE WITH HEAT DISSIPATION STRUCTURE
A solid state lighting source illumination device comprising a bracket and at least one solid state lighting source module. The solid state lighting source module comprises a substrate and at least one solid state lighting source. The substrate is set up with circuit and the solid state lighting source is set up on the substrate, and the electrode of the solid state lighting source is electrically connecting with the circuit on the substrate. The substrate and the bracket further comprise a heat dissipation structure which is a space between the substrate and a base of the bracket and through holes in the substrate near the solid state lighting source.
Latest FOXSEMICON INTEGRATED TECHNOLOGY, INC. Patents:
1. Technical Field
The present disclosure relates to illumination devices, and particularly to a illumination device having an unique heat dissipation structure.
2. Description of Related Art
Light emitting diodes' (LEDs) have many advantages, such as high luminosity, low operational voltage, low power consumption, compatibility with integrated circuits, easy driving, long-term reliability, and environmental friendliness; thus, LEDs have been widely promoted as a light source.
Joseph Bielecki et al. in IEEE, 23rd IEEE SEMI-THERM Symposium, “Thermal Considerations for LED Components in an Automotive Lamp.” characterize light emitting diodes as a kind of semiconductor device changing current into light of specific wavelength.
However, there are still some problems with the solid-state lighting source like LED, especially in heat dissipation. The higher the power of the solid-state lighting source is, the more heat the solid-state lighting source produces. It is also much more difficult to dissipate heat in a smaller solid-state lighting source illumination device.
As well, the present solid state lighting source illumination device all contain the problem of heat dissipation, limiting the application in daily life. High efficiency of heat dissipation is not available.
What is needed therefore, is an illumination device which can ameliorate the described limitations.
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring to
Furthermore, the space between the substrate 111 and the base 121 of the bracket 12 can electrically insulate the substrate 111 from the base 121 of the bracket 12. Wherein, there is no size limitation of the space between the substrate 111 and the base 121 of the bracket 12, as long as it is formed inside the bracket 12. Preferably, the height of the space between the substrate 111 and the base 121 of the bracket 12 is from about 1 mm to about 50 mm. More preferably, the height of the space between the substrate 111 and the base 121 of the bracket 12 is from about 15 mm to about 30 mm.
When it is needed, the solid state lighting source module 11 can further include at least one optical element (not shown), and the optical element can be a lens, a diffuser, a reflector, or a light guiding plate for adjusting the light from the solid-state lighting source 112.
Referring to
Referring to
Wherein, the width (L1) of the pad on the bottom of the solid state lighting source 112 is 4 mm, it can be regarded as the width of the solid state lighting source 112 or as the diameter of the solid state lighting source 112 when it is a circular structure. The farthest distance (L2) from the at least one through hole 1111 to the edge of the bottom pad of the solid state lighting source 112 at the direction of the width is 5.5 mm. In addition, the ratio of the length of the L2 over the length of the L1 is equal to or greater than 1.
Besides, both sides of the substrate 111 are further plated with metal layers for better heat dissipation effect. Preferably, the material of the metal layer is gold, silver, or copper. The preferable color of the substrate 111 is white.
It is to be understood, however, that even though numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structures and functions of the embodiment(s), the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims
1. A solid state lighting source illumination device, comprising a bracket, and at least one solid state lighting source module, said solid state lighting source module comprising a substrate and at least one solid state lighting source set up on the substrate and electrically connecting with the substrate, wherein the substrate is fixed on a top of a base of the bracket and keeping a distance from the base of the bracket to form a heat dissipation space between the substrate and the bracket, the solid state lighting source facing away from the base of the bracket.
2. The solid state lighting source illumination device of claim 1, wherein the substrate is fixed on the top of the base of the bracket by a supporter.
3. The solid state lighting source illumination device of claim 1, wherein the supporter is fixed on the top surface of the base of the bracket.
4. The solid state lighting source illumination device of claim 1, wherein a height of the heat dissipation space between the substrate and the bracket is from 1 mm to 50 mm.
5. The solid state lighting source illumination device of claim 1, wherein both sides of the substrate are plated with metal layers.
6. The solid state lighting source illumination device of claim 5, wherein the metal layers are made of gold, silver or copper.
7. The solid state lighting source illumination device of claim 1, wherein the color of the substrate is white.
8. The solid state lighting source illumination device of claim 1, wherein the substrate is provided with through holes therein which communicate with the heat dissipation space and near the solid state lighting source so that heat generated by the solid state lighting source can be transferred to the heat dissipation space through the through holes.
Type: Application
Filed: Jun 9, 2010
Publication Date: May 5, 2011
Patent Grant number: 8333486
Applicant: FOXSEMICON INTEGRATED TECHNOLOGY, INC. (Chu-Nan)
Inventor: SHENG-HSIANG KUNG (Chu-Nan)
Application Number: 12/797,484