Streaming media software interface to a dispersed data storage network
A client computer streams a digital media presentation from a dispersed data storage network including a plurality of slice servers. A dispersed data storage network access component streams data directly from the dispersed data storage network and passes data to a media player, also residing on the client computer.
Latest Patents:
This application is related to the following co-pending applications, all of which are assigned to Cleversafe, Inc. of Chicago, Ill. and are hereby incorporated by reference: Ser. Nos. 11/973,613, 11/973,622, 11/973,542, 11/973,621, 11/241,555, 11/403,684, 11/404,071, 11/403,391, and 12/080,042, as well as the application entitled FILE SYSTEM ADAPTED FOR USE WITH A DISPERSED DATA STORAGE NETWORK, filed on Jul. 11, 2008 by inventors Srinivas Palthepu, Andrew Baptist, Bart Cilfone, Vance Thornton, Greg Dhuse, Ilya Volvolski, Jason Resch, John Quigley, S. Christopher Gladwin, and Zachary Mark, all of Cleversafe, Inc. of Chicago, Ill.
REFERENCE TO INCORPORATED COMPACT DISCThis application incorporates by reference the following source code files submitted on a compact disc along with this application:
FIELD OF THE INVENTIONThe present invention relates generally to systems, apparatus, and methods for distributed data storage, and more particularly to systems, apparatus, and methods for distributed data storage using an information dispersal algorithm so that no one location will store an entire copy of stored data, and more particularly still to systems, apparatus, and methods for interfacing a media player application to a dispersed data storage network.
DESCRIPTION OF THE PRIOR ARTDispersed data storage networks (“DDSNs”) store data as an arbitrary number of data slices, generally with each data slice being stored on a separate slice server. Before a collection of data is stored it is segmented into a number of data segments, which may be of fixed or variable sizes. Each data segment is then sliced into a predetermined arbitrary number of data slices. Each data slice will generally contain minimal or no usable information by itself, but instead, must be combined with other data slices to reconstruct a usable data segment. DDSNs offer a number of advantages over traditional storage solutions including greater security and reliability.
Prior art DDSN systems, such as those offered by Cleversafe, Inc. of Chicago, Ill., have generally used an access computer, sometimes referred to as a Grid Access Computer or an Accesser™. The access computer is generally a high-performance server adapted to provide DDSN access to a large number of clients, such as an office of 20 or more users. Generally, the access computer does not have to be specified to handle the worst case scenario of each client computer accessing a maximum amount of data from the DDSN simultaneously, as office use often comes in bursts as a file is read or written. However, some types of usage, such as streaming media, require a continuous stream of data.
Streaming digital media is well known in the art, with Adobe Flash, Windows Media Audio and Video, and QuickTime being well known examples. Streaming media is generally served to clients by a streaming media server, which is specified to handle some number of simultaneous streams. Media serving platforms use a number of techniques to share streams across multiple streaming media servers, such as round-robin allocation. Prior art media serving platforms have not made use of DDSNs, and instead, have utilized individual or shared Redundant Array of Independent Drives (“RAID”) or Storage Area Networks (“SAN”).
One technique used by media providers to improve reliability and quality of service for streaming digital media presentations is the use of Content Delivery Networks (“CDNs”). A CDN is a network of computers that cooperate to deliver content to users. Generally, content is replicated among servers on an as needed basis, so that a server with the most desirable performance characteristics can serve content to a particular client. Often, content is replicated to the network so that it is available from a number of geographic locations, based on the assumption that a server located geographically close to a particular client will provide a better quality of service connection, if all else is equal.
A particular digital media stream will usually provide a specific quality. For example, a digital media presentation may be encoded at 720 pixels by 480 pixels, at 30 frames with second, with audio provided as 64 kilobits per second MP3. If quality levels are desired to serve users with less modern hardware or slower network connections, different media presentations will be encoded at the desired quality levels. Certain streaming media technologies allow a player to scale the frame rate of streamed video by skipping frames. This may result in “jerky” video, but will still allow a viewer to view the presentation.
More recent advances in encoding technology allow a single presentation to scale across a number of quality levels. For example, Flexible Block Wavelet encoding allows a streaming media presentation to scale across an arbitrary number of resolutions based on the bandwidth available to a particular client, and the ability of the client to process data.
OBJECTS OF THE INVENTIONAccordingly, it is an object of this invention to provide a system, apparatus, and method for accessing streaming digital media stored by a DDSN.
Another object of the invention is to provide a system, apparatus, and method for accessing streaming digital media stored by a DDSN in a cross-platform manner.
Another object of the invention is to provide a system, apparatus, and method for implementing a high-performance streaming digital media player plugin to access streaming digital media stored by a DDSN.
Another object of the invention is to provide a system, apparatus, and method for accessing streaming digital media stored by a DDSN from a client computer as opposed to from an access computer.
Another object of the invention is to provide a system, apparatus, and method for accessing streaming digital media stored by a DDSN from a client computer that is resilient to interruptions of network service disabling a portion of the DDSN.
Another object of the invention is to provide a system, apparatus, and method for accessing streaming digital media stored by a DDSN so that the quality of the presentation scales with the robustness of the DDSN.
Other advantages of the disclosed invention will be clear to a person of ordinary skill in the art. It should be understood, however, that a system, method, or apparatus could practice the disclosed invention while not achieving all of the enumerated advantages, and that the protected invention is defined by the claims.
SUMMARY OF THE INVENTIONThe disclosed invention achieves its objectives by providing a system for streaming a digital media presentation to a client computer from a dispersed data storage network. The dispersed data storage network includes a plurality of slice servers each of which may be located in a separate facility. The digital media presentation is broken into a plurality of data segments, and each data segment may only be reconstructed by combining data slices from more than one of the plurality of slice servers. Within the system, a client computer, such as a personal computer or a cellular telephone, is coupled to a network with access to the dispersed data storage network. A dispersed data storage network access component reads data segments from the dispersed data storage network and passes them to a media player operating on the client computer, which presents the streamed digital media presentation to a user.
In one embodiment, both the media player and the dispersed data storage network access component are implemented using a cross platform technology. Where this is not possible, the dispersed data storage network access component may be implemented as a cross platform component and interfaced to the media player with a plugin. The plugin may interface with the dispersed data storage network access component using a socket or Java Native Interface. Alternatively, the dispersed data storage network component may be implemented as a native component and interfaced to the plugin using static or dynamic linking.
In a further embodiment, the streamed digital media presentation may be encoded using a scalable technology, so that as slice servers become unavailable due to network outages or other reasons, the quality of the streamed digital media presentation degrades, but is otherwise still accessible.
Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:
Turning to the Figures, and to
The approach of
In addition, the segmentation process employed by the DDSN can be adapted to provide better performance for streaming video. Specifically, the data segments including data from the beginning of the streaming media presentation can be encoded as smaller segments than those later in the streaming media presentation. This will allow a stream to begin presentation quicker.
It should be understood that while this invention has been explained in the context of a software operating on a personal computer system, it could be implemented on a variety of different platforms. For example, a wireless mobile unit, such as a cellular telephone, could implement any of the embodiments described by
The foregoing description of the invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. The description was selected to best explain the principles of the invention and practical application of these principles to enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention not be limited by the specification, but be defined by the claims set forth below.
Claims
1. A system for streaming a digital media presentation to a client computer from a dispersed data storage network, said dispersed data storage network including at least a plurality of slice servers, wherein at least some of said plurality of slice servers are located in separate facilities and wherein a streamed data segment cannot be reconstructed without accessing more than one of said plurality of slice servers, the system comprising:
- i) a client computer coupled to a network with access to said dispersed data storage network;
- ii) a media player operating on said client computer for presenting digital media to a user; and
- iii) a dispersed data storage network access component operating on said client computer and interfaced to said media player wherein said dispersed data storage network access component streams digital media from said dispersed data storage network and said media player presents said digital media to said user.
2. The system of claim 1 wherein said media player is a cross platform media player and said dispersed data storage access component is a cross platform component.
3. The system of claim 1 further comprising a media player plugin component.
4. The system of claim 3 wherein said media player plugin interfaces to said dispersed data storage network access component using Java Native Interface.
5. The system of claim 3 wherein said media player plugin interfaces to said dispersed data storage network access component using a socket.
6. The system of claim 3 wherein said media player plugin interfaces to said dispersed data storage network access component by static linking or dynamic linking.
7. The system of claim 1 wherein said digital media presentation is segmented into a plurality of data segments, and each segment is encoded so that the unavailability of less than a number of slice servers required to reconstruct the segment at a highest encoded quality results in the data segment being reconstructed at a lower encoded quality and played back by the media player at said lower encoded quality.
8. The system of claim 1 wherein said client computer is a personal computer.
Type: Application
Filed: Jul 16, 2008
Publication Date: May 26, 2011
Applicant:
Inventors: Greg Dhuse (Chicago, IL), S. Christopher Gladwin (Chicago, IL)
Application Number: 12/218,594
International Classification: G06F 15/16 (20060101);