Weighting Ferrule for Golf Club
A weighting ferrule for a golf club is provided. The weighting ferrule has a first section that fits between the shaft and the hosel and a second section that extends up the shaft. The weighting ferrule is made of a strong rigid material, such as titanium, carbon steel, aluminum, stainless steel, or the like. The size of the ferrule may also be adjusted such that the weight of the ferrule adjusts the weight of the club head for a particular design.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/292,072, filed on Jan. 4, 2010, entitled “Weighting Ferrule for Golf Club,” which application is hereby incorporated herein by reference.
TECHNICAL FIELDThis disclosure relates generally to golf clubs and, more particularly, to a weighting ferrule for attaching a shaft to a club head.
BACKGROUNDGolf clubs typically comprise a shaft having a butt end and a tip end. The tip end is connected to a club head. Generally, the club head includes a hosel, which is a cylindrical opening into which the tip of the shaft is inserted. The tip of the shaft is generally attached to the club head by the use of an adhesive.
As can be appreciated, the joint between the shaft and the hosel can be abrupt where the smaller diameter shaft is inserted into a relatively large diameter hosel. To improve the aesthetics, many clubs include a ferrule that covers the joint between the shaft and the hosel of the club head. The ferrule is a hollow, cylindrical element that fits over the shaft and rests on the upper surface of the hosel. The use of the ferrule provides a smooth transition from the shaft to the club head, thereby improving the aesthetics of the club, particularly when a golfer is preparing for shot.
During a golf swing, the club head may reach speeds well over 100 mph and may exert a considerable amount of stress on the joint between the club head and the shaft. This stress may allow the club head to twist relative to the shaft, inhibiting the ability of the golfer to fully load the shaft. As a result, the amount of power and control exerted upon the ball at impact may be reduced.
SUMMARYIn accordance with one aspect of an embodiment, a weighting ferrule for a golf club is provided. The weighting ferrule has a first section that fits between the shaft and the hosel and a second section that extends up the shaft. The weighting ferrule is made of a strong rigid material, such as titanium, carbon steel, aluminum, stainless steel, or the like. The size of the ferrule may also be adjusted such that the weight of the ferrule adjusts the weight of the club head for a particular design.
Other embodiments are also disclosed.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the embodiments, and do not limit the scope of the disclosure.
Embodiments described herein relate to the use of a weighting ferrule made of strong, rigid materials such as aluminum, titanium, carbon steel, stainless steel, or the like. Embodiments described herein further provide specific dimensions, shapes, and weights. It should be noted, however, that these materials, shapes, dimensions, and weights are provided for purposes of illustration only and that other embodiments may use different materials, shapes, dimensions, and weights as desired for a particular golf club and/or golfer.
The weighting ferrule 106 is hollow having an opening with a diameter designed to accommodate the shaft 104. In an embodiment, the opening in the weighting ferrule 106 allows the shaft 104 to pass completely through the weighting ferrule 106 and into the hosel 110 of the club head 102. In other embodiments, however, the opening in the weighting ferrule 106 is such that the shaft 104 does not pass completely through the weighting ferrule 106.
Referring now to
The weighting ferrule 106 includes a collar section 220 having an indent 221 that is designed to fit within an indentation 222 formed in the hosel 110 of the club head 102 around the opening into which the tip end 108 of the shaft 104 is to be inserted. When installed, the collar section 220 will be positioned between the shaft 104 and the hosel 110 of the club head 102.
Adjoining the collar section 220 is an extension section 224. The size of the extension section 224 may be adjusted to alter the weight characteristics of the weighting ferrule 106. For example, if the size of the extension section 224 is increased, then the weighting ferrule 106 will have a greater weight, and similarly, if the size of the extension section 224 is decreased, then the weighting ferrule 106 will have less weight.
A tapered section 226 of the weighting ferrule 106 provides a transition from the hosel 110 of the golf club 102 to the shaft 104, providing a more aesthetically pleasing appearance. The amount of tapering may be adjusted as desired.
Referring first to
The embodiments discussed above are provided for illustrative purposes only and that other embodiments may utilize different sizes and shapes. It should also be appreciated that the weighting ferrules may be formed of metallic material or compound that provides sufficient weighting and rigidity characteristics, such as stainless steel, titanium, aluminum, and carbon steel. The following table illustrates weights that may be used for various lengths of the weighting ferrule in accordance with some embodiments. One of ordinary skill in the art will realize that other materials, weights, and lengths may be used.
As opposed to the more traditional ferrules used with golf clubs in which the ferrules are made of a lightweight material, such as plastics, to avoid adding additional weight, weighting ferrules such as those disclosed herein are designed to add weight and rigidity to the joint between the club head and the shaft. It has been found that weighting ferrules such as the embodiments disclosed herein may provide a significant performance advantage. While the exact cause of this increase is not exactly understood, it is believed that the rigidity in combination with the extra weight allows a more efficient loading of the shaft during the golf swing.
As such, the weighting ferrules may be designed to particularly suit a player's specific swing. In general, the smaller embodiments discussed above with reference to
It is believed that the greater weight added as the swing speeds increase allow the shaft to load quicker to accommodate the faster swings. Additionally, it is believed the rigid material of the weighting ferrule prevents or reduces torqueing or twisting of the club head during the swing and impact, providing greater control to the golfer. Tests performed using a stationery robotic arm calibrated to the aerospace environment standards for various club head speeds and meeting the USGA rules and PGA standards indicated that embodiments using a weighting ferrule such as those disclosed herein may improve the overall performance (e.g., including distance, accuracy, and the like) of a golf club by about 66% setting the RSSR at 85 and about 80% setting the RSSR at 110 over an off-the-shelf manufactured golf club. By adding the weighting ferrule just above the hosel on the golf club head and inserting the shaft through the weighting ferrule and club head, the center of gravity is raised from the club head sole towards the center of the face of the club head, thereby increasing the sweet spot width. The resulting impact factor (as measured using a pressure impact gage at impact) increase is 12% to 14% percent, which may result in a shot distance increase by 6% to 12%, and may result in 5 yards to 20 yards longer shots depending on the shaft flex, shaft length, and the weight of the weighting ferrule. The distance may vary depending on the movement of inertia.
The weighting ferrule may also reduce torque from 4.2 down to 2.8 allowing less movement of the golf head during the load and unload of the club shaft. This allows accuracy and shot disbursement to be tighter by 45% to 55%.
On average, test data show that the actual reaction times at various club head speeds improved by 30% to 46% depending on the type of shaft and club head. The actual reaction times were measured by comparing the time the club head takes to travel from the start of the backswing (e.g., 12:00 o'clock position on a swing robot) to the impact position (e.g., the 6:00 o'clock position on a swing robot). The club crush factor at impact (e.g., the amount of force at impact with the ball), using an average OEM club, increased by 38% to 47%, again depending on the flex of the shaft, weight of the weighting ferrule, and the swing speed of the golf club.
Techniques such as those disclosed herein may be combined with other techniques as well. For example, a weighting ferrule such as those disclosed above may be combined with spining (e.g., a process in which the shaft is rotated with respect to the club face to align a seam of the shaft with the club face).
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
Claims
1. A weighting ferrule for a golf club, the ferrule comprising:
- a collar section;
- an exterior section adjoining the collar section, the collar section having a smaller exterior dimension than the exterior section, the weighting ferrule being formed of a single continuous piece of rigid material.
2. The ferrule of claim 1, wherein the rigid material comprises aluminum.
3. The ferrule of claim 1, wherein the rigid material comprises carbon steel.
4. The ferrule of claim 1, wherein the rigid material comprises stainless steel.
5. The ferrule of claim 1, wherein the rigid material comprises titanium.
6. The ferrule of claim 1, wherein the exterior section has a first section and a second section, the first section having a constant exterior diameter and the second section having a tapered exterior diameter.
7. The ferrule of claim 1, wherein the rigid material comprises a metallic material.
8. A golf club comprising:
- a club head having a hosel, the hosel having a cavity, the cavity having a first portion and a second portion, a diameter of the first portion being larger than a diameter of the second portion;
- a shaft having a butt end and a tip end, the tip end of the shaft being inserted into the cavity of the hosel; and
- a weighting ferrule around the shaft, the ferrule having an upper portion and a lower portion, the lower portion extending into the first portion of the cavity, the upper portion extending along the shaft from the hosel toward the butt end of the shaft, the weighting ferrule being formed of a rigid material.
9. The golf club of claim 8, wherein the rigid material comprises aluminum.
10. The golf club of claim 8, wherein the rigid material comprises carbon steel.
11. The golf club of claim 8, wherein the rigid material comprises stainless steel.
12. The golf club of claim 8, wherein the rigid material comprises titanium
13. The golf club of claim 8, wherein the rigid material comprises a metallic material.
14. The golf club of claim 8, wherein the upper portion has a first section and a second section, the first section having a constant exterior diameter and the second section having a tapered exterior diameter.
Type: Application
Filed: Jan 4, 2011
Publication Date: Jul 7, 2011
Applicant: Sports Leisure - Ben Parks, Joint Venture (Lewisville, TX)
Inventor: John Slaughter (Lewisville, TX)
Application Number: 12/984,447
International Classification: A63B 53/02 (20060101);