APPARATUS AND METHODS FOR LOADING OF AN IOL INJECTOR
An IOL injector body including an injector body segment defining a portion of a lumen, and a first loading chamber component coupled to the injector body segments and a second loading chamber component hingedly coupled to the first loading chamber component. The second loading chamber component is capable of rotating about an axis that is parallel to the lumen. An IOL vial including a vial base and an injector guide rotatably mounted in said base, whereby an injector can be inserted along the injector guide and rotated such that a folded IOL can be obtained in the injector. A method of loading an IOL injector with an IOL the method that comprises inserting the IOL injector body into a vial and rotating the IOL injector body relative to the vial to obtain the IOL in the IOL injector body.
This application is a continuation of application Ser. No. 11/316,457 filed Dec. 22, 2005, which is incorporated by reference herein.
FIELD OF INVENTIONThe present invention relates to intraocular lens (IOL) injectors, and more particularly to loading apparatus and methods for IOL injectors.
BACKGROUND OF THE INVENTIONIOLs are artificial lenses used to replace natural crystalline lenses of eyes when the natural lenses are diseased or otherwise impaired. Under some circumstances a natural lens may remain in an eye together with an implanted IOL. IOLs may be placed in either the posterior chamber or anterior chamber of an eye.
IOLs come in a variety of configurations and materials. Various instruments and methods for implanting such IOLs in an eye are known. Typically, an incision is made in a patient's cornea and an IOL is inserted into the eye through the incision. In one technique, a surgeon uses surgical forceps having opposing blades to grasp the IOL and insert it through the incision into the eye. While this technique is still practiced today, more and more surgeons are using IOL injectors which offer advantages such as affording a surgeon more control when inserting an IOL into an eye and permitting insertion of IOLs through smaller incisions. Smaller incision sizes (e.g., less than about 3 mm) are preferred over larger incisions (e.g., about 3.2 to 5± mm) since smaller incisions have been attributed to reduced post-surgical healing time and reduced complications such as induced astigmatism.
In order for an IOL to fit through a smaller incision, it is typically folded and/or compressed prior to entering the eye where they will assume their original unfolded/uncompressed shape. Since IOLs are very small and delicate articles of manufacture, great care must be taken in their handling, both as they are loaded into an injector and as the lens is injected into a patient's eye.
It is important that an IOL be expelled from the tip of the IOL injector and into the eye in an undamaged condition and in a predictable orientation. Should an IOL be damaged or expelled from the injector in an incorrect orientation, a surgeon must remove or further manipulate the IOL in the eye, possibly resulting in trauma to the surrounding tissues of the eye. To achieve proper delivery of an IOL, consistent loading of the IOL into the injector device with a minimum opportunity for damaging the IOL is desirable.
Various IOL injectors and other devices have been proposed which attempt to address issues related to loading, yet there remains a need for an IOL injector which improves consistency of loading and reduces the likelihood of damage to an IOL.
SUMMARYAspects of the present invention are directed to an IOL injector comprising a loading chamber comprising a component that when being closed folds the lens. Additional aspects of the present invention are directed to a vial for maintaining an IOL prior to loading. The vial includes an injector guide that receives an injector such that when the injector is rotated a folded IOL can be obtained in the injector. In some embodiments, the injector and vial are provided in a combination. As defined here in “a combination” includes but is not limited to arrangements in which the objects in the combination are packaged and are not connected to one another.
Other aspects of the present invention are directed to an injector having an opening to a loading chamber, the opening being defined by a tapered edge. Additional aspects of the present invention are directed to an IOL vial comprising a convexly curved interior surface and a flexible arm adapted to maintain an IOL against a surface opposite the convexly curved interior surface. In some embodiments, the injector having tapered edge and the vial having a flexible arm are provided in a combination.
A first aspect of the invention is directed to an IOL injector body having a lumen with a longitudinal axis, the IOL injector comprising an injector body segment defining a portion of the lumen; a first loading chamber component coupled to the injector body segment; and a second loading chamber component comprising a lens contact surface, the second loading chamber component being hingedly coupled to the first loading chamber component such that the second loading chamber component is capable of rotating about a second axis that is parallel to the longitudinal axis.
In some embodiments, the second loading chamber component is configured and arranged such that, upon rotation of the second loading chamber about the second axis, the first loading chamber component and the second loading chamber component combine to form a second portion of the lumen. In some embodiments, the first and second loading chamber components form a rotationally complete portion of the lumen. In some embodiments, the second loading component is configured and arranged to fold an IOL using the lens contact surface upon rotation about the second axis. In some embodiments, the second loading component is configured and arranged to fold the IOL such that after rotation the lens is ready for delivery.
The second axis may be aligned with a wall of the injector body. In some embodiments, the first loading chamber component is rigidly connected to the injector body. In some embodiments, the first loading chamber component is integrally formed with the injector body. The first loading chamber component and the second loading chamber component may be configured to maintain the loading chamber in a closed position. The first loading chamber component and the second loading chamber component may be configured to snap together. The injector may be in a combination with a vial comprising a vial base, an IOL-holder mount disposed in said base, and an injector guide rotatably mounted in said base.
Another aspect of the invention is directed to a IOL vial, comprising: a vial base; an IOL-holder mount disposed in said base; and an injector guide rotatably mounted in said base, whereby an injector can be inserted along the injector guide and rotated. The injector guide may be disposed on a guide support. In some embodiments, the guide support is cylindrical.
In some embodiments the IOL-holder mount may be comprised of a first prong and a second prong, the first prong and the second prong being separated from one another. The vial may further comprise a second IOL-holder mount. The second IOL-holder mount may be comprised of a third prong and a fourth prong, the third prong and the fourth prong being separated from one another.
The vial may be in a combination with a lens holder, the lens holder being disposed between the first and second prong, and between the third prong and the fourth prong. The first holder mount and the second holder mount, and the lens holder may be configured such that the lens holder is capable of being slidably held by first holder mount and the second holder mount.
The term “lens contact surface” is defined herein as a surface arranged to contact an IOL lens after the loading chamber is closed. An injector having an IOL that is “ready for delivery” is an injector that is in a condition such that actuation of its IOL ejection apparatus (e.g., a plunger) results in ejection of the IOL from the injector.
Illustrative, non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings, in which the same reference number is used to designate the same or similar components in different figures, and in which:
A first loading chamber component 120a is coupled to the injector body segment; and a second loading chamber component 120b is hingedly coupled to the first loading chamber component such that the second loading chamber component is capable of rotating about a second axis Y that is parallel to longitudinal axis Z. In some embodiments, the second axis may be aligned with a wall of the injector body as illustrated in
First loading chamber component 120a may be coupled to injector body 100 segment 110 in any suitable manner. For example, the first loading chamber component may be rigidly connected to the injector body. In some embodiments, the first loading chamber component may be integrally formed (e.g., molded as a single part) with the injector body segment. Other suitable techniques of attachment include, but are not limited to snap fit or compression fit or by using a connector such as a screw or other threaded structure.
As illustrated in
Also as illustrated in
Upon rotation of the second loading chamber component, IOL 150 is located in loading chamber ready for delivery (i.e., the lens is located such that upon depressing of plunger 180, IOL 150 is expelled from the injector). Plunger 180 is aligned in the lumen such that tip 182 advances the lens after it has been obtained in the injector. The tip may be conventional fork shaped tip or a soft silicone tip as is known in the art. As illustrated in
It is to be appreciated that, in the illustrated embodiment, guide support 235 is cylindrical so as to conform to the shape of the vial base. The guide support may form a continuous cylinder or have a gap. Also, as illustrated in greater detail in
It is to be appreciated that although in some applications it is advantageous to provide and/or use injector 100 with a vial 200, injector 100 may be used with any suitable structure capable of maintaining an IOL such that the second loading chamber component can be used to interact with the IOL in a manner such that the IOL is obtained in loading chamber.
As illustrated in
It is to be appreciated that, as illustrated in
Additionally, the top of second loading chamber component 120b extends above holder mount 220b, such that upon rotation of the injector (in the direction of arrow 2) as indicated in
Tapered edge 625 is illustrated in the cross-sectional view of injector 600 in
Referring to
Referring again to
As illustrated in
In some embodiments, a portion of an interior surface of the vial is selected to conform to an exterior surface of the injector in a region proximate opening 624. For example, in some embodiments surface 622, which may be located on a substantially opposite side of injector 600 from opening 624, has concave curvature that substantially matches a convexly curved interior surface 640 of vial 700 (e.g., they have substantially the same radius of curvature and may share a center of curvature C). Accordingly, injector 600 can be rotated about center of curvature C (i.e., in the direction of arrow 2) in a stable and reliable manner. In some embodiments, surface 622 is convex and surface 640 is concave.
In some embodiments, the distance R from surface 622 to tapered edge 625 is substantially equal to the distance from vial surface 640 to vial surface 612 (e.g., over an angle θ), such that the inserter 600 remains contained between surfaces 640 and 612 upon rotation, thereby adding to the stability and reliability of the rotation of inserter 600. It is to be appreciated that flexible arm 635 maintains IOL 350 against a surface disposed opposite curved surface 640. Although flexible arm 635 is illustrated having a hook shaped cross section, any suitable shape may be employed. For example an arm having a simple straight shape that collapses upon the application of sheer force as would occur when the inserter is rotated about the curved surface 640 and thereby contacts a side of the flexible arm. Flexible arm 635 may be attached to the vial base at location 645 using a hinge or other suitable rotatable structure, or the flexibility of flexible arm may be selected such that the flexible arm folds or wraps around location 645 upon contact with the injector without the use of a hinge.
As illustrated in
It is to be appreciated that although in some application is advantageous to provide and/or use injector 600 with a vial 700, injector 600 may be used with any suitable structure capable of maintaining an IOL such that the tapered edge 625 can be used to interact with the IOL in a manner such that the IOL is obtained in loading chamber 620.
Injectors and vials as described herein are preferably made from a biocompatible and sterilizable material. For example, the injector and/or vial (including the flexible arm) may be made of polypropylene or polyetherimide (e.g. Ultem™ available from General Electric Corp.). In some embodiments, it is advantageous if the material used for an injector and/or vial is transparent to facilitate viewing of the lens during loading.
Having thus described the inventive concepts and a number of exemplary embodiments, it will be apparent to those skilled in the art that the invention may be implemented in various ways, and that modifications and improvements will readily occur to such persons. Thus, the embodiments are not intended to be limiting and presented by way of example only. The invention is limited only as required by the following claims and equivalents thereto.
Claims
1. An IOL injector body and a vial in a combination, the IOL injector body having a lumen with a lumen longitudinal axis, and the IOL injector comprising:
- an injector body segment defining a portion of the lumen;
- a first loading chamber component coupled to the injector body segment;
- a second loading chamber component comprising a lens contact surface, the second loading chamber component being hingedly coupled to the first loading chamber component such that the second loading chamber component is capable of rotating about a second axis that is parallel to the lumen longitudinal axis; and
- the vial comprising a vial base and a removable cover, the vial base comprising a cylindrical wall and a bottom surface that define a volume capable of holding a liquid, the cylindrical wall defining a vial longitudinal axis,
- an IOL-holder mount connected to the vial base and disposed in said volume, the IOL-holder mount maintaining an IOL holder having an IOL attached thereto, the IOL-holder mount configured to permit displacement of the IOL-holder towards the bottom surface, and an injector guide rotatably mounted in said volume such that the injector guide can rotate about the vial longitudinal axis, the injector guide configured to permit the injector body to be inserted into the vial along the injector guide to displace the IOL-holder toward the bottom surface.
2. The injector of claim 1, wherein the second loading chamber component is configured and arranged such that, upon rotation of the second loading chamber about the second axis, the first loading chamber component and the second loading chamber component combine to form a second portion of the lumen.
3. The IOL injector of claim 2, the first and second loading chamber components form a rotationally complete portion of the lumen.
4. The injector of claim 1, wherein the second loading chamber component is configured and arranged to fold an IOL using the lens contact surface upon rotation about the second axis.
5. The injector of claim 4, wherein the second loading chamber component is configured and arranged to fold the IOL such that after rotation the lens is ready for delivery.
6. The injector of claim 1, wherein the second axis is aligned with a wall of the injector body.
7. The injector of claim 1, wherein the first loading chamber component is rigidly connected to the injector body.
8. The injector of claim 1, wherein the first loading chamber component is integrally formed with the injector body.
9. The injector of claim 1, wherein the first loading chamber component and the second loading chamber component are configured to maintain the loading chamber in a closed position.
10. The injector of claim 9, wherein the first loading chamber component and the second loading chamber component are configured to snap together.
Type: Application
Filed: Mar 18, 2011
Publication Date: Jul 14, 2011
Inventor: Joel Pynson (Toulouse)
Application Number: 13/051,344
International Classification: A61F 2/16 (20060101);