SPIRO-OXINDOLE COMPOUNDS AND THEIR USES AS THERAPEUTIC AGENTS

-

This invention is directed to spiro-oxindole compounds of formula (I): wherein k, j, Q, R1, R2a, R2b, R2c, R2d, R3a, R3b, R3c, and R3d are as defined herein, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, which are useful for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain. Pharmaceutical compositions comprising the compounds and methods of preparing and using the compounds are also disclosed.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 12/650,218, filed Dec. 30, 2009 (now allowed); which is a divisional of U.S. patent application Ser. No. 11/402,310, filed Apr. 11, 2006 (now U.S. Pat. No. 7,700,641); which claims the benefit under 37 U.S.C. §119(e) of U.S. Provisional Patent Application No. 60/670,896 filed Apr. 11, 2005. These applications are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The present invention is directed to spiro-oxindole compounds. In particular, this invention is directed to spiro-oxindole compounds that are sodium channel blockers and are therefore useful in treating sodium channel-mediated diseases or conditions, such as pain, as well as other diseases and conditions associated with the mediation of sodium channels.

BACKGROUND OF THE INVENTION

Voltage-gated sodium channels, transmembrane proteins that initiate action potentials in nerve, muscle and other electrically excitable cells, are a necessary component of normal sensation, emotions, thoughts and movements (Catterall, W. A., Nature (2001), Vol. 409, pp. 988-990). These channels consist of a highly processed alpha subunit that is associated with auxiliary beta subunits. The pore-forming alpha subunit is sufficient for channel function, but the kinetics and voltage dependence of channel gating are in part modified by the beta subunits (Goldin et al., Neuron (2000), Vol. 28, pp. 365-368). Each alpha-subunit contains four homologous domains, I to IV, each with six predicted transmembrane segments. The alpha-subunit of the sodium channel, forming the ion-conducting pore and containing the voltage sensors regulating sodium ion conduction has a relative molecular mass of 260,000. Electrophysiological recording, biochemical purification, and molecular cloning have identified ten different sodium channel alpha subunits and four beta subunits (Yu, F. H., et al., Sci., STKE (2004), 253; and Yu, F. H., et al., Neurosci. (2003), 20:7577-85).

The hallmarks of sodium channels include rapid activation and inactivation when the voltage across the plasma membrane of an excitable cell is depolarized (voltage-dependent gating), and efficient and selective conduction of sodium ions through conducting pores intrinsic to the structure of the protein (Sato, C., et al., Nature (2001), 409:1047-1051). At negative or hyperpolarized membrane potentials, sodium channels are closed. Following membrane depolarization, sodium channels open rapidly and then inactivate. Channels only conduct currents in the open state and, once inactivated, have to return to the resting state, favoured by membrane hyperpolarization, before they can reopen. Different sodium channel subtypes vary in the voltage range over which they activate and inactivate as well as their activation and inactivation kinetics.

The sodium channel family of proteins has been extensively studied and shown to be involved in a number of vital body functions. Research in this area has identified variants of the alpha subunits that result in major changes in channel function and activities, which can ultimately lead to major pathophysiological conditions. Implicit with function, this family of proteins are considered prime points of therapeutic intervention. NaV1.1 and NaV1.2 are highly expressed in the brain (Raymond, C. K., et al., J. Biol. Chem. (2004), 279(44):46234-41) and are vital to normal brain function. In humans, mutations in NaV1.1 and NaV1.2 result in severe epileptic states and in some cases mental decline (Rhodes, T. H., et al., Proc. Natl. Acad. Sci. USA (2004),101(30):11147-52; Kamiya, K., et al., J. Biol. Chem. (2004), 24(11):2690-8; Pereira, S., et al., Neurology (2004), 63(1):191-2). As such both channels have been considered as validated targets for the treatment of epilepsy (see PCT Published Patent Publication No. WO 01/38564).

NaV1.3 is broadly expressed throughout the body (Raymond, C. K., et al., op. cit.). It has been demonstrated to have its expression upregulated in the dorsal horn sensory neurons of rats after nervous system injury (Hains, B. D., et al., J. Neurosci. (2003), 23(26):8881-92). Many experts in the field have considered NaV1.3 as a suitable target for pain therapeutics (Lai, J., et al., Curr. Opin. Neurobiol. (2003), (3):291-72003; Wood, J. N., et al., J. Neurobiol. (2004), 61(1):55-71; Chung, J. M., et al., Novartis Found Symp. (2004), 261:19-27; discussion 27-31, 47-54).

NaV1.4 expression is essentially limited to muscle (Raymond, C. K., et al., op. cit.). Mutations in this gene have been shown to have profound effects on muscle function including paralysis, (Tamaoka A., Intern. Med. (2003), (9):769-70). Thus, this channel can be considered a target for the treatment of abnormal muscle contractility, spasm or paralysis.

The cardiac sodium channel, NaV1.5, is expressed mainly in the heart ventricles and atria (Raymond, C. K., et al., op. cit.), and can be found in the sinovial node, ventricular node and possibly Purkinje cells. The rapid upstroke of the cardiac action potential and the rapid impulse conduction through cardiac tissue is due to the opening of NaV1.5. As such, NaV1.5 is central to the genesis of cardiac arrhythmias. Mutations in human NaV1.5 result in multiple arrhythmic syndromes, including, for example, long QT3 (LQT3), Brugada syndrome (BS), an inherited cardiac conduction defect, sudden unexpected nocturnal death syndrome (SUNDS) and sudden infant death syndrome (SIDS) (Liu, H. et al., Am. J. Pharmacogenomics (2003), 3(3):173-9). Sodium channel blocker therapy has been used extensively in treating cardiac arrhythmias. The first antiarrhythmic drug, quinidine, discovered in 1914, is classified as a sodium channel blocker.

NaV1.6 encodes an abundant, widely distributed voltage-gated sodium channel found throughout the central and peripheral nervous systems, clustered in the nodes of Ranvier of neural axons (Caldwell, J. H., et al., Proc. Natl. Acad. Sci. USA (2000), 97(10): 5616-20). Although no mutations in humans have been detected, NaV1.6 is thought to play a role in the manifestation of the symptoms associated with multiple sclerosis and has been considered as a target for the treatment of this disease (Craner, M. J., et al., Proc. Natl. Acad. Sci. USA (2004), 101(21):8168-73).

NaV1.7 was first cloned from the pheochromocytoma PC12 cell line (Toledo-Aral, J. J., et al., Proc. Natl. Acad. Sci. USA (1997), 94:1527-1532). Its presence at high levels in the growth cones of small-diameter neurons suggested that it could play a role in the transmission of nociceptive information. Although this has been challenged by experts in the field as NaV1.7 is also expressed in neuroendocrine cells associated with the autonomic system (Klugbauer, N., et al., EMBO J. (1995), 14(6):1084-90) and as such has been implicated in autonomic processes. The implicit role in autonomic functions was demonstrated with the generation of NaV1.7 null mutants; deleting NaV1.7 in all sensory and sympathetic neurons resulted in a lethal perinatal phenotype. (Nassar, et al., Proc. Natl. Acad. Sci. USA (2004), 101(34):12706-11.). In contrast, by deleting the NaV1.7 expression in a subset of sensory neurons that are predominantly nociceptive, a role in pain mechanisms, was demonstrated (Nassar, et al., op. cit.). Further support for NaV1.7 blockers active in a subset of neurons is supported by the finding that two human heritable pain conditions, primary erythermalgia and familial rectal pain, have been shown to map to NaV1.7 (Yang, Y., et al., J. Med. Genet. (2004), 41(3):171-4).

The expression of NaV1.8 is essentially restricted to the DRG (Raymond, C. K., et al., op. cit.). There are no identified human mutations for NaV1.8. However, NaV1.8-null mutant mice were viable, fertile and normal in appearance. A pronounced analgesia to noxious mechanical stimuli, small deficits in noxious thermoreception and delayed development of inflammatory hyperalgesia suggested to the researchers that NaV1.8 plays a major role in pain signalling (Akopian, A. N., et al., Nat. Neurosci. (1999), 2(6): 541-8). Blocking of this channel is widely accepted as a potential treatment for pain (Lai, J, et al., op. cit.; Wood, J. N., et al., op. cit.; Chung, J. M., et al., op. cit.). PCT Published Patent Application No. WO03/037274A2 describes pyrazole-amides and sulfonamides for the treatment of central or peripheral nervous system conditions, particularly pain and chronic pain by blocking sodium channels associated with the onset or recurrence of the indicated conditions. PCT Published Patent Application No. WO03/037890A2 describes piperidines for the treatment of central or peripheral nervous system conditions, particularly pain and chronic pain by blocking sodium channels associated with the onset or recurrence of the indicated conditions. The compounds, compositions and methods of these inventions are of particular use for treating neuropathic or inflammatory pain by the inhibition of ion flux through a channel that includes a PN3 (NaV1.8) subunit.

The tetrodotoxin insensitive, peripheral sodium channel NaV1.9, disclosed by Dib-Hajj, S. D., et al. (see Dib-Hajj, S. D., et al., Proc. Natl. Acad. Sci. USA (1998), 95(15):8963-8) was shown to reside solely in the dorsal root ganglia. It has been demonstrated that NaV1.9 underlies neurotrophin (BDNF)-evoked depolarization and excitation, and is the only member of the voltage gated sodium channel superfamily to be shown to be ligand mediated (Blum, R., Kafitz, K. W., Konnerth, A., Nature (2002), 419 (6908):687-93). The limited pattern of expression of this channel has made it a candidate target for the treatment of pain (Lai, J, et al., op. cit.; Wood, J. N., et al., op. cit.; Chung, J. M. et al., op. cit.).

NaX is a putative sodium channel, which has not been shown to be voltage gated. In addition to expression in the lung, heart, dorsal root ganglia, and Schwann cells of the peripheral nervous system, NaX is found in neurons and ependymal cells in restricted areas of the CNS, particularly in the circumventricular organs, which are involved in body-fluid homeostasis (Watanabe, E., et al., J. Neurosci. (2000), 20(20):7743-51). NaX-null mice showed abnormal intakes of hypertonic saline under both water- and salt-depleted conditions. These findings suggest that the NaX plays an important role in the central sensing of body-fluid sodium level and regulation of salt intake behaviour. Its pattern of expression and function suggest it as a target for the treatment of cystic fibrosis and other related salt regulating maladies.

Studies with the sodium channel blocker tetrodotoxin (TTX) used to lower neuron activity in certain regions of the brain, indicate its potential use in the treatment of addiction. Drug-paired stimuli elicit drug craving and relapse in addicts and drug-seeking behavior in rats. The functional integrity of the basolateral amygdala (BLA) is necessary for reinstatement of cocaine-seeking behaviour elicited by cocaine-conditioned stimuli, but not by cocaine itself. BLA plays a similar role in reinstatement of heroin-seeking behavior. TTX-induced inactivation of the BLA on conditioned and heroin-primed reinstatement of extinguished heroin-seeking behaviour in a rat model (Fuchs, R. A. and See, R. E., Psychopharmacology (2002) 160(4):425-33).

This closely related family of proteins has long been recognised as targets for therapeutic intervention. Sodium channels are targeted by a diverse array of pharmacological agents. These include neurotoxins, antiarrhythmics, anticonvulsants and local anesthetics (Clare, J. J., et al., Drug Discovery Today (2000) 5:506-520). All of the current pharmacological agents that act on sodium channels have receptor sites on the alpha subunits. At least six distinct receptor sites for neurotoxins and one receptor site for local anesthetics and related drugs have been identified (Cestéle, S. et al., Biochimie (2000), Vol. 82, pp. 883-892).

The small molecule sodium channel blockers or the local anesthetics and related antiepileptic and antiarrhythmic drugs, interact with overlapping receptor sites located in the inner cavity of the pore of the sodium channel (Catterall, W. A., Neuron (2000), 26:13-25). Amino acid residues in the S6 segments from at least three of the four domains contribute to this complex drug receptor site, with the IVS6 segment playing the dominant role. These regions are highly conserved and as such most sodium channel blockers known to date interact with similar potency with all channel subtypes. Nevertheless, it has been possible to produce sodium channel blockers with therapeutic selectivity and a sufficient therapeutic window for the treatment of epilepsy (e.g. lamotrigine, phenyloin and carbamazepine) and certain cardiac arrhythmias (e.g. lignocaine, tocamide and mexiletine). However, the potency and therapeutic index of these blockers is not optimal and have limited the usefulness of these compounds in a variety of therapeutic areas where a sodium channel blocker would be ideally suited.

Management of Acute and Chronic Pain

Drug therapy is the mainstay of management for acute and chronic pain in all age groups, including neonates, infants and children. The pain drugs are classified by the American Pain Society into three main categories: 1) non-opioid analgesics-acetaminophen, and non-steroidal anti-inflammatory drugs (NSAIDs), including salicylates (e.g. aspirin), 2) opioid analgesics and 3) co-analgesics.

Non-opioid analgesics such as acetaminophen and NSAIDs are useful for acute and chronic pain due to a variety of causes including surgery, trauma, arthritis and cancer. NSAIDs are indicated for pain involving inflammation because acetaminophen lacks anti-inflammatory activity. Opioids also lack anti-inflammatory activity. All NSAIDs inhibit the enzyme cyclooxygenase (COX), thereby inhibiting prostaglandin synthesis and reducing the inflammatory pain response. There are at least two COX isoforms, COX-1 and COX-2. Common non-selective COX inhibitors include, ibuprofen and naproxen. Inhibition of COX-1, which is found in platelets, GI tract, kidneys and most other human tissues, is thought to be associated with adverse effects such as gastrointestinal bleeding. The development of selective COX-2 NSAIDs, such as Celecoxib, Valdecoxib and Rofecoxib, have the benefits of non-selective NSAIDs with reduced adverse effect profiles in the gut and kidney. However, evidence now suggests that chronic use of certain selective COX-2 inhibitors can result in an increased risk of stroke occurrence.

The use of opioid analgesics is recommended by the American Pain Society to be initiated based on a pain-directed history and physical that includes repeated pain assessment. Due to the broad adverse effect profiles associated with opiate use, therapy should include a diagnosis, integrated interdisciplinary treatment plan and appropriate ongoing patient monitoring. It is further recommended that opioids be added to non-opioids to manage acute pain and cancer related pain that does not respond to non-opioids alone. Opioid analgesics act as agonists to specific receptors of the mu and kappa types in the central and peripheral nervous system. Depending on the opioid and its formulation or mode of administration it can be of shorter or longer duration. All opioid analgesics have a risk of causing respiratory depression, liver failure, addiction and dependency, and as such are not ideal for long-term or chronic pain management.

A number of other classes of drugs may enhance the effects of opioids or NSAIDSs, have independent analgesic activity in certain situations, or counteract the side effects of analgesics. Regardless of which of these actions the drug has, they are collectively termed “coanalgesics”. Tricyclic antidepressants, antiepileptic drugs, local anaesthetics, glucocorticoids, skeletal muscle relaxants, anti-spasmodil agents, antihistamines, benzodiazepines, caffeine, topical agents (e.g. capsaicin), dextroamphetamine and phenothizines are all used in the clinic as adjuvant therapies or individually in the treatment of pain. The antiepileptic drugs in particular have enjoyed some success in treating pain conditions. For instance, Gabapentin, which has an unconfirmed therapeutic target, is indicated for neuropathic pain. Other clinical trials are attempting to establish that central neuropathic pain may respond to ion channel blockers such as blockers of calcium, sodium and/or NMDA (N-methyl-D-aspartate) channels. Currently in development are low affinity NMDA channel blocking agents for the treatment of neuropathic pain. The literature provides substantial pre-clinical electrophysiological evidence in support of the use of NMDA antagonists in the treatment of neuropathic pain. Such agents also may find use in the control of pain after tolerance to opioid analgesia occurs, particularly in cancer patients.

Systemic analgesics such as NSAIDs and opioids are to be distinguished from therapeutic agents which are useful only as local analgesics/anaesthetics. Well known local analgesics such as lidocaine and xylocalne are non-selective ion channel blockers which can be fatal when administered systemically. A good description of non-selective sodium channel blockers is found in Madge, D. et al., J. Med. Chem. (2001), 44(2):115-37.

Several sodium channel modulators are known for use as anticonvulsants or antidepressants, such as carbamazepine, amitriptyline, lamotrigine and riluzole, all of which target brain tetrodotoxin-sensitive (TTX-S) sodium channels. Such TTX-S agents suffer from dose-limiting side effects, including dizziness, ataxia and somnolence, primarily due to action at TTX-S channels in the brain.

Sodium Channels Role in Pain

Sodium channels play a diverse set of roles in maintaining normal and pathological states, including the tong recognized role that voltage gated sodium channels play in the generation of abnormal neuronal activity and neuropathic or pathological pain (Chung, J. M. et al.). Damage to peripheral nerves following trauma or disease can result in changes to sodium channel activity and the development of abnormal afferent activity including ectopic discharges from axotomised afferents and spontaneous activity of sensitized intact nociceptors. These changes can produce long-lasting abnormal hypersensitivity to normally innocuous stimuli, or allodynia. Examples of neuropathic pain include, but are not limited to, post-herpetic neuralgia, trigeminal neuralgia, diabetic neuropathy, chronic lower back pain, phantom limb pain, and pain resulting from cancer and chemotherapy, chronic pelvic pain, complex regional pain syndrome and related neuralgias.

There has been some degree of success in treating neuropathic pain symptoms by using medications, such as gabapentin, and more recently pregabalin, as short-term, first-line treatments. However, pharmacotherapy for neuropathic pain has generally had limited success with little response to commonly used pain reducing drugs, such as NSAIDS and opiates. Consequently, there is still a considerable need to explore novel treatment modalities.

There remains a limited number of potent effective sodium channel blockers with a minimum of adverse events in the clinic. There is also an unmet medical need to treat neuropathic pain and other sodium channel associated pathological states effectively and without adverse side effects. The present invention provides compounds, methods of use and compositions that include these compounds to meet these critical needs.

SUMMARY OF THE INVENTION

The present invention is directed to spiro-oxindole compounds that are useful for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain. The compounds of the present invention are also useful for the treatment of other sodium channel-mediated diseases or conditions, including, but not limited to central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome, essential tremour and muscle paralysis or tetanus; neuroprotection against stroke, glaucoma, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.

Accordingly, in one aspect, the invention provides compounds of formula (I):

  • wherein:
  • j and k are each independently 0, 1, 2 or 3;
  • Q is —C(R1a)H—, —C(O)—, —O—, —S(O)m— (where m is 0, 1 or 2), —CF2—, —C(O)O—, —C(O)N(R5)—or —N(R5)C(O)—;
  • R1a is hydrogen or —OR5;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • or R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
  • as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
  • or a pharmaceutically acceptable salt, solvate or prodrug thereof.

In another aspect, the invention provides methods for the treatment of pain in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention as set forth above.

In another aspect, the present invention provides a method for treating or lessening the severity of a disease, condition, or disorder where activation or hyperactivity of one or more of NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 is implicated in the disease state. In another aspect, the invention provides methods of treating a range of sodium channel-mediated diseases or conditions, for example, pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke, glaucoma or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation.

In another aspect, the invention provides methods of treating a range of sodium channel-mediated disease or condition through inhibition of ion flux through a voltage-dependent sodium channel in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention as set forth above.

In another aspect, the invention provides pharmaceutical compositions comprising the compounds of the invention, as set forth above, and pharmaceutically acceptable excipients. In one embodiment, the present invention relates to a pharmaceutical composition comprising a compound of the invention in a pharmaceutically acceptable carrier and in an amount effective to treat diseases or conditions related to pain when administered to an animal, preferably a mammal, most preferably a human.

In another aspect, the invention provides pharmaceutical therapy in combination with one or more other compounds of the invention or one or more other accepted therapies or as any combination thereof to increase the potency of an existing or future drug therapy or to decrease the adverse events associated with the accepted therapy. In one embodiment, the present invention relates to a pharmaceutical composition combining compounds of the present invention with established or future therapies for the indications listed in the invention.

DETAILED DESCRIPTION OF THE INVENTION Definitions

Certain chemical groups named herein are preceded by a shorthand notation indicating the total number of carbon atoms that are to be found in the indicated chemical group. For example; C7-C12alkyl describes an alkyl group, as defined below, having a total of 7 to 12 carbon atoms, and C4-C12cycloalkylalkyl describes a cycloalkylalkyl group, as defined below, having a total of 4 to 12 carbon atoms. The total number of carbons in the shorthand notation does not include carbons that may exist in substituents of the group described. For example, the following terms have the meaning indicated:

“C1-C10alkyl” refers to an alkyl radical as defined below containing one to ten carbon atoms. The C1-C10alkyl radical may be optionally substituted as defined below for an alkyl group.

“C2-C12alkynyl” refers to an alknyl radical as defined below containing two to twelve carbon atoms. The C2-C12alknyl radical may be optionally substituted as defined below for an alkenyl group.

“C1-C12alkoxy” refers to an alkoxy radical as defined below containing one to twelve carbon atoms. The alkyl part of the C1-C12alkoxy radical may be optionally substituted as defined below for an alkyl group.

“C2-C12alkoxyalkyl” refers to an alkoxyalkyl radical as defined below containing two to twelve carbon atoms. Each alkyl part of the C2-C12alkoxyalkyl radical may be optionally substituted as defined below for an alkyl group.

“C7-C12aralkyl” refers to an aralkyl group as defined below containing seven to twelve carbon atoms. The aryl part of the C7-C12aralkyl radical may be optionally substituted as described below for an aryl group. The alkyl part of the C7-C12aralkyl radical may be optionally substituted as defined below for an alkyl group.

“C7-C12aralkenyl” refers to an aralkenyl group as defined below containing seven to twelve carbon atoms. The aryl part of the C7-C12aralkenyl radical may be optionally substituted as described below for an aryl group. The alkenyl part of the C7-C12aralkenyl radical may be optionally substituted as defined below for an alkenyl group.

“C3-C12cycloalkyl” refers to a cycloalkyl radical as defined below having three to twelve carbon atoms. The C3-C12cycloalkyl radical may be optionally substituted as defined below for a cycloalkyl group.

“C4-C12cycloalkylalkyl” refers to a cycloalkylalkyl radical as defined below having four to twelve carbon atoms. The C4-C12cycloalkylalkyl radical may be optionally substituted as defined below for a cycloalkylalkyl group.

In addition to the foregoing, as used in the specification and appended claims, unless specified to the contrary, the following terms have the meaning indicated:

“Amino” refers to the —NH2 radical.

“Cyano” refers to the —CN radical.

“Hydroxyl” refers to the —OH radical.

“Imino” refers to the ═NH substituent.

“Nitro” refers to the —NO2 radical.

“Oxo” refers to the ═O substituent.

“Thioxo” refers to the ═S substituent.

“Trifluoromethyl” refers to the —CF3 radical.

“Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to twelve carbon atoms, preferably one to eight carbon atoms or one to six carbon atoms, and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halo groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

“Alkenyl” refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, having from two to twelve carbon atoms, preferably one to eight carbon atoms and which is attached to the rest of the molecule by a single bond, e.g., ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, and the like. Unless stated otherwise specifically in the specification, an alkenyl group may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halo groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

“Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing no unsaturation and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, and the like. The alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halo groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

“Alkenylene” or “alkenylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one double bond and having from two to twelve carbon atoms, e.g., ethenylene, propenylene, n-butenylene, and the like. The alkenylene chain is attached to the rest of the molecule through a single bond and to the radical group through a double bond or a single bond. The points of attachment of the alkenylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkenylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halo groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

“Alkynylene” or “alkynylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one triple bond and having from two to twelve carbon atoms, e.g., propynylene, n-butynylene, and the like. The alkynylene chain is attached to the rest of the molecule through a single bond and to the radical group through a double bond or a single bond. The points of attachment of the alkynylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkynylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halo groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

“Alkynyl” refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to twelve carbon atoms, preferably one to eight carbon atoms and which is attached to the rest of the molecule by a single bond, e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkynyl group may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —OR14, —OC(O)—R14, —N(R14)2, —C(O)R14, —C(O)OR14, —C(O)N(R14)2, —N(R14)C(O)OR16, —N(R14)C(O)R16, —N(R14)S(O)tR16 (where t is 1 to 2), —S(O)tOR16 (where t is 1 to 2), —S(O)tR16 (where t is 0 to 2), and —S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted.

“Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. The alkyl part of the alkoxy radical may be optionally substituted as defined above for an alkyl radical.

“Alkoxyalkyl” refers to a radical of the formula —Ra—O—Ra where each Ra is independently an alkyl radical as defined above. The oxygen atom may be bonded to any carbon in either alkyl radical. Each alkyl part of the alkoxyalkyl radical may be optionally substituted as defined above for an alkyl group.

“Aryl” refers to aromatic monocyclic or multicyclic hydrocarbon ring system consisting only of hydrogen and carbon and containing from 6 to 18 carbon atoms, where the ring system may be partially saturated. Aryl groups include, but are not limited to groups such as fluorenyl, phenyl and naphthyl. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, aryl, heteroaryl, heteroarylalkyl, —R15—OR14, —R15—OC(O)—R14, —R15—N(R14)2, —R15—C(O)R14, —R15—C(O)OR14, —R15—C(O)N(R14)2, —R15—N(R14)C(O)OR16, —R15—N(R14)C(O)R16, —R15—N(R14)S(O)tR16 (where t is 1 to 2), —R15—S(O)tOR16 (where t is 1 to 2), —R15—S(O)tR16 (where t is 0 to 2), and —R15—S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R15 is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted.

“Aralkyl” refers to a radical of the formula —RaRb where Ra is an alkyl radical as defined above and Rb is one or more aryl radicals as defined above, e.g., benzyl, diphenylmethyl and the like. The aryl radical(s) may be optionally substituted as described above.

“Aryloxy” refers to a radical of the formula —ORb where Rb is an aryl group as defined above. The aryl part of the aryloxy radical may be optionally substituted as defined above.

“Aralkenyl” refers to a radical of the formula —RcRb where Rc is an alkenyl radical as defined above and Rb is one or more aryl radicals as defined above, which may be optionally substituted as described above. The aryl part of the aralkenyl radical may be optionally substituted as described above for an aryl group. The alkenyl part of the aralkenyl radical may be optionally substituted as defined above for an alkenyl group.

“Aralkyloxy” refers to a radical of the formula —ORb where Rb is an aralkyl group as defined above. The aralkyl part of the aralkyloxy radical may be optionally substituted as defined above.

“Cycloalkyl” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, the term “cycloalkyl” is meant to include cycloalkyl radicals which are optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, oxo, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R15—OR14, —R15—OC(O)—R14, —R15—N(R14)2, —R15—C(O)R14, —R15—C(O)OR14, —R15—C(O)N(R14)2, —R15—N(R14)C(O)OR16, —R15—N(R14)C(O)R16, —R15—N(R14)S(O)tR16 (where t is 1 to 2), —R15—S(O)tOR16 (where t is 1 to 2), —R15—S(O)tR16 (where t is 0 to 2), and —R15—S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R15 is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R16 is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted.

“Cycloalkylalkyl” refers to a radical of the formula —RaRd where Ra is an alkyl radical as defined above and Rd is a cycloalkyl radical as defined above. The alkyl radical and the cycloalkyl radical may be optionally substituted as defined above.

“Halo” refers to bromo, chloro, fluoro or iodo.

“Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, 3-bromo-2-fluoropropyl, 1-bromomethyl-2-bromoethyl, and the like. The alkyl part of the haloalkyl radical may be optionally substituted as defined above for an alkyl group.

“Heterocyclyl” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, the term “heterocyclyl” is meant to include heterocyclyl radicals as defined above which are optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, oxo, thioxo, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R15—OR14, —R15—OC(O)—R14, —R15—N(R14)2, —R15—C(O)R14, —R15—C(O)OR14, —R15—C(O)N(R14)2, —R15—N(R14)C(O)OR16, —R15—N(R14)C(O)R16, —R15—N(R14)S(O)tR16 (where t is 1 to 2), —R15—S(O)tOR16 (where t is 1 to 2), —R15—S(O)tR16 (where t is 0 to 2), and —R15—S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R15 is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R16 is alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted.

“Heterocyclylalkyl” refers to a radical of the formula —RaRe where Ra is an alkyl radical as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. The alkyl part of the heterocyclylalkyl radical may be optionally substituted as defined above for an alkyl group. The heterocyclyl part of the heterocyclylalkyl radical may be optionally substituted as defined above for a heterocyclyl group.

“Heteroaryl” refers to a 5- to 18-membered aromatic ring radical which consists of one to seventeen carbon atoms and from one to ten heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzthiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e. thienyl). Unless stated otherwise specifically in the specification, the term “heteroaryl” is meant to include heteroaryl radicals as defined above which are optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkoxy, halo, haloalkyl, haloalkenyl, cyano, oxo, thioxo, nitro, oxo, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R15—OR14, —R15—OC(O)—R14, —R15—N(R14)2, —R15—C(O)R14, —R15—C(O)OR14, —R15C(O)N(R14)2, —R15—N(R14)C(O)OR16, —R15—N(R14)C(O)R16, —R15—N(R14)S(O)tR16 (where t is 1 to 2), —R15—S(O)tOR16 (where t is 1 to 2), —R15—S(O)tR16 (where t is 0 to 2), and —R15—S(O)tN(R14)2 (where t is 1 to 2) where each R14 is independently hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R15 is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R16 is alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted.

“Heteroarylalkyl” refers to a radical of the formula —RaRf where Ra is an alkyl radical as defined above and Rf is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkyl radical may be optionally substituted as defined above for a heteroaryl group. The alkyl part of the heteroarylalkyl radical may be optionally substituted as defined above for an alkyl group.

“Heteroarylalkenyl” refers to a radical of the formula —RbRf where Rb is an alkenyl radical as defined above and Rf is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkenyl radical may be optionally substituted as defined above for a heteroaryl group. The alkenyl part of the heteroarylalkenyl radical may be optionally substituted as defined above for an alkenyl group.

“Trihaloalkyl” refers to an alkyl radical, as defined above, that is substituted by three halo radicals, as defined above, e.g., trifluoromethyl. The alkyl part of the trihaloalkyl radical may be optionally substituted as defined above for an alkyl group.

“Trihaloalkoxy” refers to a radical of the formula —ORg where Rg is a trihaloalkyl group as defined above. The trihaloalkyl part of the trihaloalkoxy group may be optionally substituted as defined above for a trihaloalkyl group.

“Analgesia” refers to an absence of pain in response to a stimulus that would normally be painful.

“Allodynia” refers to a condition in which a normally innocuous sensation, such as pressure or light touch, is perceived as being extremely painful.

“Prodrugs” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., “Pro-drugs as Novel Delivery Systems,” A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein.

The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like.

The invention disclosed herein is also meant to encompass all pharmaceutically acceptable compounds of formula (I) being isotopically-labelled by having one or more atoms replaced by an atom having a different atomic mass or mass number. Examples of isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 31P, 32P, 35S, 18F, 36Cl, 123I, and 125I, respectively. These radiolabelled compounds could be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or mode of action on the sodium channels, or binding affinity to pharmacologically important site of action on the sodium channels. Certain isotopically-labelled compounds of formula (I), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, i.e. 3H, and carbon-14, i.e. 14C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.

Substitution with heavier isotopes such as deuterium, i.e. 2H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.

Substitution with positron emitting isotopes, such as 11C, 18F, 15O and 13N, can be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Examples and Preparations as set out below using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.

The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reducation, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically are identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its coversion products from the urine, blood or other biological samples.

“Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

“Mammal” includes humans and both domestic animals such as laboratory animals and household pets, (e.g. cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildelife and the like.

“Optional” or “optionally” means that the subsequently described event of circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution.

“Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.

“Pharmaceutically acceptable salt” includes both acid and base addition salts.

“Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like.

“Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.

Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent.

A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor.

“Therapeutically effective amount” refers to that amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to effect treatment, as defined below, of a sodium channel-mediated disease or condition in the mammal, preferably a human. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure.

“Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes:

(i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it;

(ii) inhibiting the disease or condition, i.e., arresting its development;

(iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or

(iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians.

The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centres and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallisation. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.

A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another.

A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds.

Also within the scope of the invention are intermediate compounds of formula (I) and all polymorphs of the aforementioned species and crystal habits thereof.

The chemical naming protocol and structure diagrams used herein are a modified form of the I.U.P.A.C. nomenclature system, using the ACD/Name Version 9.07 software program, wherein the compounds of the invention are named herein as derivatives of the central core structure, i.e., the 2-oxindole structure. For complex chemical names employed herein, a substituent group is named before the group to which it attaches. For example, cyclopropylethyl comprises an ethyl backbone with cyclopropyl substituent. In chemical structure diagrams, all bonds are identified, except for some carbon atoms, which are assumed to be bonded to sufficient hydrogen atoms to complete the valency.

Thus, for example, a compound of formula (I) wherein j is 0, k is 1, Q is —O—, R1 is pentyl, R2a is 3,5-dichlorophenyl, R2b, R2c and R2d are each hydrogen, R3a and R3d are each hydrogen, and R3b and R3c, together with the carbon ring atoms to which they are attached, form a fused dioxolyl ring; i.e., a compound of the following formula:

is named herein as 4′-(3,5-dichlorophenyl)-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one.

Embodiments of the Invention

Of the various aspects of the invention set forth above in the Summary of the Invention, certain embodiments are preferred.

One embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl; or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;

each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and

each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, halo or alkyl;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R 8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3c are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkylalkyl, —R8—OR5, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, halo or alkyl;
  • R3a and R3d are both hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the Invention wherein:

  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkylalkyl, —R8—OR5, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, halo or alkyl;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the Invention wherein:

  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkylalkyl, —R8—OR5, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, halo or alkyl;
  • R3a and R3d are both hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused optionally substituted heterocyclyl ring or a fused optionally substituted cycloalkyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the Invention wherein:

  • R1 is aryl, heteroaryl or heterocyclyl;
  • R2a, R2b, R2c and R2d are each hydrogen; and
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is hydrogen, alkyl, —R8—C(O)OR5 or —R8—C(O)N(R4)R5;
  • R2a is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a is optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(o)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • R2b, R2c and R2d are each hydrogen;
  • R3a, R3b, R3c and R3d are each independently selected from hydrogen or halo;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl and R3a and R3d are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or j is 1 and k is 0;
  • Q is —O—;
  • R1 is hydrogen or alkyl;
  • R2a is selected from the group consisting of alkyl, haloalkenyl, aryl, aralkyl, aralkenyl, heterocyclyl, heteroaryl, —R8—C(O)N(R4)R5, and —R8—N(R4)R5;
    • wherein each of the aryl, aralkyl, aralkenyl, heterocyclyl and heteroaryl groups for R2a is optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • R2b, R2c and R2d are each hydrogen;
  • R3a, R3b, R3c and R3d are each independently selected from hydrogen or halo;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring or a fused optionally substituted tetrahydrofuranyl ring, and R3a and R3d are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl; and
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5 or —R9—N(R4)R5;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • wherein each aryl, aralkyl, heterocyclyl and heteroaryl groups for R6 and R7 is optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, alkyl or halo;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl; and
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, alkyl or halo;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, halo, and —R8—OR5
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, dioxolyl, tetrahydrofuranyl, and heteroaryl, and R3a and R3d are each hydrogen;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl; and
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain. Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:
  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R5—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is —R9—N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is —R9—N(R12)C(O)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c an R2d are each independently selected from hydrogen, halo, alkyl or —R8—OR5;
  • R3a, R3b, R3c and R3d are each independently selected from hydrogen, halo, alkyl or —R8—OR5;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are each hydrogen;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl; and
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1;
  • Q is —O—;
  • R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from hydrogen, halo, alkyl or —R8—OR5;
  • R3a, R3b, R3c and R3d are each independently selected from hydrogen, halo, alkyl or —R8—OR5;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from dioxolyl or tetrahydrofuranyl, and R3a and R3d are each hydrogen;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl; and
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5; —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • R3a and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from dioxolyl or tetrahydrofuranyl, and R3a and R3d are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • at least one of j and k is 1 and the other is 0 or 1;
  • Q is —O—;
  • R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R5—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —O—;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)mR5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(R1a)H—, —C(O)—, —CF2—, —C(O)O— or —N(R5)C(O)—;
  • R1a is hydrogen or —OR5;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)mR5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • or R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(R1a)H—;
  • R1a is hydrogen or —OR5;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R5—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN—R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(R1a)H—;
  • R1a is hydrogen or —OR5;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
    • R2a, R2b, R2c and R2d are each hydrogen;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(R1a)H—;
  • R1a is hydrogen or —OR5;
  • R1 is pentyl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring; and
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(O)—, —CF2—, —C(O)O— or —N(R5)C(O)—;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
  • or R1 is aralkyl substituted by —C(O)N(R6)R7 where:
    • R6 is hydrogen, alkyl, aryl or aralkyl; and
    • R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl;
    • or R6 and R7, together with the nitrogen to which they are attached, form a heterocyclyl or heteroaryl;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
  • or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
  • or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where:
    • each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl;
    • each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and
    • R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5;
    • and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl group for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
  • or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
  • R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
    • and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
  • or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
  • or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
  • R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R4)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
  • or R3a and R3b, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
  • or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
  • or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
  • each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
  • or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(O)—, —CF2—, —C(O)O— or —N(R5)C(O)—;
  • R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
    • R2a, R2b, R2c and R2d are each hydrogen;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl;
  • each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
  • each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

Another embodiment of the invention are the compounds of formula (I) as set forth above in the Summary of the invention wherein:

  • j is 0 and k is 1 or 2;
  • Q is —C(O)—, —CF2—, —C(O)O— or —N(R5)C(O)—;
  • R1 is pentyl;
  • R2a, R2b, R2c and R2d are each hydrogen;
  • R3a and R3d are each hydrogen;
  • R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring; and
  • each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl.

Specific embodiments of the compounds of formula (I) are described in more detail below in the Preparation of the Compounds of the Invention.

Utility and Testing of the Compounds of the Invention

The present invention relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of sodium channel-mediated diseases, preferably diseases related to pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome, by administering to a patient in need of such treatment an effective amount of a sodium channel blocker modulating, especially inhibiting, agent.

In general, the present invention provides a method for treating a patient for, or protecting a patient from developing, a sodium channel-mediated disease, especially pain, comprising administering to an animal, such as a mammal, especially a human patient in need thereof, a therapeutically effective amount of a compound of the invention or a pharmaceutical composition comprising a compound of the invention wherein the compound modulates the activity of one or more voltage-dependent sodium channels.

The general value of the compounds of the invention in mediating, especially inhibiting, the sodium channel ion flux can be determined using the assays described below in the Biological Assays section. Alternatively, the general value of the compounds in treating conditions and diseases may be established in industry standard animal models for demonstrating the efficacy of compounds in treating pain. Animal models of human neuropathic pain conditions have been developed that result in reproducible sensory deficits (allodynia, hyperalgesia, and spontaneous pain) over a sustained period of time that can be evaluated by sensory testing. By establishing the degree of mechanical, chemical, and temperature induced allodynia and hyperalgesia present, several physiopathological conditions observed in humans can be modeled allowing the evaluation of pharmacotherapies.

In rat models of peripheral nerve injury, ectopic activity in the injured nerve corresponds to the behavioural signs of pain. In these models, intravenous application of the sodium channel blocker and local anesthetic lidocaine can suppress the ectopic activity and reverse the tactile allodynia at concentrations that do not affect general behaviour and motor function (Mao, J. and Chen, L. L, Pain (2000), 87:7-17). Allimetric scaling of the doses effective in these rat models, translates into doses similar to those shown to be efficacious in humans (Tanelian, D. L. and Brose, W. G., Anesthesiology (1991), 74(5):949-951). Furthermore, Lidoderm®, lidocaine applied in the form of a dermal patch, is currently an FDA approved treatment for post-herpetic neuralgia (Devers, A. and Glaler, B. S., Clin. J. Pain (2000), 16(3):205-8).

Sodium channel blockers have clinical uses in addition to pain. Epilepsy and cardiac arrhythmias are often targets of sodium channel blockers. Recent evidence from animal models suggest that sodium channel blockers may also be useful for neuroprotection under ischaemic conditions caused by stroke or neural trauma and in patients with multiple sclerosis (MS) (Clare, J. J. et al., op. cit. and Anger, T. et al., op. cit.).

The compounds of the invention modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel in a mammal, especially in a human. Any such modulation, whether it be partial or complete inhibition or prevention of ion flux, is sometimes referred to herein as “blocking” and corresponding compounds as “blockers”. In general, the compounds of the invention modulates the activity of a sodium channel downwards, inhibits the voltage-dependent activity of the sodium channel, and/or reduces or prevents sodium ion flux across a cell membrane by preventing sodium channel activity such as ion flux.

The compounds of the instant invention are sodium channel blockers and are therefore useful for treating diseases and conditions in humans and other organisms, including all those human diseases and conditions which are the result of aberrant voltage-dependent sodium channel biological activity or which may be ameliorated by modulation of voltage-dependent sodium channel biological activity.

As defined herein, a sodium channel-mediated disease or condition refers to a disease or condition which is ameliorated upon modulation of the sodium channel and includes, but is not limited to, pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.

A sodium channel-mediated disease or condition also includes pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, glossopharyngeal neuralgia, neuropathy secondary to metastatic infiltration, adiposis dolorosa, thalamic lesions, hypertension, autoimmune disease, asthma, drug addiction (e.g. opiate, benzodiazepine, amphetamine, cocaine, alcohol, butane inhalation), Alzheimer, dementia, age-related memory impairment, Korsakoff syndrome, restenosis, urinary dysfunction, incontinence, parkinson's disease, cerebrovascular ischemia, neurosis, gastrointestinal disease, sickle cell anemia, transplant rejection, heart failure, myocardial infarction, reperfusion injury, intermittant claudication, angina, convulsion, respiratory disorders, cerebral or myocardial ischemias, long-QT syndrome, Catecholeminergic polymorphic ventricular tachycardia, ophthalmic diseases, spasticity, spastic paraplegia, myopathies, myasthenia gravis, paramyotonia congentia, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, alopecia, anxiety disorders, psychotic disorders, mania, paranoia, seasonal affective disorder, panic disorder, obsessive compulsive disorder (OCD), phobias, autism, Aspergers Syndrome, Retts syndrome, disintegrative disorder, attention deficit disorder, aggressivity, impulse control disorders, thrombosis, pre clampsia, congestive cardiac failure, cardiac arrest, Freidrich's ataxia, Spinocerebellear ataxia, myelopathy, radiculopathy, systemic lupus erythamatosis, granulomatous disease, olivo-ponto-cerebellar atrophy, spinocerebellar ataxia, episodic ataxia, myokymia, progressive pallidal atrophy, progressive supranuclear palsy and spasticity, traumatic brain injury, cerebral oedema, hydrocephalus injury, spinal cord injury, anorexia nervosa, bulimia, Prader-Willi syndrome, obesity, optic neuritis, cataract, retinal haemorrhage, ischaemic retinopathy, retinitis pigmentosa, acute and chronic glaucoma, macular degeneration, retinal artery occlusion, Chorea, Huntington's chorea, cerebral edema, proctitis, post-herpetic neuralgia, eudynia, heat sensitivity, sarcoidosis, irritable bowel syndrome, Tourette syndrome, Lesch-Nyhan Syndrome, Brugado syndrome, Liddle syndrome, Crohns disease, multiple sclerosis and the pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), disseminated sclerosis, diabetic neuropathy, peripheral neuropathy, charcot marie tooth syndrome, arthritic, rheumatoid arthritis, osteoarthritis, chondrocalcinosis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, myotonic dystrophy, muscular dystrophy, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, mental handicap, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, rectal pain, cancer, epilepsy, partial and general tonic seizures, febrile seizures, absence seizures (petit mal), myoclonic seizures, atonic seizures, clonic seizures, Lennox Gastaut, West Syndrome (infantile spasms), multiresistant seizures, seizure prophylaxis (anti-epileptogenic), familial Mediterranean fever syndrome, gout, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation and as a general or local anaesthetic.

As used herein, the term “pain” refers to all categories of pain and is recognized to include, but is not limited to, neuropathic pain, inflammatory pain, nociceptive pain, idiopathic pain, neuralgic pain, orofacial pain, burn pain, burning mouth syndrome, somatic pain, visceral pain, myofacial pain, dental pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, reflex sympathetic dystrophy, brachial plexus avulsion, neurogenic bladder, acute pain (e.g. musculoskeletal and post-operative pain), chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, familial hemiplegic migraine, conditions associated with cephalic pain, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, pain following stroke, thalamic lesions, radiculopathy, HIV pain, post-herpetic pain, non-cardiac chest pain, irritable bowel syndrome and pain associated with bowel disorders and dyspepsia, and combinations thereof.

The compounds identified in the instant specification inhibit the ion flux through a voltage-dependent sodium channel. Preferably, the compounds are state or frequency dependent modifiers of the sodium channels, having a low affinity for the rested/closed state and a high affinity for the inactivated state. These compounds are likely to interact with overlapping sites located in the inner cavity of the sodium conducting pore of the channel similar to that described for other state-dependent sodium channel blockers (Cestéle, S., et al., op. cit.). These compounds may also be likely to interact with sites outside of the inner cavity and have allosteric effects on sodium ion conduction through the channel pore.

Any of these consequences may ultimately be responsible for the overall therapeutic benefit provided by these compounds.

The present invention readily affords many different means for identification of sodium channel modulating agents that are useful as therapeutic agents. Identification of modulators of sodium channel can be assessed using a variety of in vitro and in vivo assays, e.g. measuring current, measuring membrane potential, measuring ion flux, (e.g. sodium or guanidinium), measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.

One such protocol involves the screening of chemical agents for ability to modulate the activity of a sodium channel thereby identifying it as a modulating agent.

A typical assay described in Bean et al., J. General Physiology (1983), 83:613-642, and Leuwer, M., et al., Br. J. Pharmacol (2004), 141(1):47-54, uses patch-clamp techniques to study the behaviour of channels. Such techniques are known to those skilled in the art, and may be developed, using current technologies, into low or medium throughput assays for evaluating compounds for their ability to modulate sodium channel behaviour.

A competitive binding assay with known sodium channel toxins such as tetrodotoxin, alpha-scorpion toxins, aconitine, BTX and the like, may be suitable for identifying potential therapeutic agents with high selectivity for a particular sodium channel. The use of BTX in such a binding assay is well known and is described in McNeal, E. T., et al., J. Med. Chem. (1985), 28(3):381-8; and Creveling, C. R., et al., Methods in Neuroscience, Vol. 8: Neurotoxins (Conn PM Ed) (1992), pp. 25-37, Academic Press, New York.

These assays can be carried out in cells, or cell or tissue extracts expressing the channel of interest in a natural endogenous setting or in a recombinant setting. The assays that can be used include plate assays which measure Na+ influx through surrogate markers such as 14C-guanidine influx or determine cell depolarization using fluorescent dyes such as the FRET based and other fluorescent assays or a radiolabelled binding assay employing radiolabelled aconitine, BTX, TTX or STX. More direct measurements can be made with manual or automated electrophysiology systems. The guanidine influx assay is explained in more detail below in the Biological Assays section.

Throughput of test compounds is an important consideration in the choice of screening assay to be used. In some strategies, where hundreds of thousands of compounds are to be tested, it is not desirable to use low throughput means. In other cases, however, low throughput is satisfactory to identify important differences between a limited number of compounds. Often it will be necessary to combine assay types to identify specific sodium channel modulating compounds.

Electrophysiological assays using patch clamp techniques is accepted as a gold standard for detailed characterization of sodium channel compound interactions, and as described in Bean et al., op. cit. and Leuwer, M., et al., op. cit. There is a manual low-throughput screening (LTS) method which can compare 2-10 compounds per day; a recently developed system for automated medium-throughput screening (MTS) at 20-50 patches (i.e. compounds) per day; and a technology from Molecular Devices Corporation (Sunnyvale, Calif.) which permits automated high-throughput screening (HTS) at 1000-3000 patches (i.e. compounds) per day.

One automated patch-clamp system utilizes planar electrode technology to accelerate the rate of drug discovery. Planar electrodes are capable of achieving high-resistance, cells-attached seals followed by stable, low-noise whole-cell recordings that are comparable to conventional recordings. A suitable instrument is the PatchXpress 7000A (Axon Instruments Inc, Union City, Calif.). A variety of cell lines and culture techniques, which include adherent cells as well as cells growing spontaneously in suspension are ranked for seal success rate and stability. Immortalized cells (e.g. HEK and CHO) stably expressing high levels of the relevant sodium ion channel can be adapted into high-density suspension cultures.

Other assays can be selected which allow the investigator to identify compounds which block specific states of the channel, such as the open state, closed state or the resting state, or which block transition from open to closed, closed to resting or resting to open. Those skilled in the art are generally familiar with such assays.

Binding assays are also available, however these are of only limited functional value and information content. Designs include traditional radioactive filter based binding assays or the confocal based fluorescent system available from Evotec OAI group of companies (Hamburg, Germany), both of which are HTS.

Radioactive flux assays can also be used. In this assay, channels are stimulated to open with veratridine or aconitine and held in a stabilized open state with a toxin, and channel blockers are identified by their ability to prevent ion influx. The assay can use radioactive 22[Na] and 14[C] guanidinium ions as tracers. FlashPlate & Cytostar-T plates in living cells avoids separation steps and are suitable for HTS. Scintillation plate technology has also advanced this method to HTS suitability. Because of the functional aspects of the assay, the information content is reasonably good.

Yet another format measures the redistribution of membrane potential using the FLIPR system membrane potential kit (HTS) available from Molecular Dynamics (a division of Amersham Biosciences, Piscataway, N.J.). This method is limited to slow membrane potential changes. Some problems may result from the fluorescent background of compounds. Test compounds may also directly influence the fluidity of the cell membrane and lead to an increase in intracellular dye concentrations. Still, because of the functional aspects of the assay, the information content is reasonably good.

Sodium dyes can be used to measure the rate or amount of sodium ion influx through a channel. This type of assay provides a very high information content regarding potential channel blockers. The assay is functional and would measure Na+ influx directly. CoroNa Red, SBFI and/or sodium green (Molecular Probes, Inc. Eugene Oreg.) can be used to measure Na influx; all are Na responsive dyes. They can be used in combination with the FLIPR instrument. The use of these dyes in a screen has not been previously described in the literature. Calcium dyes may also have potential in this format.

In another assay, FRET based voltage sensors are used to measure the ability of a test compound to directly block Na influx. Commercially available HTS systems include the VIPR™ II FRET system (Aurora Biosciences Corporation, San Diego, Calif., a division of Vertex Pharmaceuticals, Inc.) which may be used in conjunction with FRET dyes, also available from Aurora Biosciences. This assay measures sub-second responses to voltage changes. There is no requirement for a modifier of channel function. The assay measures depolarization and hyperpolarizations, and provides ratiometric outputs for quantification. A somewhat less expensive MTS version of this assay employs the FLEXstation™ (Molecular Devices Corporation) in conjunction with FRET dyes from Aurora Biosciences. Other methods of testing the compounds disclosed herein are also readily known and available to those skilled in the art.

These results provide the basis for analysis of the structure-activity relationship (SAR) between test compounds and the sodium channel. Certain substituents on the core structure of the test compound tend to provide more potent inhibitory compounds. SAR analysis is one of the tools those skilled in the art may now employ to identify preferred embodiments of the compounds of the invention for use as therapeutic agents.

Modulating agents so identified are then tested in a variety of in vivo models so as to determine if they alleviate pain, especially chronic pain or other conditions such as arrhythmias and epilepsy with minimal adverse events. The assays described below in the Biological Assays Section are useful in assessing the biological activity of the instant compounds.

Typically, a successful therapeutic agent of the present invention will meet some or all of the following criteria. Oral availability should be at or above 20%. Animal model efficacy is less than about 0.1 μg to about 100 mg/Kg body weight and the target human dose is between 0.1 μg to about 100 mg/Kg body weight, although doses outside of this range may be acceptable (“mg/Kg” means milligrams of compound per kilogram of body mass of the subject to whom it is being administered). The therapeutic index (or ratio of toxic dose to therapeutic dose) should be greater than 100. The potency (as expressed by IC50 value) should be less than 10 μM, preferably below 1 μM and most preferably below 50 nM. The IC50 (“Inhibitory Concentration—50%”) is a measure of the amount of compound required to achieve 50% inhibition of ion flux through a sodium channel, over a specific time period, in an assay of the invention. Compounds of the present invention in the guanidine influx assay have demonstrated IC-50s ranging from less than a nanomolar to less than 10 micromolar.

In an alternative use of the invention, the compounds of the invention can be used in in vitro or in vivo studies as exemplary agents for comparative purposes to find other compounds also useful in treatment of, or protection from, the various diseases disclosed herein.

Another aspect of the invention relates to inhibiting NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity in a biological sample or a patient, which method comprises administering to the patient, or contacting said biological sample with a compound of formula I or a composition comprising said compound. The term “biological sample”, as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.

Inhibition of NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, the study of sodium ion channels in biological and pathological phenomena; and the comparative evaluation of new sodium ion channel inhibitors.

Pharmaceutical Compositions of the Invention and Administration

The present invention also relates to pharmaceutical composition containing the compounds of the invention disclosed herein. In one embodiment, the present invention relates to a composition comprising compounds of the invention in a pharmaceutically acceptable carrier and in an amount effective to modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel to treat sodium channel mediated diseases, such as pain, when administered to an animal, preferably a mammal, most preferably a human patient.

The pharmaceutical compositions useful herein also contain a pharmaceutically acceptable carrier, including any suitable diluent or excipient, which includes any pharmaceutical agent that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Pharmaceutically acceptable carriers include, but are not limited to, liquids, such as water, saline, glycerol and ethanol, and the like. A thorough discussion of pharmaceutically acceptable carriers, diluents, and other excipients is presented in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. current edition).

Those skilled in the art know how to determine suitable doses of the compounds for use in treating the diseases and conditions contemplated herein. Therapeutic doses are generally identified through a dose ranging study in humans based on preliminary evidence derived from animal studies. Doses must be sufficient to result in a desired therapeutic benefit without causing unwanted side effects for the patient.

A typical regimen for treatment of sodium channel-mediated disease comprises administration of an effective amount over a period of one or several days, up to and including between one week and about six months, or it may be chronic. It is understood that the dosage of a diagnostic/pharmaceutical compound or composition of the invention administered in vivo or in vitro will be dependent upon the age, sex, health, and weight of the recipient, severity of the symptoms, kind of concurrent treatment, if any, frequency of treatment, the response of the individual, and the nature of the diagnostic/pharmaceutical effect desired. The ranges of effective doses provided herein are not intended to be limiting and represent preferred dose ranges. However, the most preferred dosage will be tailored to the individual subject, as is understood and determinable by one skilled in the relevant arts. (see, e.g., Berkowet al., eds., The Merck Manual, 16th edition, Merck and Co., Rahway, N.J., 1992; Goodmanetna., eds., Goodman and Cilman's The Pharmacological Basis of Therapeutics, 10th edition, Pergamon Press, Inc., Elmsford, N.Y., (2001); Avery's Drug Treatment: Principles and Practice of Clinical Pharmacology and Therapeutics, 3rd edition, ADIS Press, LTD., Williams and Wilkins, Baltimore, Md. (1987), Ebadi, Pharmacology, Little, Brown and Co., Boston, (1985); Osolci al., eds., Remington's Pharmaceutical Sciences; 18th edition, Mack Publishing Co., Easton, Pa. (1990); Katzung, Basic and Clinical Pharmacology, Appleton and Lange, Norwalk, Conn. (1992)).

The total dose required for each treatment can be administered by multiple doses or in a single dose over the course of the day, if desired. Generally, treatment is initiated with smaller dosages, which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. The diagnostic pharmaceutical compound or composition can be administered alone or in conjunction with other diagnostics and/or pharmaceuticals directed to the pathology, or directed to other symptoms of the pathology. Effective amounts of a diagnostic pharmaceutical compound or composition of the invention are from about 0.1 μg to about 100 mg/Kg body weight, administered at intervals of 4-72 hours, for a period of 2 hours to 1 year, and/or any range or value therein, such as 0.0001-0.001, 0.001-0.01, 0.01-0.1, 0.1-1.0, 1.0-10, 5-10, 10-20, 20-50 and 50-100 mg/Kg, at intervals of 1-4, 4-10, 10-16, 16-24, 24-36, 24-36, 36-48, 48-72 hours, for a period of 1-14, 14-28, or 30-44 days, or 1-24 weeks, or any range or value therein. The recipients of administration of compounds and/or compositions of the invention can be any vertebrate animal, such as mammals. Among mammals, the preferred recipients are mammals of the Orders Primate (including humans, apes and monkeys), Arteriodactyla (including horses, goats, cows, sheep, pigs), Rodenta (including mice, rats, rabbits, and hamsters), and Carnivora (including cats, and dogs). Among birds, the preferred recipients are turkeys, chickens and other members of the same order. The most preferred recipients are humans.

For topical applications, it is preferred to administer an effective amount of a pharmaceutical composition according to the invention to target area, e.g., skin surfaces, mucous membranes, and the like, which are adjacent to peripheral neurons which are to be treated. This amount will generally range from about 0.0001 mg to about 1 g of a compound of the invention per application, depending upon the area to be treated, whether the use is diagnostic, prophylactic or therapeutic, the severity of the symptoms, and the nature of the topical vehicle employed. A preferred topical preparation is an ointment, wherein about 0.001 to about 50 mg of active ingredient is used per cc of ointment base. The pharmaceutical composition can be formulated as transdermal compositions or transdermal delivery devices (“patches”). Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive. Such transdermal patches may be used to provide continuous pulsatile, or on demand delivery of the compounds of the present invention as desired.

The composition may be intended for rectal administration, in the form, e.g., of a suppository which will melt in the rectum and release the drug. A typical suppository formulation will generally consist of active ingredient with a binding and/or lubricating agent such as a gelatine or cocoa butter or other low melting vegetable or synthetic wax or fat.

A typical formulation for intramuscular or intrathecal administration will consist of a suspension or solution of active in an oil or solution of active ingredient in an oil, for example arachis oil or sesame oil. A typical formulation for intravenous or intrathecal administration will consist of sterile isotonic aqueous solution containing, for example active ingredient and dextrose or sodium chloride or a mixture of dextrose and sodium chloride.

The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art. Controlled release drug delivery systems include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770 and 4,326,525 and in P. J. Kuzma et al, Regional Anesthesia 22 (6): 543-551 (1997), all of which are incorporated herein by reference.

The compositions of the invention can also be delivered through intra-nasal drug delivery systems for local, systemic, and nose-to-brain medical therapies. Controlled Particle Dispersion (CPD)™ technology, traditional nasal spray bottles, inhalers or nebulizers are known by those skilled in the art to provide effective local and systemic delivery of drugs by targeting the olfactory region and paranasal sinuses.

The invention also relates to an intravaginal shell or core drug delivery device suitable for administration to the human or animal female. The device may be comprised of the active pharmaceutical ingredient in a polymer matrix, surrounded by a sheath, and capable of releasing the compound in a substantially zero order pattern on a daily basis similar to devises used to apply testosterone as described in PCT Patent No. WO 98/50016.

Current methods for ocular delivery include topical administration (eye drops), subconjunctival injections, periocular injections, intravitreal injections, surgical implants and iontophoresis (uses a small electrical current to transport ionized drugs into and through body tissues) Those skilled in the art would combine the best suited excipients with the compound for safe and effective intra-occular administration.

The most suitable route will depend on the nature and severity of the condition being treated. Those skilled in the art are also familiar with determining administration methods (oral, intravenous, inhalation, sub-cutaneous, rectal etc.), dosage forms, suitable pharmaceutical excipients and other matters relevant to the delivery of the compounds to a subject in need thereof.

Combination Therapy

The compounds of the invention may be usefully combined with one or more other compounds of the invention or one or more other therapeutic agent or as any combination thereof, in the treatment of sodium channel-mediated diseases and conditions. For example, a compound of formula (I) may be administered simultaneously, sequentially or separately in combination with other therapeutic agents, including, but not limited to:

    • opiates analgesics, e.g. morphine, heroin, cocaine, oxymorphine, levorphanol, levallorphan, oxycodone, codeine, dihydrocodeine, propoxyphene, nalmefene, fentanyl, hydrocodone, hydromorphone, meripidine, methadone, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine and pentazocine;
    • non-opiate analgesics, e.g. acetaminophen, salicylates (e.g. aspirin);
    • nonsteroidal antiinflammatory drugs (NSAIDs), e.g. ibuprofen, naproxen, fenoprofen, ketoprofen, celecoxib, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, meloxicam, nabumetone, naproxen, nimesulide, nitroflurbiprofen, olsalazine, oxaprozin, phenylbutazone, piroxicam, sulfasalazine, sulindac, tolmetin and zomepirac;
    • anticonvulsants, e.g. carbamazepine, oxcarbazepine, lamotrigine, valproate, topiramate, gabapentin and pregabalin;
    • antidepressants such as tricyclic antidepressants, e.g. amitriptyline, clomipramine, despramine, imipramine and nortriptyline;
    • COX-2 selective inhibitors, e.g. celecoxib, rofecoxib, parecoxib, valdecoxib, deracoxib, etoricoxib, and lumiracoxib;
    • alpha-adrenergics, e.g. doxazosin, tamsulosin, clonidine, guanfacine, dexmetatomidine, modafinil, and 4-amino-6,7-dimethoxy-2-(5-methane sulfonamido-1,2,3,4-tetrahydroisoquinol-2-yl)-5-(2-pyridyl) quinazoline;
    • barbiturate sedatives, e.g. amobarbital, aprobarbital, butabarbital, butabital, mephobarbital, metharbital, methohexital, pentobarbital, phenobarbital, secobarbital, talbutal, theamylal and thiopental;
    • tachykinin (NK) antagonist, particularly an NK-3, NK-2 or NK-1 antagonist, e.g. (αR,9R)-7-[3,5-bis(trifluoromethyl)benzyl)]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]-naphthyridine-6-13-dione (TAK-637), 5-[[2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethylphenyl]ethoxy-3-(4-fluorophenyl)-4-morpholinyl]-methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one (MK-869), aprepitant, lanepitant, dapitant or 3-[[2-methoxy5-(trifluoromethoxy)phenyl]-methylamino]-2-phenylpiperidine (2S,3S);
    • coal-tar analgesics, in particular paracetamol;
    • serotonin reuptake inhibitors, e.g. paroxetine, sertraline, norfluoxetine (fluoxetine desmethyl metabolite), metabolite demethylsertraline, ′3 fluvoxamine, paroxetine, citalopram, citalopram metabolite desmethylcitalopram, escitalopram, d,l-fenfluramine, femoxetine, ifoxetine, cyanodothiepin, litoxetine, dapoxetine, nefazodone, cericlamine, trazodone and fluoxetine;
    • noradrenaline (norepinephrine) reuptake inhibitors, e.g. maprotiline, lofepramine, mirtazepine, oxaprotiline, fezolamine, tomoxetine, mianserin, buproprion, buproprion metabolite hydroxybuproprion, nomifensine and viloxazine (Vivalan®)), especially a selective noradrenaline reuptake inhibitor such as reboxetine, in particular (S,S)-reboxetine, and venlafaxine duloxetine neuroleptics sedative/anxiolytics;
    • dual serotonin-noradrenaline reuptake inhibitors, such as venlafaxine, venlafaxine metabolite O-desmethylvenlafaxine, clomipramine, clomipramine metabolite desmethylclomipramine, duloxetine, milnacipran and imipramine;
    • acetylcholinesterase inhibitors such as donepezil;
    • 5-HT3 antagonists such as ondansetron;
    • metabotropic glutamate receptor (mGluR) antagonists;
    • local anaesthetic such as mexiletine and lidocaine;
    • corticosteroid such as dexamethasone;
    • antiarrhythmics, e.g. mexiletine and phenyloin;
    • muscarinic antagonists, e.g., tolterodine, propiverine, tropsium t chloride, darifenacin, solifenacin, temiverine and ipratropium;
    • cannabinoids;
    • vanilloid receptor agonists (e.g. resinferatoxin) or antagonists (e.g. capsazepine);
    • sedatives, e.g. glutethimide, meprobamate, methaqualone, and dichloralphenazone;
    • anxiolytics such as benzodiazepines,
    • antidepressants such as mirtazapine,
    • topical agents (e.g. lidocaine, capsaicin and resiniferotoxin);
    • muscle relaxants such as benzodiazepines, baclofen, carisoprodol, chlorzoxazone, cyclobenzaprine, methocarbamol and orphrenadine;
    • anti-histamines or H1 antagonists;
    • NMDA receptor antagonists;
    • 5-HT receptor agonists/antagonists;
    • PDEV inhibitors;
    • Tramadol®;
    • cholinergic (nicotinc) analgesics;
    • alpha-2-delta ligands;
    • prostaglandin E2 subtype antagonists;
    • leukotriene B4 antagonists; and
    • 5-lipoxygenase inhibitors.

Sodium channel-mediated diseases and conditions that may be treated and/or prevented using such combinations include but not limited to, pain, central and peripherally mediated, acute, chronic, neuropathic as well as other diseases with associated pain and other central nervous disorders such as epilepsy, anxiety, depression and bipolar disease; or cardiovascular disorders such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular disorders such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.

As used herein “combination” refers to any mixture or permutation of one or more compounds of the invention and one or more other compounds of the invention or one or more additional therapeutic agent. Unless the context makes clear otherwise, “combination” may include simultaneous or sequentially delivery of a compound of the invention with one or more therapeutic agents. Unless the context makes clear otherwise, “combination” may include dosage forms of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include routes of administration of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include formulations of a compound of the invention with another therapeutic agent. Dosage forms, routes of administration and pharmaceutical compositions include, but are not limited to, those described herein.

Kits-of-Parts

The present invention also provides kits that contain a pharmaceutical composition which includes one or more compounds of the above formulae. The kit also includes instructions for the use of the pharmaceutical composition for modulating the activity of ion channels, for the treatment of pain, as well as other utilities as disclosed herein. Preferably, a commercial package will contain one or more unit doses of the pharmaceutical composition. For example, such a unit dose may be an amount sufficient for the preparation of an intravenous injection. It will be evident to those of ordinary skill in the art that compounds which are light and/or air sensitive may require special packaging and/or formulation. For example, packaging may be used which is opaque to light, and/or sealed from contact with ambient air, and/or formulated with suitable coatings or excipients.

Preparation of the Compounds of the Invention

The following Reaction Schemes illustrate methods to make compounds of this invention, i.e., compounds of formula (I):

wherein k, j, Q, R1, R2a, R2b, R2c, R2d, R3a, R3b, R3c, and R3d are as defined herein, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof.

It is understood that in the following description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.

It will also be appreciated by those skilled in the art that in the process described below the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (e.g., t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include —C(O)—R″ (where R″ is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters.

Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein.

The use of protecting groups is described in detail in Greene, T. W. and P. G. M. Wuts, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. The protecting group may also be a polymer resin such as a Wang resin or a 2-chlorotrityl-chloride resin.

It will also be appreciated by those skilled in the art, although such protected derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as “prodrugs”. All prodrugs of compounds of this invention are included within the scope of the invention.

The following Reaction Schemes illustrate methods to make compounds of this invention. It is understood that one skilled in the art would be able to make these compounds by similar methods or by methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make in a similar manner as described below other compounds of formula (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, e.g., Smith, M. B. and J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described herein.

In the following Reaction Schemes, R1, R2a, R2b, R2c, R2d, R3a, R3b, R3c and R3d are defined as in the Specification unless specifically defined otherwise. X is Cl or Br. R11 is an alkyl group.

In general, the compounds of formula (I) of the invention where Q is —O—, j is 0 and k is 1 can be synthesized following the general procedure as described below in REACTION SCHEME 1. As set forth below, an isatin compound of formula (101) is alkylated with the chloro or bromo compound of formula (102) to afford the product of formula (103). The phenol compound of formula (104) is treated with a Grignard reagent of formula (105) at low temperature (0° C.) to form the phenoxymagnesium halide intermediate which reacts with the keto-carbonyl group of the isatin compound of formula (103) in a solvent, such as, but not limited to, methylene chloride or toluene, to afford the oxindole of formula (106). The compound of formula (107) is obtained after the removal of the hydroxyl group at C-3 position of the oxindole by treating the compound of formula (106) with silane such as triethylsilane. The compound of formula (107) can also be achieved by treating the compound of formula (106) with SOCl2/NEt3 then reduction with Zn dust. Compound of formula (107) is treated with a silyl compound, such as, but not limited to, trimethylsilyl chloride, to generate the silyl ether intermediate which is treated with ytterbium (III) trifluoromethanesulfonate and formaldehyde to afford the compound of formula (108). Alternatively, compound of formula (108) can be obtained by treating the compound of formula (107) with a base, such as, but not limited to, LiOH, iPr2NH, LDA, and subsequently reacting with formaldehyde. Intramolecular cyclization via Mitsunobu reaction affords the compound of formula (I) of the invention where Q is —O—, j is 0 and k is 1.

REACTION SCHEME 1.1 below illustrates a schematic synthesis of amide and heterocyclic compounds as compounds of formula (I). When R1 consists of an ester group, a compound such as a compound of formula (109) (in which A is alkyl or aralkyl) can be converted to the corresponding carboxylic acid compound of formula (110) by treatment of a compound of formula (109) with a base such as, but not limited to, lithium hydroxide, sodium hydroxide or potassium hydroxide, in a mixed solvent such as, but not limited to, tetrahydrofuran or methanol with water. The acid compound of formula (110) can be converted to a mixed anhydride, by treatment with iso-butyl chloroformate in the presence of a base such as, but not limited to, N-methylmorpholine, or to the corresponding acid chloride, by treatment with oxalyl chloride in the presence of catalytic amount of N,N-dimethylformamide in a solvent such as, but not limited to, toluene, dichloromethane or chloroform. The mixed anhydride can react directly with, or the acid chloride can react with, in the presence of a base such as, but not limited to, triethylamine or diisopropyl ethylamine, a primary or secondary amine to form the amide compound of formula (111) as a compound of formula (I). The acid compound of formula (110) can react with an aromatic diamine compound in a solvent such as, but not limited to, toluene to form the benzimidazole compound of formula (111.1) as a compound of formula (I).

REACTION SCHEME 1.2 below illustrates a schematic synthesis of amine compounds as compounds of formula (I). From compound (112), after removal of the protecting group (PG) such as, but not limited to, phthalimido or tert-butyloxycarbonyl, either the primary or secondary amino compound of formula (113) can be formed. Reaction of the amino compound of formula (113) with an acyl chloride in the presence of a base such as, but not limited to, triethylamine or diisopropyl ethylamine, in a solvent such as, but not limited to, toluene, dichloromethane or chloroform provides the amide compound of formula (114) as a compound of formula (I). Treatment of amino compound of formula (113) with an isocyanate in the presence of a base such as, but not limited to, triethylamine or diisopropyl ethylamine, in a solvent such as, but not limited to, dichloromethane or chloroform leads to the formation of the urea compound of formula (115) as a compound of formula (I). When the primary or secondary amino compound of formula (113) is treated with an aldehyde or a ketone in the presence of a reducing agent such as, but not limited to, sodium cyanoborohydride or sodium triacetoxyborohydride, in a solvent such as, but not limited to, dichloromethane, a high order functionalized amine (116) is produced as a compound of formula (I).

REACTION SCHEME 1.3 below illustrates a schematic synthesis of amine compounds as compounds of formula (I). The alcohol compound of formula (118), upon removal of the protecting group in compound of formula (117), can be oxidized to the aldehyde compound of (119) by using an oxidant such as, but not limited to, pyridinium dichromate or Dess-Martin's reagent. Similarly to the transformation of the compound of formula (113) to the compound of formula (116) as illustrated in REACTION SCHEME 1.2, the amine compound of formula (120) can be obtained as a compound of formula (I) through the reductive amination of the aldehyde compound of formula (119) with a primary or secondary amine.

REACTION SCHEME 1.4 below illustrates an alternative synthesis of compounds of formula (I) with the introduction of a variety of R1 groups. Compound of formula (121) where PG is a protecting group such as, but not limited to, diphenylmethyl, can be synthesized through the sequence as shown in REACTION SCHEME 1 above. The protecting group can be removed under a high pressure of hydrogen such as 60 psi to form the oxindole compound of formula (122). The formation of a compound of formula (I) can be achieved by alkylation of the compound of formula (122) with a halide reagent XR1 (where X is chloro, bromo or iodo) in the presence of a base such as, but not limited to, sodium hydride, sodium bis(trimethylsilyl)amide, and lithium hydroxide, in a solvent such as, but not limited to, N,N-dimethylformamide, tetrahydrofuran, acetone or acetonitrile. Alternatively, reaction of compound of formula (122) with an alcohol under Mitsunobu reaction conditions in the presence of a phosphine reagent such as, but not limited to, triphenylphosphine, tributylphosphine or trimethyl phosphine, and azodicarboxylate of diethyl, diisopropyl or di-tert-butyl in a solvent such as, but not limited to, tetrahydrofuran, ethyl acetate or dichloromethane, provides the compound of formula (I). Alternatively, treatment of compound of formula (122) with a base such as, but not limited to, sodium hydride or lithium hydroxide, followed by reacting with an acyl chloride or anhydride, or with a sulfonyl chloride reagent, provides the corresponding acyl or sulfonyl (R1) compound of formula (I) respectively.

When R2a, R2b, R2c, R2d, R3a, R3b, R3c or R3d of the compound of formula (I) is a bromo or trifluoromethylsulfonyloxy group, further derivatives can be synthesized as shown in REACTION SCHEME 1.5 and REACTION SCHEME 1.6 below. The triflate compound can be obtained by treating the bromo compound with diborane in the presence of a palladium catalyst followed by sequential oxidation with hydrogen peroxide/sodium hydroxide and reaction with trifluoromethanesulfonyl anhydride. Compounds of formula (123) or (129) (with either a bromo or a trifluoromethylsulfonyloxy group for R2a, R2b, R2c, R2d, R3a, R3b, R3c or R3d) can react with zinc cyanide or tributyltin cyanide and potassium cyanide in the presence of a palladium catalyst such as, but not limited to, palladium acetate or tris(dibenzylideneacetone)dipalladium(0), and a ligand such as, but not limited to, tri(o-tolyl)phosphine, 1,1′-bis(diphenylphosphino)ferrocene or 2-(di-tert-butylphosphino)biphenyl in a solvent such as, but not limited to, N,N-dimethylformamide or acetonitrile to provide the cyano compounds of formula (124) or formula (130) as compounds of formula (I) (see Marcantonio, K. M., et al, Org. Lett. (2004), 6:3723-5 and Yang, C., et al, Org. Lett. (2004), 6:2837-40). Reaction of compounds of formula (123) or formula (129) (with either a bromo or a trifluoromethylsulfonyloxy group for R2a, R2b, R2c, R2d, R3a, R3b, R3c, or R3d) with a primary or secondary amine in the presence of a palladium catalyst such as, but not limited to, palladium acetate, tetrakis(triphenylphosphine)palladium(0), or tris(dibenzylideneacetone)dipalladium(0), under a pressure of carbon monoxide in a solvent such as, but not limited to, N,N-dimethylformamide or acetonitrile leads to the formation of the amide compound of formula (125) or formula (131) as compounds of formula (I) (See Takahashi, T., et al, Tetrahedron Lett. (1999), 40:7843-6 and Schnyder, A., et al, J. Org. Chem. (2001), 66:4311-5). Under a typical Ullmann coupling reaction conditions, compounds of formula (123) or formula (129) (with either bromo or trifluoromethylsulfonyloxy group for R2a, R2b, R2c, R2d, R3a, R3b, R3c, or R3d) can react with a phenol compound in the presence of a copper reagent such as, but not limited to, copper iodide or copper bromide, a base such as, but not limited to, cesium carbonate or potassium carbonate, an amino acid such as, but not limited to, N,N-dimethylglycine, in a solvent such as, but not limited to, dimethyl sulfoxide, dioxane or acetonitrile, to form the diaryl ether compounds of formula (126) or formula (132) as compounds of formula (I) (see Sawyer, J. S. Tetrahedron (2000), 56:5045-65 and Ma, D., et al, Org. Lett. (2003), 5(21):3799-802). Compounds of formula (123) or formula (129) (with either bromo or trifluoromethylsulfonyloxy group for R2a, R2b, R2c, R2d, R3a, R3b, R3c, or R3d) can react with an arylboronic acid in the presence of a palladium catalyst such as, but not limited to, palladium acetate, tetrakis(triphenylphosphine)palladium(0), or tris(dibenzylideneacetone)dipalladium(0), with or without a ligand such as, but not limited to, triphenylphosphine, tri(o-tolyl)phosphine, 1,1′-bis(diphenylphosphino)ferrocene or 2-(di-tert-butylphosphino)biphenyl, a base such as, but not limited to, sodium carbonate, cesium carbonate, or sodium bicarbonate, in a solvent such as, but not limited to, dimethoxyethane, dioxane, or tetrahedrofuran to provide the coupled product of formula (127) or formula (133) as compounds of formula (I) (see Kotha, S., et al, Tetrahedron (2002), 58:9633 and Miyaura, N., et al, Chem. Rev. (1995), 95:2457). Compound of formula (123) or formula (129) (with either a bromo or a trifluoromethylsulfonyloxy group for R2a, R2b, R2c, R2d, R3a, R3b, R3c, or R3d) can react with a primary or secondary amine in the presence of a palladium catalyst such as, but not limited to, tetrakis(triphenylphosphine)palladium(0) or tris(dibenzylideneacetone)dipalladium(0), with or without a ligand such as, but not limited to, triphenylphosphine, tri(o-tolyl)phosphine, 1,1′-bis(diphenylphosphino)ferrocene or 2-(di-tert-butylphosphino)biphenyl, a base such as, but not limited to, sodium carbonate, cesium carbonate or sodium tert-butoxide, in a solvent such as, but not limited to, dioxane or tetrahedrofuran, to provide the amino compound of formula (128) or formula (134) as compounds of formula (I) (see Muci, A. R., et al, Topics in Current Chemistry (2002), 219:131).

Alternatively, the compound of formula (I) of the invention where Q is —O and k is 1 can be synthesized following the general procedure as described below in REACTION SCHEME 2. As set forth below, a compound of formula (201) is treated with a lithium reagent of formula (202), such as, but not limited to, n-BuLi at low temperature followed by the reaction with keto-carbonyl group of the isatin compound of formula (103) in a solvent, such as, but not limited to, THF to afford the oxindole of formula (203). The compound of formula (204) is obtained after the removal of the hydroxyl group at C-3 position of the oxindole by treating the compound of formula (203) with silane such as triethylsilane. The compound of formula (204) can also be achieved by treating the compound of formula (203) with SOCl2/NEt3 then reduction with Zn dust. Compound of formula (204) is treated with a silyl compound, such as, but not limited to, trimethylsilyl chloride to generate the silyl ether intermediate which is treated with ytterbium (III) trifluoromethanesulfonate and formaldehyde to afford the compound of formula (205). Alternatively, a compound of formula (205) can be obtained by treating the compound of formula (204) with a base, such as, but not limited to, LiOH, iPr2NH, or LDA, and subsequently reacting with formaldehyde. Intramolecular cyclization via Mitsunobu reaction affords the compound of formula (I) of the invention where Q is —O— and k is 1.

Alternatively, the compound of formula (I) of the invention where Q is —O— or —S— and k is 0 can be synthesized following the general procedure as described below in REACTION SCHEME 3 wherein intramolecular cyclization of the compound of formula (203) via Mitsunobu reaction affords the compound of formula (I) of the invention where Q is —O— or —S— and k is 0.

Alternatively, the compound of formula (I) of the invention where Q is —C(O)—, —(CH2)— or —(CF2)— and j is 0 can be synthesized following the general procedure as described in REACTION SCHEME 4. As set forth below, the Grignard reagent of formula (401) reacts with keto-carbonyl group of the isatin compound of formula (103) in a solvent, such as, but not limited to, methylene chloride or toluene to afford the oxindole of formula (402). The compound of formula (403) is obtained after the removal of the hydroxyl group at C-3 position of the oxindole by treating the compound of formula (402) with silane such as triethylsilane. The compound of formula (403) can also be achieved by treating the compound of formula (402) with SOCl2/NEt3, followed by reduction with Zn dust. Compound of formula (403) is alkylated at C-3 position of oxindole ring with a compound of formula (404) to afford the compound of formula (405) which is subjected to saponification to generate the carboxylic acid of formula (406). This carboxylic acid is then converted to an acid chloride of formula (407) following procedures known to one skilled in the art. Intramolecular cyclization in the presence of an Lewis acid, such as, but not limited to, tin (IV) chloride, yields the compound of formula (I) of the invention where Q is —C(O)— and j is 0. The removal of the carbonyl group of the compound of formula (I) using a silane, such as triethylsilane, or other reagents known to the one skilled in the art, yields the compound of formula (I) of the invention where Q is —CH2— and j is 0. Reaction of the carbonyl group of the compound (408) of formula (I) with a fluorinating reagent such as, but not limited to, bis(2-methoxyethyl)aminosulfur trifluoride leads to the formation of di-fluoro compound of formula (I) of the invention where Q is —CF2— and j is 0. Reduction of the carbonyl group of the compound (408) of formula (I) with a reducing agent such as, but not limited to, sodium borohydride provides the hydroxy compound of formula (I) of the invention where Q is —CH(OH)— and j is 0. Further alkylation of the hydroxy compound of formula (I) by the method known to one skilled in the art gives the alkylated compound of formula (I) of the invention where Q is —CH(OR5)— and j is 0.

Alternatively, the compound of formula (I) of the invention where Q is —O—, j is 0 and k is 1 can be synthesized following the general procedure as described below in REACTION SCHEME 5. As set forth below, the phenol compound of formula (104) is treated with a Grignard reagent of formula (105) at low temperature (0° C.) to form the phenoxymagnesium halide intermediate which reacts with the keto-carbonyl group of the isatin compound of formula (101) in a solvent, such as, but not limited to, tetrahedrofuran, methylene chloride or toluene, to afford the heterocyclic compound of formula (501). The compound of formula (502) can be obtained after the removal of the hydroxyl group of the heterocyclic compound by treating the compound of formula (501) with a silane such as triethylsilane. The compound of formula (502) can also be achieved by treating the compound of formula (501) with SOCl2/NEt3 followed by reduction with Zn dust. Compound of formula (502) is treated with a silyl compound such as, but not limited to, trimethylsilyl chloride, to generate the silyl ether intermediate which is treated with ytterbium (III) trifluoromethanesulfonate and formaldehyde to afford the compound of formula (503). Alternatively, compound of formula (503) can be obtained by treating the compound of formula (502) with a base such as, but not limited to, LiOH, iPr2NH, or LDA, and by subsequently reacting with formaldehyde. Intramolecular cyclization via Mitsunobu reaction affords the compound of formula (504) which can be alkylated with a chloro or bromo compound of formula (102) to afford the compound of formula (I) of the invention where Q is —O—, j is 0 and k is 1.

Alternatively, the compound of formula (I) of the invention where Q is —NHC(O)—, j is 0 can be synthesized following the general procedure as described below in REACTION SCHEME 6. As set forth below, treatment of the ketone compound (408) with an azide such as, but not limited to, sodium azide in an acid such as, but not limited to, trifluoroacetic acid provides the Schmidt reaction product of formula (I) of the invention where Q is —NHC(O)—, j is 0.

Alternatively, the compound of formula (I) of the invention where Q is —C(O)O—, j is 0 can be synthesized following the general procedure as described below in REACTION SCHEME 7. As set forth below, treatment of the compound of formula (701), which can be obtained following a similar procedure as for the synthesis of compound of formula (405) as described in REACTION SCHEME 4, with a base such as, but not limited to, lithium hydroxide, sodium hydroxide or potassium hydroxide, in a mixed solvent such as, but not limited to, tetrahydrofuran or methanol with water, leads to the formation of the lactone product of formula (I) of the invention where Q is —C(O)O—, j is 0.

In the following Preparations, which are directed to intermediates used in the preparation of the compounds of formula (I), and in the following Examples, which are directed to compounds of formula (I), the compound numbers presented therein do not correspond to the compound numbers in the above REACTION SCHEMES.

Preparation 1 Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 4-bromo-1-pentyl-1H-indole

To a mixture of sodium hydride (2.54 g, 66.3 mmol, 60% dispersion in mineral oil) in anhydrous N,N-dimethylformamide (50.0 mL) was added 4-bromoindole (10.0 g, 51.0 mmol) at 0° C. The reaction mixture was stirred for 0.5 h followed by the addition of 1-bromopentane (9.25 g, 61.2 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 6 h and quenched with brine solution (20.0 mL). The reaction mixture was diluted with water (100 mL) and extracted with ether (3×200 mL). The combined organic layers was washed with brine (100 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with hexane (100%) to give the title compound (13.3 g, 98%) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.30-7.27 (m, 2H), 7.14 (t, 1H), 6.88 (t, 1H), 6.55 (d, 1H), 4.08 (t, 2H), 1.87-1.77 (m, 2H), 1.39-1.22 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 136.3, 129.2, 128.4, 122.2, 122.1, 114.9, 108.7, 101.3, 46.8, 29.9, 29.1, 22.3, 13.9.

B. Synthesis of 4-bromo-1-pentyl-1H-indole-2,3-dione

To a solution of 4-bromo-1-pentyl-1H-indole (25.0 g, 93.9 mmol) in anhydrous dimethylsulfoxide (350 mL) was added N-bromosuccinimide (50.2 g, 282 mmol) in portions over 30 min. The reaction mixture was heated at 60° C. for 3 h, upon which time the internal temperature increased to 120° C. After cooling down to ambient temperature, the reaction mixture was poured onto ethyl acetate/water (1/1, 600 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×500 mL). The combined organic layers was washed with water (3×500 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to yield the title compound (25.7 g, 92%) as a yellow solid: 1H NMR (300 MHz, CDCl3) δ 7.38 (t, 1H), 7.21 (t, 1H), 6.82 (d, 1H), 3.68 (t, 2H), 1.72-1.59 (m, 2H), 1.39-1.25 (m, 4H), 0.86 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 180.9, 157.2, 152.6, 138.4, 128.3, 121.7, 116.3, 108.9, 40.4, 28.9, 26.9, 22.3, 13.9.

C. Synthesis of 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 1,3-benzodioxol-5-ol (12.8 g, 92.9 mmol) in tetrahydrofuran (200 mL) was added isopropylmagnesium chloride solution (50.7 mL, 101 mmol, 2.0 M in ether) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h, upon which time the colorless precipitate was formed. After the solvent was removed under reduced pressure, the residue was dissolved in methylene chloride (100 mL) and added to a solution of 4-bromo-1-pentyl-1H-indole-2,3-dione (25.0 g, 84.5 mmol) in dichloromethane (100 mL) via a canula over 10 min at 0° C. The reaction mixture was stirred at ambient temperature for 16 h, quenched with saturated ammonium chloride solution (100 mL) and the organic layer was separated. The aqueous layer was extracted with dichloromethane (100 mL). The combined organic layers was washed with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate-hexane to give the title compound (34.9 g, 97%) as a brown gummy material: 1H NMR (300 MHz, DMSO-d6) δ 8.95 (s, 1H), 7.29-7.21 (m, 2H), 6.88-6.81 (m, 1H), 6.55, (s, 1H), 6.14 (s, 1H), 5.86 (dd, 2H), 4.24 (s, 1H), 3.70-3.52 (m, 2H), 1.69-1.55 (m, 2H), 1.31-1.24 (m, 4H), 0.83 (t, 3H); 13C NMR (75 MHz, DMSO-d6) δ 177.6, 152.6, 149.1, 144.8, 141.2, 131.7, 127.7, 127.6, 121.0, 113.8, 108.3, 106.7, 101.7, 101.4, 80.5 40.5, 28.8, 26.7 22.2, 13.9.

D. Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one (34.9 g, 80.4 mmol) in dichloromethane (100 mL) was added trifluoroacetic acid (18.7 g, 161 mmol) and triethylsilane (18.3 g, 161 mmol). The brown solution was stirred at ambient temperature for 3 h and concentrated in vacuo to dryness. The residue was diluted with dichloromethane (200 mL), washed with saturated ammonium chloride solution (50.0 mL), brine (3×50.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was crystallized from ether to give the title compound (16.5 g, 49%) as a brown solid: 1H NMR (300 MHz, CDCl3) δ 7.29-7.21 (m, 2H), 7.14 (dd, 1H), 6.58 (s, 1H), 6.10 (s, 1H), 5.85 (dd, 2H), 5.01 (s, 1H), 3.75-3.55 (m, 2H), 1.69-1.56 (m, 2H), 1.35-1.21 (m, 4H), 0.86 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.9, 150.9, 147.6, 145.4, 141.6, 130.3 127.1 126.8, 120.8, 113.3 108.0, 106.7, 101.5, 101.2, 59.9, 48.6, 40.7, 28.9, 26.9, 22.3 13.9; MS (ES+) m/z 418.3 (M+1), 420.3 (M+1).

E. Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one (7.50 g, 17.9 mmol) in dry dichloromethane (150 mL) was added triethylamine (10.9 g, 108 mmol) and chlorotrimethylsilane (7.80 g, 71.8 mmol) at 0° C. The reaction mixture was stirred at 0° C. for 2 h and diluted with dichloromethane (100 mL). The mixture was washed with water (3×50.0 mL), dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in THF (150 mL) followed by the additions of formaldehyde solution (4.90 mL, 179 mmol, 37 wt % in water) and ytterbium (III) trifluoromethanesulfonate (1.11 g, 1.79 mmol). The resulting mixture was stirred at ambient temperature for 36 h. After the solvent was removed under reduced pressure, the residue was diluted with dichloromethane (200 mL), washed with saturated sodium bicarbonate (50.0 mL), saturated ammonium chloride (50.0 mL) and water (100 mL). The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to yield the title compound (6.32 g, 79%) as a fluffy solid: 1H NMR (300 MHz, CDCl3) δ8.28 (s, 1H), 7.10 (t, 1H), 7.00 (dd, 1H), 6.89 (dd, 1H), 6.83 (s, 1H), 6.27 (s, 1H), 6.85 (dd, 2H), 4.52-4.41 (m, 2H), 3.90 (dd, 1H), 3.70-3.65 (m, 2H), 1.68-1:57 (m, 2H), 1.36-1.29 (m, 4H), 0.83 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 178.1, 150.3, 147.2, 147.2, 140.5, 129.6, 129.2, 125.6, 118.4, 114.8, 109.2, 106.9, 101.0, 98.2, 62.6, 57.6, 39.9, 28.9, 26.7, 22.2, 13.5.

Preparation 2 Synthesis of 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(2-cyclopropylethyl)-1H-indole-2,3-dione

To a suspension of sodium hydride (1.61 g, 41.9 mmol, 60% dispersion in mineral oil) in anhydrous N,N-dimethylformamide (25.0 mL) was added isatin (6.17 g, 41.9 mmol) at 0° C. The reaction mixture was stirred for 0.5 h followed by the addition of (2-bromoethyl)cyclopropane (Maercker, A., et al, Justus Liebigs Ann. Chem. (1972), 759:132-157) (9.25 g, 61.2 mmol). The resulting mixture was stirred at ambient temperature for 16 h and quenched with water (50.0 mL). The mixture was extracted with ethyl acetate (3×100 mL). The combined organic layers was washed with water (3×50.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to yield the title compound (6.50 g, 90%) as a viscous gum: 1H NMR (300 MHz, CDCl3) δ 7.57-7.51 (m, 2H), 7.05 (t, 1H), 6.88 (d, 1H), 3.79-3.74 (m, 2H), 1.59-1.52 (m, 2H), 0.70-0.61 (m, 1H), 0.44-0.38 (m, 2H), 0.05-0.02 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 183.7, 158.2, 151.2, 138.4, 125.4, 123.6, 117.5, 110.3, 40.3, 32.2, 8.6, 4.3.

B. Synthesis of 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

To a solution of 1,3-benzodioxol-5-ol (1.25 g, 9.06 mmol) in THF (20.0 mL) was added dropwise a solution of isopropylmagnesium chloride solution (4.53 mL, 9.06 mmol, 2.0 M in THF) at 0° C. over 5 min. The reaction mixture was stirred for 0.5 h upon which time colorless precipitate was formed. After the solvent was removed under reduced pressure, the residue was dissolved in dichloromethane (20.0 mL) and cooled to 0° C. A solution of 1-(2-cyclopropylethyl)-1H-indole-2,3-dione (1.77 g, 8.23 mmol) in dichloromethane (20.0 mL) was added to the above solution at 0° C. The resulting mixture was stirred at ambient temperature for 16 h and quenched with saturated ammonium chloride solution (30.0 mL). The organic layer was separated and washed with water (3×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was crystallized from ethyl acetate and ether to give the title compound (2.22 g, 76%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.52 (s, 1H), 7.46 (d, 1H), 7.37 (dt, 1H), 7.18 (dt, 1H), 6.90 (d, 1H), 6.56 (s, 1H), 6.23 (s, 1H), 5.84 (dd, 2H), 4.55 (s, 1H), 3.87-3.63 (m, 2H), 1.64-1.44 (m, 2H), 0.68-0.55 (m, 1H), 0.41-0.27 (m, 2H), −0.02-(−0.07) (m, 2H); 13C NMR (75 MHz, CDCl3) δ 179.1, 152.4, 148.8, 142.7, 141.3, 130.3, 129.1, 126.3, 123.7, 117.3, 109.5, 106.9, 101.9, 101.4, 79.3, 40.6, 32.2, 8.6, 4.3, 4.2; MS (ES+) m/z 337.6 (M−17).

C. Synthesis of 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

To a solution of 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one (2.22 g, 6.27 mmol) in dichloromethane (30.0 mL) was added trifluoroacetic acid (2.12 g, 18.8 mmol) and triethylsilane (2.14 g, 18.8 mmol). The brown solution was stirred at ambient temperature for 0.5 h and concentrated in vacuo to dryness. The residue was diluted with dichloromethane (100 mL), washed with water (3×50.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (20/80) to give the title compound (1.69 g, 80%) as a brown solid: 1H NMR (300 MHz, CDCl3) δ 9.21-9.10 (br, 1H), 7.38-7.30 (m, 2H), 7.16 (t, 1H), 6.96 (d, 1H), 6.63 (s, 1H), 6.33 (s, 1H), 5.84 (dd, 2H), 5.01 (s, 1H), 3.87-3.72 (m, 2H), 1.66-1.46 (m, 2H), 0.69-0.59 (m, 1H), 0.43-0.30 (m, 2H), 0.09-0.06 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.8, 151.3, 147.6, 144.1, 141.5, 128.7, 126.2, 123.1, 115.2, 109.5, 109.4, 106.5, 101.5, 101.2, 47.4, 40.5, 32.2, 8.6, 4.3, 4.2; MS (ES+) m/z 338.3 (M+1).

D. Synthesis of 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, making variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (53%): Rf=0.28 (EtOAc/Hexanes, 1/1).

Preparation 3 Synthesis of ethyl [3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with ethyl bromoacetate, the title compound was obtained (79%) as a light yellow powder: 1H NMR (300 MHz, CDCl3) δ 7.64-7.54 (m, 2H), 7.16-7.11 (m, 1H), 6.77 (d, 1H), 4.47 (s, 2H), 4.22 (q, 2H), 1.26 (t, 3H); MS (ES+) m/z 256.2 (M+23).

B. Synthesis of ethyl [3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, the title compound was obtained (95%): 1H NMR (300 MHz, DMSO-d6) δ 9.08 (s, 1H), 7.21-7.13 (m, 2H), 6.93-6.86 (m, 3H), 6.57 (s, 1H), 6.19 (s, 1H), 5.88 (m, 2H), 4.47 (m, 2H), 4.13 (q, 2H), 1.19 (t, 3H); MS (ES−) m/z 370.2 (M−1).

C. Synthesis of ethyl [3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (84%) as a white powder: 1H NMR (300 MHz, DMSO-d6) δ 9.37 (s, 1H), 7.19 (m, 1H), 7.01-6.90 (m, 3H), 6.43 (s, 2H), 5.84 (m, 2H), 4.86 (s, 1H), 4.56 (s, 2H), 4.13 (q, 2H), 1.18 (t, 3H); MS (ES+) m/z 378.2 (M+23).

D. Synthesis of ethyl [3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained as a white powder: 1H NMR (300 MHz, DMSO-d6) δ 9.03 (s, 1H), 7.17-6.85 (m, 5H), 6.22 (s, 1H), 5.83 (s, 2H), 5.04 (t, 1H), 4.56-4.08 (m, 5H), 3.69 (m, 1H), 1.18 (t, 3H); MS (ES+) m/z 408.1 (M+23).

Preparation 4 Synthesis of methyl 3-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate A. Synthesis of methyl 3-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with methyl 3-(bromomethyl)benzoate, the title compound was obtained (84%) as a orange solid: 1H NMR (300 MHz, CDCl3) δ 7.99-7.95 (m, 2H), 7.60 (d, 1H), 7.53-7.47 (m, 2H), 7.43 (d, 1H), 7.09 (t, 1H), 6.43 (d, 1H), 4.95 (s, 2H), 3.89 (s, 3H).

B. Synthesis of methyl 3-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with methyl 3-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate, the title compound was obtained (96%): 1H NMR (300 MHz, CDCl3) δ 8.65 (s, 1H), 7.92 (s, 1H), 7.85 (d, 1H), 7.41-7.38 (m, 1H), 7.32-7.24 (m, 2H), 7.19-7.13 (m, 1H), 7.04-6.9 (m, 1H), 6.63 (d, 1H), 6.44 (s, 1H), 6.39 (s, 1H), 5.79 (s, 2H), 5.05 (s, 1H), 4.83 (dd, 2H), 3.80 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 178.7, 167.0, 151.0, 148.5, 142.1, 141.1, 135.7, 131.6, 130.5, 130.1, 129.1, 129.0, 128.4, 125.5, 123.9, 116.7, 109.7, 106.5, 101.3, 100.5, 78.6, 60.6, 52.4, 43.6; MS (ES+) m/z 456.1 (M+23).

C. Synthesis of methyl 3-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with methyl 3-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate, the title compound was obtained (98%): MS (ES+) m/z 418.2 (M+1).

D. Synthesis of methyl 3-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with methyl 3-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate, the title compound was obtained (81%) as a white powder: MS (ES+) m/z 470.3 (M+23), 448.3 (M+1).

Preparation 5 Synthesis of methyl 4-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate A. Synthesis of methyl 4-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with methyl 4-(bromomethyl)benzoate, the title compound was obtained (84%) as an orange solid: 1H-NMR (300 MHz, CDCl3) δ 8.00 (d, 2H), 7.61 (d, 1H), 7.46 (t, 1H), 7.38 (d, 2H), 7.09 (t, 1H), 6.69 (d, 1H), 4.96 (s, 2H), 3.88 (s, 3H); MS (ES+) m/z 296.1 (M+1).

B. Synthesis of methyl 4-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with methyl 4-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate, the title compound was obtained (79%): MS (ES+) m/z 416.1 (M−17).

C. Synthesis of methyl 4-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2C, and making the variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with methyl 4-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate, the title compound was obtained (98%) as a solid: MS (ES+) m/z 418.1 (M+1).

D. Synthesis of methyl 4-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with methyl 4-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate, the title compound was obtained (81%): MS (ES+) m/z 448.1 (M+1).

Preparation 6 Synthesis of 2-{3-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione A. Synthesis of 1-[3-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-propyl]-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with 2-(3-bromopropyl)-1H-isoindole-1,3(2H)-dione, the title compound was obtained (92%): 1H NMR (300 MHz, CDCl3) δ 7.80-7.79 (m, 4H), 7.61-7.56 (m, 1H), 7.49-7.46 (m, 1H), 7.18-7.16 (m, 1H), 7.07-7.05 (m, 1H), 3.72-3.60 (m, 4H), 1.97-1.92 (m, 2H).

B. Synthesis of 2-{(3-[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-[3-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-propyl]-1H-indole-2,3-dione, the title compound was obtained (96%): 1H NMR (300 MHz, CDCl3) δ 7.86-7.78 (m, 4H), 7.21-7.13 (m, 2H), 7.00-6.97 (m, 1H), 6.87-6.85 (m, 2H), 6.15 (s, 1H), 5.86-5.84 (m, 2H), 3.69-3.65 (m, 4H), 2.46-2.45 (m, 1H), 1.94-1.87 (m, 2H); MS (ES+) m/z 473.4 (M−17).

C. Synthesis of 2-{3-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 2-{3-[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione, the title compound was obtained (94%): 1H NMR (300 MHz, CDCl3,) δ 7.81-7.78 (m, 2H), 7.70-7.67 (m, 2H), 7.32-7.27 (m, 2H), 7.12-7.07 (m, 1H), 6.90-6.87 (m, 1H), 6.54 (s, 1H), 6.45 (s, 1H), 5.86 (dd, 2H), 4.82 (s, 1H), 3.96-3.66 (m, 4H), 2.17-2.04 (m, 2H); MS (ES+) m/z 457.0 (M+1).

D. Synthesis of 2-{3-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 2-{3-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione, the title compound was obtained (94%) as a foam solid: 1H NMR (300 MHz, CDCl3) δ 9.20 (s, 1H), 7.81-7.79 (m, 2H), 7.68-7.61 (m, 2H), 7.35-7.25 (m, 2H), 7.16-7.14 (m, 1H), 6.90 (d, 1H), 6.80 (s, 1H), 6.48 (s, 1H), 5.86 (dd, 2H), 4.64 (d, 1H), 3.67-4.13 (m, 5H), 2.18-2.05- (m, 2H); 13C NMR (75 MHz, CDCl3) δ 180.6, 168.6, 151.2, 147.8, 143.2, 141.2, 134.2, 134.2, 131.9, 130.0, 128.7, 125.1, 123.2, 113.9, 108.7, 108.3, 101.3, 100.6, 64.9, 58.0, 37.6, 36.1, 26.5; MS (ES+) m/z 487.3 (M+1).

Preparation 7 Synthesis of 2-{2-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione A. Synthesis of 1-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with 2-(2-bromoethyl)-1H-isoindole-1,3(2H)-dione, the title compound was obtained (75%): 1H NMR (300 MHz, CDCl3) δ 7.85-7.78 (m, 4H), 7.65 (td, 1H), 7.55 (dd, 1H), 7.25 (d, 1H), 7.12 (t, 1H), 4.00-3.80 (m, 4H); MS (ES+) m/z 321 (M+1), 343 (M+23).

B. Synthesis of 2-{2-[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-1H-indole-2,3-dione, the title compound was obtained (99%): 1H NMR (300 MHz, CD3OD) δ 7.85-7.68 (m, 4H), 7.29 (td, 1H), 7.18-6.96 (m, 3H), 6.88 (s, 1H), 6.16 (s, 1H), 5.85 (s, 1H), 5.82 (s, 1H), 3.81-4.01 (m, 4H); MS (ES+) m/z 441 (M−17), 458 (M+23).

C. Synthesis of 2-{2-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 2-{2-[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione, the title compound was obtained (90%) as a white solid: 1H NMR (300 MHz, CD3OD) δ 10.15-10.05 (br, 1H), 8.66-8.58 (m, 4H), 8.07-7.70 (m, 4H), 7.12 (s, 1H), 7.18 (s, 1H), 6.70 (s, 1H), 6.69 (s, 1H), 5.50 (s, 1H), 4.91-4.56 (m, 4H); MS (ES+) m/z 443 (M+1).

D. Synthesis of 2-{2-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione

Following the procedure as described in PREPARATION 1E, making variation to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 2-{2-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione, the title compound was obtained (56%): 1H NMR (300 MHz, CD3OD) δ 9.97 (s, 1H), 8.72-8.62 (m, 4H), 8.07-7.67 (m, 5H), 7.01 (s, 1H), 6.71 (s, 1H), 6.70 (s, 1H), 5.79 (t, 1H), 4.88-4.50 (m, 6H); MS (ES+) m/z 455 (M−17), 473 (M+1), 495 (M+23).

Preparation 8 Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with 1,1′-(bromomethylene)dibenzene, the title compound was obtained (68%) as an orange solid: MS (ES+) m/z 336.4 (M+23).

B. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-1H-indole-2,3-dione, the title compound was obtained (99%) as an off-white powder: MS (ES+) m/z 474.5 (M+23).

C. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making the variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (84%) as an off-white solid: MS (ES+) m/z 458.4 (M+23).

D. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations using 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (56%): MS (ES+) m/z 488.3 (M+23).

Preparation 9 Synthesis of 1-[3-(benzyloxy)propyl]-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-[3-(benzyloxy)propyl]-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 1A, and making non-critical variations to replace 4-bromoindole with isatin, and 1-bromopentane with benzyl 3-bromopropyl ether, the title compound was obtained (95%) as a pale yellow syrup: 1H NMR (300 MHz, CDCl3) δ 7.57-6.92 (m, 9H), 4.50 (s, 2H), 3.84 (t, 2H), 3.54 (t, 2H), 2.03-1.94 (m, 2H); MS (ES+) m/z 296.3 (M+1), 318.3 (M+23).

B. Synthesis of 1-[3-(benzyloxy)propyl]-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-[3-(benzyloxy)propyl]-1H-indole-2,3-dione, the title compound was obtained (70%): 1H NMR (300 MHz, CDCl3) δ 9.42 (s, 1H), 7.32-7.16 (m, 8H), 6.96 (d,), 6.61 (s, 1H), 6.23 (s, 1H), 5.86-5.83 (m, 2H), 4.44 (s, 2H), 3.88-3.73 (m, 2H), 3.46 (t, 2H), 2.06-1.85 (m, 2H); MS (ES+) m/z 416.3 (M−17), 456.3 (M+23).

C. Synthesis of 1-[3-(benzyloxy)propyl]-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 1-[3-(benzyloxy)propyl]-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (92%): 1H NMR (300 MHz, CDCl3) δ7.42-6.95 (m, 9H), 6.56 (s, 1H), 6.24 (s, 1H), 5.86 (ABq, 1H), 5.81 (ABq, 1H), 4.99 (s, 1H), 4.42 (s, 2H), 3.91-3.76 (m, 2H), 3.46 (t, 2H), 2.03-1.93 (m, 2H); MS (ES+) m/z 418.3 (M+1).

D. Synthesis of 1-[3-(benzyloxy)propyl]-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 1-[3-(benzyloxy)propyl]-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (93%): MS (ES+) m/z 448.2 (M+1).

Preparation 10 Synthesis of methyl 2-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate A. Synthesis of methyl 2-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with methyl 2-(bromomethyl)benzoate, the title compound was obtained (68%) as a yellow solid: 1H NMR (300 MHz, CDCl3) δ 8.05 (dd, 1H), 7.64 (dd, 1H), 7.50-7.31 (m, 3H), 7.22 (d, 1H), 7.10 (t, 1H), 6.72 (d, 1H), 5.41 (s, 2H), 3.95 (s, 3H).

B. Synthesis of methyl 2-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with methyl 2-[(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)methyl]benzoate, the title compound was obtained (97%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 9.29 (s, 1H), 7.97 (dd, 1H), 7.53-7.36 (m, 3H), 7.28 (s, 1H), 7.10 (td, 1H), 6.96-6.83 (m, 2H), 6.59 (d, 2H), 6.25 (s, 1H), 5.95-5.86 (m, 2H), 5.31-5.07 (m, 2H), 3.88 (s, 3H); MS (ES+) m/z 456.1 (M+23).

C. Synthesis of methyl 2-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with methyl 2-{[3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate, the title compound was obtained (100%) as a white solid: 1H NMR (300 MHz, DMSO-d6) δ 9.32 (s, 1H), 7.94 (dd, 1H), 7.50-7.34 (m, 2H), 7.26 (d, 1H), 7.08 (t, 1H), 7.00-6.86 (m, 2H), 6.76 (s, 1H), 6.64 (d, 1H), 6.38 (s, 1H), 5.93-5.86 (m, 2H), 5.34-5.12 (m, 2H), 4.83 (s, 1H), 3.87 (s, 3H); MS (ES+) m/z 418.2 (M+1).

D. Synthesis of methyl 2-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate

A solution of methyl 2-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate (17.1 g, 40.0 mmol) and paraformaldehyde (10.3 g, 330 mmol) in THF (500 mL) was degassed by bubbling through argon for 2 hours. To this solution was added lithium diisopropylamide solution (45.1 mL, 2 M solution, 90.0 mmol) slowly at −78° C. The mixture was stirred at ambient temperature overnight and quenched with saturated ammonium chloride solution. The mixture was concentrated in vacuo to remove THF followed by the addition of ethyl acetate (500 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was recrystallized from ethyl acetate/hexanes to give the title compound (13.7 g, 75%): 1H NMR (300 MHz, DMSO-d6) δ 9.20 (s, 1H), 7.95 (dd, 1H), 7.53-7.33 (m, 3H), 7.08-6.82 (m, 4H), 6.53 (d, 1H), 6.25 (s, 1H), 5.93-5.86 (m, 2H), 5.31-5.07 (m, 3H), 4.26-4.17 (m, 1H), 4.00-3.92 (m, 1H), 3.88 (s, 3H); MS (ES+) m/z 448.3 (M+1).

Preparation 11 Synthesis of [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetic acid A. Synthesis of 1-pentyl-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with 1-bromopentane, the title compound was obtained (85%) as an orange solid: 1H NMR (300 MHz, CDCl3) δ 7.60-7.52 (m, 2H), 7.08 (td, 1H), 6.87 (d, 1H), 3.69 (t, 2H), 1.74-1.61 (m, 2H), 1.40-1.28 (m, 4H), 0.88 (t, 3H).

B. Synthesis of 3-(1,3-benzodioxol-5-yl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 1-pentyl-1H-indole-2,3-dione (2.80 g, 12.8 mmol) in THF (50.0 mL) was added 3,4-(methylenedioxy)phenylmagnesium bromide (14.0 mL, 1 M THF solution, 14.0 mmol) slowly at −78° C. The mixture was stirred at 0° C. for 1 h and quenched with ammonium chloride solution. The mixture was poured into water (150 mL) and extracted with ethyl acetate (200 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (3.10 g, 71%) as an orange oil: 1H NMR (300 MHz, CDCl3) δ 7.34-7.23 (m, 2H), 7.05 (t, 1H), 6.91-6.85 (m, 2H), 6.83-6.78 (m, 1H), 6.71 (d, 1H), 5.92-5.89 (m, 2H), 3.82-3.55 (m, 2H), 3.40 (br, 1H), 1.76-1.61 (m, 2H), 1.39-1.28 (m, 4H), 0.87 (t, 3H).

C. Synthesis of 3-(1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 3-(1,3-benzodioxol-5-yl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (90%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.30 (td, 1H), 7.14 (d, 1H), 7.03 (td, 1H), 6.89 (d, 1H), 6.75 (d, 1H), 6.67 (dd, 1H), 6.57 (d, 1H), 5.90 (s, 2H), 4.50 (s, 1H), 3.81-3.62 (m, 2H), 1.76-1.62 (m, 2H), 1.41-1.28 (m, 4H), 0.88 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.8, 148.1, 147.2, 143.5, 130.0, 129.4, 128.4, 125.1, 122.9, 122.0, 108.7, 108.6, 101.1, 51.9, 40.4, 29.0, 27.1, 22.3, 14.0.

D. Synthesis of methyl [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetate

A solution of 3-(1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one (1.00 g, 3.10 mmol) and methyl bromoacetate (0.44 mL, 4.60 mmol) in THF (20.0 mL) was degassed by bubbling through argon for one hour. Sodium hydride (0.19 g, 4.60 mmol) was added at 0° C. The mixture was stirred at 0° C. for 1 h and quenched with ammonium chloride solution. The mixture was poured into water (150 mL), and extracted with ethyl acetate (200 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.94 g, 76%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.30 (td, 1H), 7.25 (dd, 1H), 7.06 (td, 1H), 6.89 (d, 1H), 6.81 (d, 1H), 6.74-6.65 (m, 2H), 5.90-5.87 (m, 2H), 3.71-3.64 (m, 2H), 3.45 (d, 1H), 3.41 (s, 3H), 3.18 (d, 1H), 1.74-1.60 (m, 2H), 1.39-1.22 (m, 4H), 0.85 (t, 3H); 13C NMR (75 MHz, CDCl3,) δ 177.8, 170.0, 147.9, 147.0, 143.9, 133.1, 131.3, 128.6, 124.6, 122.3, 119.9, 108.7, 108.1, 107.4, 101.2, 52.8, 51.6, 41.8, 40.4, 29.0, 26.8, 22.3, 14.0; MS (ES+) m/z 418.1 (M+23), 396.1 (M+1).

E. Synthesis of [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetic acid

To a solution of methyl [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetate (5.90 g, 15.0 mmol) in THF/water (2/1 v/v, 120 mL) was added lithium hydroxide monohydrate (1.26 g, 28.0 mmol). The mixture was stirred at ambient temperature overnight. Most THF was removed under vacuum and water (150 mL) was added. The solution was extracted with ethyl acetate/hexanes (1/3 v/v, 50.0 mL). The water layer was acidified with 1 N HCl solution until the pH value reached 2 and extracted with ethyl acetate (200 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to afford the title compound (5.00 g, 88%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.29 (td, 1H), 7.21 (dd, 1H), 7.05 (td, 1H), 6.87 (d, 1H), 6.76 (d, 1H), 6.72-6.64 (m, 2H), 5.90-5.86 (m, 2H), 3.65 (t, 2H), 3.43 (d, 1H), 3.11 (d, 1H), 1.70-1.55 (m, 2H), 1.36-1.22 (m, 4H), 0.85 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 178.2, 174.0, 148.0, 147.1, 143.4, 132.6, 131.4, 128.7, 124.4, 122.7, 119.8, 108.9, 108.2, 107.2, 101.2, 52.6, 41.5, 40.4, 29.0, 26.6, 22.3, 14.0; MS (ES+) m/z 404.0 (M+23), 382.0 (M+1).

Preparation 12 Synthesis of 3-[3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]propanoic acid A. Synthesis of methyl 3-[3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]propanoate

Following the procedure as described in PREPARATION 11D, and making non-critical variations to replace methyl bromoacetate with methyl 3-bromopropionate, the title compound was obtained (76%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.28 (td, 1H), 7.17 (dd, 1H), 7.06 (td, 1H), 6.89 (d, 1H), 6.84 (d, 1H), 6.77 (dd, 1H), 6.68 (d, 1H), 5.89-5.84 (m, 2H), 3.67 (t, 2H), 3.53 (s, 3H), 2.69-2.56 (m, 1H), 2.54-2.41 (m, 1H), 2.21-2.08 (m, 1H), 1.99-1.86 (m, 1H), 1.72-1.59 (m, 2H), 1.38-1.24 (m, 4H), 0.85 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 173.1, 147.9, 146.9, 143.2, 133.5, 131.6, 128.5, 124.9, 122.6, 120.1, 108.7, 108.1, 107.6, 101.1, 55.2, 51.6, 40.2, 32.4, 29.5, 29.1, 27.1, 22.3, 14.0; MS (ES+) m/z 410.1 (M+1), 432.0 (M+23).

B. Synthesis of 3-[3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]propanoic acid

Following the procedure as described in PREPARATION 11E, and making non-critical variations to replace methyl [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetate with methyl 3-[3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]propanoate, the title compound was obtained (92%) as a colorless solid: MS (ES−) m/z 394.2 (M−1).

Preparation 13 Synthesis of 3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3,4-difluorophenol, the title compound was obtained (31%): 1H NMR (300 MHz, CDCl3) δ 9.69-9.65 (br, 1H), 7.51-7.41 (m, 2H), 7.26-7.21 (m, 1H), 6.99-6.57 (m, 3H), 4.18-4.14 (br, 1H), 3.78-3.58 (m, 2H), 1.76-1.62 (m, 2H), 1.40-1.28 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 330 (M−17), 370 (M+23).

B. Synthesis of 3-(4,5-difluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (98%): 1H NMR (300 MHz, CDCl3) δ 7.46-7.19 (m, 3H), 7.03-6.68 (m, 3H), 5.03 (s, 1H), 3.76-3.67 (m, 2H), 1.76-1.62 (m, 2H), 1.40-1.28 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 332 (M+1).

C. Synthesis of 3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4,5-difluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (96%): MS (ES+) m/z 344 (M−17), 384 (M+23).

Preparation 14 Synthesis of 3-(5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 4-fluorophenol, the title compound was obtained (53%): 1H NMR (300 MHz, CDCl3) δ 9.42-9.14 (br, 1H), 7.53-6.86 (m, 6H), 6.56-6.48 (m, 1H), 4.58-4.28 (br, 1H), 3.79-3.58 (m, 2H), 1.77-1.61 (m, 2H), 1.41-1.24 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 312 (M−17), 352 (M+23).

B. Synthesis of 3-(5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 3-(5-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one (2.42 g, 7.35 mmol) in dichloromethane (10.0 mL) were added trifluoroacetic acid (1.00 mL) and triethylsilane (1.00 mL) at ambient temperature. The reaction mixture was stirred at 40° C. for 15 hrs and concentrated in vacuo to dryness. The residue was triturated with ether to give the title compound (2.10 g, 91%) as a solid: MS (ES+) m/z 314 (M+1).

C. Synthesis of 3-(5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 3-(5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one (2.10 g, 6.70 mmol) in THF (20.0 mL) were added paraformaldehyde (1.76 g, 58.8 mmol) and lithium diisopropylamide (7.35 mL, 2.0 M in THF, 14.7 mmol) at 0° C. The reaction mixture was stirred at 0° C. for 2 hrs followed by the addition of ammonium chloride solution (10.0 mL) and ethyl acetate (100 mL). The organic layer was washed with water and brine, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness to give the title compound: 1H NMR (300 MHz, CDCl3) δ 9.55-9.10 (br, 1H), 7.53-6.86 (m, 6H), 6.57-6.49 (m, 1H), 4.74-4.30 (br, 1H), 4.18-4.07 (m, 2H), 3.79-3.60 (m, 2H), 1.77-1.61 (m, 2H), 1.41-1.24 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 326 (M−17), 366 (M+23).

Preparation 15 Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 4-bromophenol, the title compound was obtained (41%): 1H NMR (300 MHz, CDCl3) δ 9.46-9.25 (br, 1H), 7.51-6.80 (m, 7H), 4.73-4.51 (br, 1H), 3.79-3.56 (m, 2H), 1.76-1.60 (m, 2H), 1.41-1.22 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 377 (M−17), 379 (M−17), 412 (M+23), 414 (M+23).

B. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one (2.22 g, 5.64 mmol) in dichloromethane (10.0 mL) were added trifluoroacetic acid (1.00 mL) and triethylsilane (1.00 mL) at ambient temperature. The reaction mixture was stirred at 50° C. for 15 hrs and concentrated in vacuo to dryness to give the title compound: MS (ES+) m/z 374 (M+1), 376 (M+1).

C. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 14C, and making non-critical variations to replace 3-(5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 386 (M−17), 388 (M−17), 426 (M+23), 428 (M+23).

Preparation 16 Synthesis of 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 4-chloro-3-fluorophenol, the title compound was obtained (33%): 1H NMR (300 MHz, CDCl3) δ 9.80 (s, 1H), 7.52-7.41 (m, 2H), 7.23 (t, 1H), 6.96 (d, 1H), 6.84 (d, 1H), 6.80 (d, 1H), 4.15 (s, 1H), 3.79-3.58 (m, 2H), 1.76-1.62 (m, 2H), 1.40-1.28 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 346 (M−17), 386 (M+23).

B. Synthesis of 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (99%): 1H NMR (300 MHz, CDCl3) δ 10.0-9.70 (br, 1H), 7.45-7.18 (m, 3H), 6.98 (d, 1H), 6.90-6.82 (m, 2H), 5.01 (s, 1H), 3.75-3.66 (m, 2H), 1.76-1.62 (m, 2H), 1.40-1.28 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 348 (M+1).

C. Synthesis of 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (46%): MS (ES+) m/z 360 (M−17), 400 (M+23).

Preparation 17 Synthesis of 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3-chloro-4-fluorophenol, the title compound was obtained (14%): MS (ES+) m/z 346 (M−17), 386 (M+23).

B. Synthesis 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 348 (M+1).

C. Synthesis of 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (50% for two steps): MS (ES+) m/z 360 (M−17), 400 (M+23).

Preparation 18 Synthesis of 3-(4,5-dichloro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(4,5-dichloro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3,4-dichlorophenol, the title compound was obtained (26%): 1H NMR (300 MHz, CDCl3) δ 9.60 (s, 1H), 7.50-7.40 (m, 2H), 7.22 (td, 1H), 7.11 (s, 1H), 6.95 (d, 1H), 6.86 (s, 1H), 4.31-4.12 (br, 1H), 3.79-3.59 (m, 2H), 1.76-1.62 (m, 2H), 1.40-1.27 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 363 (M−17), 403 (M+23).

B. Synthesis of 3-(4,5-dichloro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4,5-dichloro-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (86%): 1H NMR (300 MHz, CDCl3) δ 10.0-9.50 (br, 1H), 7.42 (t, 1H), 7.32 (d, 1H), 7.22 (td, 1H), 7.09 (s, 1H), 6.95 (d, 1H), 6.93 (s, 1H), 5.04 (s, 1H), 3.77-3.68 (m, 2H), 1.77-1.62 (m, 2H), 1.40-1.27 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 348 (M+1).

C. Synthesis of 3-(4,5-dichloro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4,5-dichloro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 376 (M−17), 416 (M+23).

Preparation 19 Synthesis of 3-(hydroxymethyl)-3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-hydroxy-3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with α, α, α-trifluorocresol, the title compound was obtained (46%): 1H NMR (300 MHz, CDCl3) δ 9.75 (s, 1H), 7.50-7.39 (m, 3H), 7.21 (td, 1H), 7.10-7.02 (m, 2H), 6.96 (d, 1H), 4.26 (s, 1H), 3.82-3.59 (m, 2H), 1.77-1.63 (m, 2H), 1.40-1.27 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 362 (M−17), 402 (M+23).

B. Synthesis of 3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-hydroxy-3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (78%): 1H NMR (300 MHz, CDCl3) δ 8.20-8.00 (br, 1H), 7.43-7.14 (m, 5H), 7.02 (d, 1H), 6.95 (d, 1H), 5.11 (s, 1H), 3.82-3.72 (m, 2H), 1.79-1.66 (m, 2H), 1.40-1.27 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 364 (M+1).

C. Synthesis of 3-(hydroxymethyl)-3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 376 (M−17), 416 (M+23).

Preparation 20 Synthesis of 3-(2-hydroxy-4-methoxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-bromo-2-hydroxy-4-methoxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 4-bromo-3-methoxyphenol, the title compound was obtained (48%): 1H NMR (300 MHz, CDCl3) δ 9.85 (s, 1H), 7.52-7.38 (m, 2H), 7.22 (td, 1H), 6.94 (d, 1H), 6.89 (s, 1H), 6.63 (s, 1H), 4.13-4.03 (br, 1H), 3.86 (s, 3H), 3.80-3.57 (m, 2H), 1.75-1.63 (m, 2H), 1.40-1.25 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 402 (M−17), 404 (M−17), 442 (M+23), 444 (M+23).

B. Synthesis of 3-(2-hydroxy-4-methoxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxy-4-methoxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (83%): 1H NMR (300 MHz, CDCl3) δ 9.78-9.20 (br, 1H), 7.43-7.31 (m, 2H), 7.19 (t, 1H), 6.97 (d, 1H), 6.79 (d, 1H), 6.70-6.64 (m, 1H), 6.38 (dd, 1H), 5.02 (s, 1H), 3.77 (s, 3H), 3.70 (t, 2H), 1.75-1.63 (m, 2H), 1.40-1.25 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 326 (M+1).

C. Synthesis of 3-(2-hydroxy-4-methoxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(2-hydroxy-4-methoxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (41%): 1H NMR (300 MHz, CDCl3) δ 10.79 (s, 1H), 7.51-7.37 (m, 2H), 7.26 (td, 1H), 6.99 (d, 1H), 6.95 (d, 1H), 6.59 (d, 1H), 6.34 (dd, 1H), 4.67 (d, 1H), 4.14 (d, 1H), 3.76 (s, 3H), 3.78-3.69 (m, 2H), 1.75-1.63 (m, 2H), 1.40-1.25 (m, 4H), 0.87 (t, 3H); MS (ES+) m/z 338 (M−17), 378 (M+23).

Preparation 21 Synthesis of ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl [3-hydroxy-3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with ethyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, and 1,3-benzodioxol-5-ol with 5-indanol, the title compound was obtained (84%): 1H NMR (300 MHz, CDCl3) δ 8.76 (s, 1H), 7.55 (d, 1H), 7.38 (td, 1H), 7.20 (t, 1H), 6.9 (s, 1H), 6.80 (d, 1H), 6.65 (s, 1H), 4.45 (ABq, 2H), 4.32-4.25 (br, 1H), 4.20 (q, 2H), 2.83 (t, 2H), 2.74-2.65 (m, 2H), 2.06-1.94 (m, 2H), 1.27 (t, 3H); MS (ES+) m/z 350 (M−17), 390 (M+23).

B. Synthesis of ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-hydroxy-3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: 1H NMR (300 MHz, CDCl3) δ 8.50-7.90 (br, 1H), 7.40-7.32 (m, 2H), 7.38 (td, 1H), 6.94 (s, 1H), 6.84 (d, 1H), 6.75 (s, 1H), 5.16 (s, 1H), 4.48 (ABq, 2H), 4.21 (q, 2H), 2.85 (t, 2H), 2.81-2.61 (m, 2H), 2.09-1.92 (m, 2H), 1.25 (t, 3H); MS (ES+) m/z 352 (M+1).

C. Synthesis of ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: MS (ES+) m/z 364 (M−17), 404 (M+23).

Preparation 22 Synthesis of ethyl [3-(hydroxymethyl)-3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl [3-hydroxy-3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with ethyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, and 1,3-benzodioxol-5-ol with 5,6,7,8-tetrahydronaphthalen-2-ol, the title compound was obtained (81%): 1H NMR (300 MHz, CDCl3) δ 8.61 (s, 1H), 7.54 (dd, 1H), 7.38 (td, 1H), 7.20 (t, 1H), 6.80 (d, 1H), 6.76 (s, 1H), 6.50 (s, 1H), 4.45 (ABq, 2H), 4.21 (q, 2H), 4.18-4.14 (br, 1H), 2.73-2.47 (m, 4H), 1.77-1.63 (m, 4H), 1.24 (t, 3H); MS (ES+) m/z 364 (M−17), 404 (M+23)

B. Synthesis of ethyl [3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-hydroxy-3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: 1H NMR (300 MHz, CDCl3) δ 7.42-7.32 (m, 2H), 7.20 (t, 1H), 6.84 (d, 1H), 6.78 (s, 1H), 6.61 (s, 1H), 5.12 (s, 1H), 4.47 (ABq, 2H), 4.21 (q, 2H), 2.76-2.44 (m, 4H), 1.78-1.64 (m, 4H), 1.24 (t, 3H); MS (ES+) m/z 366 (M+1).

C. Synthesis of ethyl [3-(hydroxymethyl)-3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: MS (ES+) m/z 378 (M−17), 418 (M+23).

Preparation 23 Synthesis of ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl (4-bromo-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace isatin with 4-bromoisatin and (2-bromoethyl)cyclopropane with ethyl bromoacetate, the title compound was obtained as a yellow solid (68%): 1H NMR (300 MHz, CDCl3) δ 7.39 (t, 1H), 7.27 (dd, 1H), 6.71 (dd, 1H), 4.47 (s, 2H), 4.23 (q, 2H), 1.27 (t, 3H); MS (ES+) m/z 312 (M+1), 314 (M+1), 334 (M+23), 336 (M+23).

B. Synthesis of ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (4-bromo-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate and 1,3-benzodioxol-5-ol with 3,4-difluorophenol, the title compound was obtained as a white solid (42%); MS (ES+) m/z 424 (M−17), 426 (M−17), 464 (M+23), 466 (M+23).

C. Synthesis of ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

A mixture of ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate (0.90 g, 2.00 mmol), triethylsilane (2.00 mL, 12.2 mmol) and trifluoroacetic acid (0.94 mL, 12.2 mmol) was heated at 90° C. for two days. After cooling down to ambient temperature, the mixture was diluted with ethyl acetate (200 mL), washed with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexanes, 1/3) to give the title compound (0.37 g, 43%): 1H NMR (300 MHz, CDCl3) δ 7.35-7.22 (m, 3H), 6.82-6.71 (m, 2H), 6.52 (t, 1H), 5.10 (s, 1H), 4.45 (s, 2H), 4.21 (q, 2H), 1.23 (t, 3H); MS (ES+) m/z 426.4 (M+1), 428.4 (M+1).

D. Synthesis of ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (83%): MS (ES+) m/z 456.3 (M+1), 458.3 (M+1).

Preparation 24 Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of 6-(benzyloxy)-2,2-dimethylbenzofuran-3(2H)-one

To a solution of 6-(benzyloxy)benzofuran-3(2H)-one (Adams, J. L., et al., J. Med. Chem. (1996), 39(26):5035-46) (1.60 g, 6.67 mmol) in DMF (50.0 mL) were added sodium hydride (0.59 g, 14.7 mmol) and iodomethane (1.46 mL, 23.3 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and quenched with saturated ammonium chloride (50.0 mL). The aqueous mixture was extracted with ethyl acetate (3×50.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/10) to give the title compound (0.85 g, 47%): 1H NMR (300 MHz, CDCl3) δ 7.55 (d, 1H), 7.44-7.30 (m, 5H), 6.69 (dd, 1H), 6.54 (d, 1H), 5.10 (s, 2H), 1.43 (s, 6H); MS (ES+) m/z 269.5 (M+1).

B. Synthesis of 2,2-dimethyl-2,3-dihydrobenzofuran-6-ol

To a solution of 6-(benzyloxy)-2,2-dimethylbenzofuran-3(2H)-one (0.85 g, 3.20 mmol) in methanol (100 mL) was added palladium hydroxide (0.22 g, 20 wt. % loading, 0.32 mmol). The resulting mixture was hydrogenated for 16 hours under 60 psi of hydrogen. The reaction mixture was filtered through celite, washed with methanol. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/5) to give the title compound (0.46 g, 88%): 1H NMR (300 MHz, CDCl3) δ 6.92 (d, 1H), 6.30-6.21 (m, 2H), 4.77 (s, 1H), 2.90 (s, 2H), 1.44 (s, 6H).

C. Synthesis of ethyl [4-bromo-3-hydroxy-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (4-bromo-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate and 1,3-benzodioxol-5-ol with 2,2-dimethyl-2,3-dihydrobenzofuran-6-ol, the title compound was obtained: MS (ES+) m/z 498.5 (M+23), 500.5 (M+23).

D. Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

A mixture of ethyl [4-bromo-3-hydroxy-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate (1.32 g, 2.80 mmol), triethylsilane (2.00 mL, 12.2 mmol) and trifluoroacetic acid (0.94 mL, 12.2 mmol) in dichloromethane (50.0 mL) was stirred at 35° C. for 3 hours. The mixture was diluted with dichloromethane (100 mL), washed with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/3) to give the title compound (1.04 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.32-7.15 (m, 2H), 6.74 (d, 1H), 6.50-6.36 (br, 2H), 5.04 (s, 1H), 4.51-4.34 (m, 2H), 4.25-4.14 (m, 2H), 2.92-2.69 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H), 1.23 (t, 3H); MS (ES+) m/z 460.5 (M+1), 462.5 (M+1).

E. Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [4-bromo-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (25%): MS (ES+) m/z 490.5 (M+1), 492.5 (M+1).

Preparation 25 Synthesis of 3,3-dimethyl-2,3-dihydro-1-benzofuran-6-ol A. Synthesis of 4-(benzyloxy)-1-bromo-2-(2-methylallyloxy)benzene

To a solution of 5-(benzyloxy)-2-bromophenol (Simas, A. B. C., et al, Synthesis, (1999):1017-21) (8.15 g, 29.3 m mol) in DMF (150 mL) was added potassium carbonate (4.46 g, 32.2 mmol) slowly at 0° C. The mixture was stirred at ambient temperature for half an hour, followed by the addition of 3-bromo-2-methylpropene (3.35 mL, 32.2 mmol) during half an hour at 0° C. The mixture was stirred at ambient temperature overnight and quenched with saturated ammonium chloride (50 mL). The aqueous mixture was extracted with ethyl acetate (3×200 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/20) to give the title compound (10.0 g, 94%): 1H NMR (300 MHz, CDCl3) δ 7.43-7.29 (m, 5H), 6.53 (d, 1H), 6.45 (dd, 1H), 5.15-4.94 (m, 4H), 4.43 (s, 2H), 1.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 159.1, 155.6, 140.1, 136.5, 133.1, 128.6, 128.1, 127.5, 112.9, 107.2, 103.3, 102.0, 72.4, 70.3, 19.3.

B. Synthesis of 6-(benzyloxy)-3,3-dimethyl-2,3-dihydrobenzofuran

To a solution of 4-(benzyloxy)-1-bromo-2-(2-methylallyloxy)benzene (5.00 g, 15.1 mmol) in benzene (400 mL) was added tributyltin hydride (7.42 mL, 27.2 mmol) and benzoyl peroxide (0.70 g, 2.90 mmol) at 0° C. The resulting mixture was refluxed at 100° C. overnight. After cooling down to ambient temperature, the mixture was washed with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/20) to give the title compound (3.48 g, 91%): MS (ES+) m/z 255.6 (M+1).

C. Synthesis of 3,3-dimethyl-2,3-dihydro-1-benzofuran-6-ol

To a solution of 6-(benzyloxy)-3,3-dimethyl-2,3-dihydrobenzofuran (3.48 g, 13.7 mmol) in methanol (200 mL) was added Pd/C (1.45 g) and the mixture was hydrogenated under 40 psi of hydrogen overnight. The reaction mixture was filtered through celite, washed with methanol. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/7) to give the title compound (1.66 g, 74%): MS (ES+) m/z 165.4 (M+1).

Preparation 26 Synthesis of 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-5-ol, (Alabaster, R. J., et al.; Synthesis (1988), 12:950-2) and 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-1H-indole-2,3-dione, the title compound was obtained: MS (ES+) m/z 472.2 (M+23).

B. Synthesis of 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 434.4 (M+1).

C. Synthesis of 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

To a solution of 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one (1.01 g, 2.30 mmol) in THF (50.0 mL) was added paraformaldehyde (1.00 g, 30.0 mmol). Argon was bubbled through the reaction mixture for one hour followed by the addition of diisopropylamine (1.00 g, 10.0 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 20 hours and diluted with ethyl acetate (100 mL). The resulting mixture was washed with water (2×50.0 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to give 0.67 g (65%) of the title compound: MS (ES+) m/z 486.4 (M+23).

Preparation 27 Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one A. Synthesis of ethyl 2-(2-(tert-butoxycarbonylamino)-6-methoxyphenyl)-2-oxoacetate

To a solution of tert-butyl 3-methoxyphenylcarbamate (25.6 g, 0.11 mol) in THF (300 mL) was added n-BuLi (0.25 mol, 1.6 M solution in pentane) at −78° C. The resulted solution was stirred at 0° C. for 3 hours and re-cooled to −78° C. followed by the addition of diethyl oxalate (20.1 g, 0.14 mol). The mixture was stirred at −78° C. for 45 min and at ambient temperature for one hour, and quenched with 1 N HCl. The mixture was extracted with ether. The organic solution was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to give 3.70 g (27% based on recovered starting material) of the title compound: MS (ES+) m/z 324.3 (M+1).

B. Synthesis of 4-methoxy-1H-indole-2,3-dione

A mixture of ethyl 2-(2-(tert-butoxycarbonylamino)-6-methoxyphenyl)-2-oxoacetate (3.70 g, 110 mmol) and 10% H2SO4 (100 mL) was heated at 100° C. for 10 hours. After cooling down to ambient temperature, the reaction mixture was extracted with ether (3×100 mL). The combined ether solution was washed with water (2×50.0 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to give 0.37 g (19%) of the title compound: MS (ES+) m/z 200.1 (M+23).

C. Synthesis of 4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 1A, and making non-critical variations to replace 4-bromoindole with 4-methoxy-1H-indole-2,3-dione, and 1-bromopentane with 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (26%): MS (ES+) m/z 348.2 (M+23).

D. Synthesis of 3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione, the title compound was obtained (56%): MS (ES+) m/z 486.4 (M+23).

E. Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one, the title compound was obtained (86%): MS (ES+) m/z 448.4 (M+1).

F. Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 26C, and making non-critical variations to replace 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one with 3-(6-hydroxy-1,3-benzodioxol-5-yl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one, the title compound was obtained (64%): MS (ES+) m/z 500.4 (M+23).

Preparation 28 Synthesis of 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 4,7-dichloro-1-pentyl-1H-indole-2,3-dione

To a mixture of sodium hydride (0.17 g, 6.94 mmol, 60% dispersion in mineral oil) in anhydrous N,N-dimethylformamide (5.00 mL) was added a solution of 4,7-dichloro-1H-indole-2,3-dione (1.00 g, 4.60 mmol) in N,N-dimethylformamide (5.00 mL) at 0° C. The brown reaction mixture was stirred for 0.5 h followed by the addition of a solution of 1-bromopentane (0.84 g, 5.55 mmol) in anhydrous N,N-dimethylformamide (5.00 mL). The reaction mixture was stirred at ambient temperature for 16 h and poured into wet ethyl ether (30.0 mL). After the organic layer was separated, it was washed with water (2×20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The gummy residue was dried under vacuum and the solid was triturated with ether to give the title compound (0.98 g, 98%): MS (ES+) m/z 286.2 (M+1).

B. Synthesis of 4,7-dichloro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4,7-dichloro-1-pentyl-1H-indole-2,3-dione, the title compound was obtained (68%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.61 (s, br, 1H), 7.26 (t, 1H), 7.03 (d, 1H), 6.52 (s, 1H), 6.12 (s, 1H), 5.86 (dd, 2H), 4.21 (s, br, 1H), 4.01-3.96 (m, 2H), 1.73-1.58 (m, 2H), 1.34-1.21 (m, 4H), 0.84 (t, 3H); MS (ES+) m/z 408.2 (M−17).

C. Synthesis of 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 4,7-dichloro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (72%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.27-7.23 (m, 1H), 7.03 (d, 1H), 6.55 (s, 1H), 6.04 (s, 1H), 5.84 (dd, 2H), 5.03 (s, 1H), 4.09-3.99 (m, 2H), 1.72-1.62 (m, 2H), 1.33-1.24 (m, 4H), 0.86 (t, 3H); MS (ES+) m/z 409.2 (M+1).

D. Synthesis of 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (94%) as a gummy solid: MS (ES+) m/z 439.3 (M+1).

Preparation 29 Synthesis of ethyl 2-(4-chloro-3-(6-hydroxy-2,3-dihydrobenzofuran-5-yl)-3-(hydroxymethyl)-2-oxoindolin-1-yl)acetate A. Synthesis of ethyl (4-chloro-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace isatin with 4-chloro-1H-indole-2,3-dione, and (2-bromoethyl)cyclopropane with ethyl bromoacetate, the title compound was obtained (95%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.48 (t, 1H), 7.08 (d, 1H), 6.67 (d, 1H), 4.47 (s, 2H), 4.23 (q, 2H), 1.27 (t, 3H); MS (ES+) m/z 268.6 (M+1).

B. Synthesis of ethyl [4-chloro-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (4-chloro-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, the title compound was obtained (75%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.70 (br, 1H), 7.31 (t, 1H), 7.12 (d, 1H), 6.68 (d, 1H), 6.46 (d, 2H), 4.53-4.46 (m, 2H), 4.18 (q, 2H), 3.08-2.88 (m, 2H), 1.23 (t, 3H); MS (ES+) m/z 387.8 (M−17).

C. Synthesis ethyl [4-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with ethyl [4-chloro-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (75%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.33-7.27 (m, 2H), 7.12 (d, 1H), 6.71 (d, 1H), 6.50-6.48 (m, 1H), 5.10 (s, 1H), 4.54-4.42 (m, 4H), 4.19 (q, 2H), 3.11-2.90 (m, 2H), 1.23 (t, 3H); MS (ES+) m/z 388.8 (M+1).

D. Synthesis of ethyl [4-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [4-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (99%) as a gummy solid: MS (ES+) m/z 418.7 (M+1).

Preparation 30 Synthesis of 3-hydroxy-3-[6-(hydroxymethyl)-1,3-benzodioxol-5-yl]-1-pentyl-1,3-dihydro-2H-indol-2-one

To a solution of (6-bromo-1,3-benzodioxol-5-yl)methanol (Mann, J., et al, J. Chem. Soc. Perkin Trans. 1 (1984):2081-8) (1.27 g, 5.50 mmol) in THF (45.0 mL) was added n-BuLi (5.00 mL, 2.0 M, 10.0 mmol) dropwise at −75° C. The reaction mixture was stirred at −75° C. for 45 min followed by the addition of a solution of 1-pentyl-1H-indole-2,3-dione (1.00 g, 4.60 mmol) in THF (20.0 mL) at −75° C. The resulting mixture was stirred at ambient temperature for 12 hrs and quenched with ammonium chloride solution (5.00 mL). More ethyl acetate and water were added and separated. The organic layer was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with 50% EtOAc:Hexanes to yield the title compound (0.29 g, 25%) as a solid: 1H NMR (300 MHz, CDCl3) δ 7.38-7.24 (m, 2H), 7.11 (t, 1H), 6.91 (d, 1H), 6.81 (s, 1H), 6.43 (s, 1H), 5.90-5.87 (m, 2H), 4.77 (dd, 2H), 3.75-3.56 (m, 2H), 1.75-1.58 (m, 2H), 1.26-1.35 (m, 2H), 0.89-0.83 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 147.4, 147.2, 142.8, 133.5, 132.2, 131.1, 130.1, 125.3, 123.8, 111.4, 109.2, 108.1, 101.5, 79.5, 64.7, 40.4, 29.0, 26.8, 22.3, 13.9; MS (ES+) m/z 352.1 (M−17).

Preparation 31 Synthesis of ethyl [1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]acetate A. Synthesis of 1-hexyl-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with n-bromohexane, the title compound was obtained (90%) as a viscous gum: 1H NMR (300 MHz, CDCl3) δ 7.58-7.51 (m, 2H), 7.08 (t, 1H), 6.87 (d, 1H), 3.68 (t, 2H), 1.71-1.62 (m, 2H), 1.41-1.22 (m, 6H), 0.85 (t, 3H).

B. Synthesis of 1-hexyl-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-hexyl-1H-indole-2,3-dione, the title compound was obtained (53%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.44 (br, 1H), 7.47-7.44 (m, 1H), 7.40-7.34 (m, 1H), 7.17 (t, 1H), 6.89 (d, 1H), 6.55 (s, 1H), 6.21 (s, 1H), 5.84-5.82 (m, 2H), 4.58 (br, 1H), 3.71-3.56 (m, 2H), 1.67-1.62 (m, 2H), 1.32-1.21 (m, 6H), 0.84-0.80 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 179.0, 152.3, 148.8, 142.5, 141.3, 130.3, 129.2, 126.1, 123.7, 117.2, 109.5, 106.8, 101.9, 101.4, 79.2, 40.4, 31.3, 27.1, 26.4, 22.4, 13.9; MS (ES+) m/z 352.5 (M−17)

C. Synthesis of 1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-hexyl-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (98%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.38-7.13 (m, 3H), 6.94 (d, 1H), 6.60 (s, 1H), 6.32 (s, 1H), 5.84 (dd, 2H), 5.02 (s, 1H), 3.74-3.63 (m, 2H), 1.70-1.61 (m, 2H), 1.37-1.19 (m, 6H), 0.83 (t, 3H); MS (ES+) m/z 354.2 (M+1).

D. Synthesis of ethyl [1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]acetate

To a solution of diisopropylamine (1.14 g, 11.0 mmol) in THF (10.0 mL) was added n-butyl lithium (7.00 mL, 11.0 mmol, 1.6 M solution in hexane) at −75° C. The resulting mixture was stirred at −75° C. for half an hour and added slowly to a solution of 1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one in THF (20.0 mL) at −75° C. After stirring at −75° C. for another half an hour, ethyl bromoacetate was added. The mixture was stirred at ambient temperature for 18 hrs and quenched with saturated ammonium chloride solution. The organic solvent was removed in vacuo and the aqueous residue was diluted with ethyl acetate (100 mL). The organic layer was washed with saturated ammonium chloride (25.0 mL), brine (50.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with 40% EtOAc/Hexanes to yield the title compound (0.19 g, 8%) as an oil: MS (ES+) m/z 440.5 (M+1).

Preparation 32 Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4-bromoisatin, the title compound was obtained (95%) as a beige solid: 1H NMR (300 MHz, DMSO-d6) δ 10.40 (s, 1H), 9.09 (s, 1H), 7.22 (s, 1H), 7.04 (t, 1H), 6.90 (d, 1H), 6.75 (d, 1H), 6.43 (br, 1H), 6.21 (s, 1H), 5.88 (d, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.0, 148.7, 147.0, 145.8, 139.5, 131.3, 130.8, 125.4, 118.8, 118.4, 109.4, 108.9, 101.0, 97.4, 76.6; MS (ES+) m/z 366.4 (M+1), 364.5 (M+1).

B. Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 4-bromo-3hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (95%) as a cream solid: MS (ES+) m/z 348.5 (M+1), 346.3 (M+1).

C. Synthesis of 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 31D, and making non-critical variations to replace 1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, and ethyl bromoacetate with para-formaldehyde, the title compound was obtained (70%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 9.00 (br, 1H), 7.13-6.95 (m, 3H), 6.84 (d, 1H), 6.16 (d, 1H), 5.90-5.84 (m, 2H), 5.16-4.83 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 177.8, 150.4, 147.1, 146.8, 139.8, 130.2, 129.3, 125.8, 117.7, 115.8, 109.3, 107.9, 101.2, 97.6, 63.5, 57.4.

Preparation 33 Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4-bromoisatin, and 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol, the title compound was obtained (78%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 10.36 (s, 1H), 9.15 (s, 1H), 7.49 (1H), 7.04 (t, 1H), 6.89 (d, 1H), 6.74 (d, 1H), 6.35 (br, 1H), 5.90 (s, 1H), 4.45 (t, 2H), 3.05 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.4, 160.2, 154.0, 145.7, 131.6, 130.7, 125.5, 125.4, 118.9, 117.7, 116.1, 108.8, 96.8, 76.9, 71.8, 29.1; MS (ES−) m/z 344.4 (M−17), 360.4 (M−1).

B. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (62%) as a solid: MS (ES+) m/z 346.5 (M+1), 348.5 (M+1).

C. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 31D, and making non-critical variations to replace 1-hexyl-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, and ethyl bromoacetate with para-formaldehyde, the title compound was obtained that was used directly for further reaction.

Preparation 34 Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1-(pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 4-bromo-1-(pyridin-2-ylmethyl)-1H-indole-2,3-dione

To a solution of 4-bromoisatin (8.94 g, 39.5 mmol) in anhydrous N,N-dimethylformamide (100 mL) was added sodium hydride (3.34 g, 86.9 mmol, 60% dispersion in mineral oil) in portions at 0° C. The brown reaction mixture was stirred for 30 min followed by the addition of a solution of 2-(bromomethyl)pyridine hydrobromide (10.0 g, 39.5 mmol) neutralized with sodium hydride (1.52 g, 39.5 mmol, 60% dispersion in mineral oil) in N,N-dimethylformamide at 0° C. The reaction mixture was stirred for 16 h and quenched with water (100 mL). The reaction mixture was extracted with diethyl ether (3×100 mL) and the aqueous layer was extracted with ethyl acetate (3×100 mL). The combined organic layers was washed with water (5×200 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was triturated with ether to afford the title compound (10.6 g, 85%) as a brown solid: 1H NMR (300 MHz, DMSO-d6) δ 8.53 (d, 1H), 7.67 (t, 1H), 7.30 (t, 2H), 7.25-7.19 (m, 2H), 6.94 (d, 1H), 5.04 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 180.5, 157.3, 154.2, 152.3, 149.5, 138.4, 137.5, 128.6, 123.3, 122.3, 121.5, 116.4, 110.3, 45.8.

B. Synthesis of 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-(Pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4-bromo-1-(pyridin-2-ylmethyl)-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol, the title compound was obtained (91%) as a colorless solid: mp>225° C.; 1H NMR (300 MHz, DMSO-d6) δ 9.29 (s, 1H), 8.54 (d, 1H), 7.70 (dt, 1H), 7.61 (br, 1H), 7.32-7.26 (m, 2H), 7.07 (d, 1H), 7.00 (d, 1H), 6.72 (d, 1H), 6.60 (br, 1H), 6.02 (s, 1H), 4.91 (ABq, 2H), 4.47 (t, 2H), 3.06 (d, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.9, 160.4, 156.3, 153.8, 149.6, 146.1, 137.5, 130.9, 130.8, 126.5, 125.8, 123.1, 121.5, 118.8, 117.3, 116.4, 108.3, 96.7, 76.6, 71.9, 45.7, 29.1; MS (ES+) m/z 455.4 (M+1), 437.4 (M−17).

C. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-(pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one

To a solution of 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-(pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one (1.12 g, 2.48 mmol) in anhydrous dichloromethane (25.0 mL) was added triethylamine (1.40 mL, 9.91 mmol) and SOCl2 (0.40 mL, 4.96 mmol) at 0° C. The reaction mixture was stirred at 0° C. for 2 h and quenched with water (30.0 mL). The organic layer was separated, washed with water (3×30.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to give a gummy material. The residue was dissolved in acetic acid/tetrahydrofuran (3.00 mL/22.0 mL) followed by the addition of zinc dust (0.81 g, 12.4 mmol) in one portion. The reaction mixture was stirred at ambient temperature for 16 h. After the solid was filtered, the solvent was removed in vacuo. The residue was dissolved in ethyl acetate (100 mL), washed with water (3×30.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to give the title compound (1.50 g, 77%) as a gummy material: MS (ES+) m/z 437.3 (M+1).

D. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1-(Pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-(pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (34%): MS (ES+) m/z 468.4 (M+1).

Preparation 35 Synthesis of 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one A. Synthesis of 5-fluoro-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace isatin with 5-fluoroisatin, and (2-bromoethyl)cyclopropane with 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (59%) as a red solid: 1H NMR (300 MHz, DMSO-d6) δ 7.54-7.50 (m, 1H), 7.47-7.44 (m, 1H), 7.20 (dd, 1H), 7.14-7.13 (m, 1H), 6.75 (d, 1H), 4.99 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 182.4 (d), 160.7, 158.5 (d), 157.5, 153.0 (d), 146.5 (d), 139.9 (q), 124.3, 119.3 (d), 114.5 (d), 112.7 (d), 112.0 (d), 110.5, 36.8.

B. Synthesis of 5-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 5-fluoro-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione, the title compound was obtained (66%) as a pale yellow solid: 1H NMR (300 MHz, DMSO-d6) δ 9.15 (s, 1H), 7.21 (s, 1H), 7.15 (dd, 1H), 7.08-6.95 (m, 2H), 6.74 (s, 1H), 6.54 (s, 1H), 6.22 (d, 1H), 5.90 (d, 2H), 4.96 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.7, 160.57, 157.4, 154.0, 148.6, 147.4, 140.1 (m), 139.6 (m), 134.7 (d, 2JCF=29.4 Hz), 121.3, 119.5, 117.7, 115.1 (d, 1JCF=92.1 Hz), 114.5, 111.8 (d, 1JCF=97.5 Hz), 109.7, 109.6, 107.2, 101.3, 97.8, 75.1, 36.9; MS (ES+) m/z 450.3 (M+1)

C. Synthesis of 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 5-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one, the title compound was obtained (72%) as a pale yellow solid: 1H NMR (300 MHz, DMSO-d6) δ 9.31 (s, 1H), 7.13 (dd, 1H), 7.02 (dd, 2H), 6.82 (d, 1H), 6.59 (d, 2H), 6.39 (s, 1H), 5.87 (d, 2H), 5.07-4.96 (m, 2H), 4.84 (s, 1H); 13C NMR (75 MHz, DMSO-d6) δ 176.1, 160.5, 157.4, 153.9, 150.5, 147.5, 140.2, 139.6, 139.1, 132.3 (d, 2JCF=33.3 Hz), 115.3, 114.5 (m), 114.2, 113.9, 111.9 (d, 1JCF=98.7 Hz), 109.9, 109.7 (d, 2JCF=32.7 Hz), 101.3, 98.3, 48.5, 36.8; MS (ES+) m/z 436.2 (M+1).

D. Synthesis of 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

A mixture of 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one (3.64 g, 8.41 mmol), para-formaldehyde (2.52 g, 84.1 mmol) and lithium hydroxide monohydrate (1.06 g, 25.2 mmol) in tetrahydrofuran (84.0 mL) and water (10.0 mL) was stirred at 0° C. for 4 h. After the solvent was removed in vacuo, the residue was dissolved in ethyl acetate (100 mL), washed with 10% aqueous HCl (3×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexanes (50%) to give the title compound (0.65 g, 59%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 9.11 (s, 1H), 7.12 (d, 1H), 6.99-6.87 (m, 3H), 6.80 (dd, 1H), 6.48 (d, 1H), 6.23 (s, 1H), 5.89 (d, 2H), 5.09 (br, 1H), 4.97 (ABq, 2H), 4.01 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.1, 160.5; MS (ES+) m/z 466.2 (M+1), 448.2 (M−17).

Preparation 36 Synthesis of tert-butyl-(2-chloromethyl-5-trifluoromethylthiophen-3-yloxy)dimethylsilane A. Synthesis of methyl 3-tert-butyldimethylsilanyloxy-5-trifluoromethyl-2-thiophenecarboxylate

To a solution of methyl 3-hydroxy-5-trifluoromethyl-2-thiophenecarboxylate (Karp, G. M., et al, Synthesis (2000), 8:1078-1080) (19.4 g, 85.8 mmol) in N,N-dimethylformamide (50.0 mL) was added imidazole (8.77 g, 129 mmol) followed by tert-butyl dimethylsilyl chloride (19.4 g, 129 mmol) at 0° C. The reaction mixture was stirred at ambient temperature overnight. More imidazole (7.50 g) and tert-butyl dimethylsilyl chloride (10.5 g) were added. The reaction mixture was stirred for another 4 h and quenched with water (100 mL). The reaction mixture was extracted with ether (3×500 mL). The combined organic layers was washed with water (3×500 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexanes (1/9) to give the titlew compound (26.5 g, 90%) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 6.91 (s, 1H), 3.82 (s, 3H), 0.21 (s, 6H), 0.06 (s, 91-1); 13C NMR (75 MHz, CDCl3) δ 161.5, 155.5, 133.7, 133.2, 123.6 (q, 1JCF=14.4 Hz), 119.8, 51.9, 25.4, 18.2, −4.6.

B. Synthesis of [3-(tert-butyldimethylsilanyloxy)-5-trifluoromethylthiophen-2-yl]methanol

To a mixture of lithium aluminum hydride (1.67 g, 43.9 mmol) in anhydrous ether (75.0 mL) was added a solution of methyl 3-tert-butyldimethylsilanyloxy-5-trifluoromethyl-2-thiophenecarboxylate (10.0 g, 29.3 mmol) in anhydrous ether (25.0 mL) at 0° C. The reaction mixture was stirred at 0° C. for 30 min and quenched by the slow addition of water (50.0 mL). After the aqueous layer was separated, the organic layer was washed with saturated ammonium chloride (3×20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexanes (1/9) to give the title compound (6.95 g, 76%) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 6.89 (s, 1H), 4.68 (s, 2H), 2.11 (br, 1H), 0.96 (s, 9H), 0.88 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 148.0, 127.0, 124.0, 122.4 (q, 1JCF=14.7 Hz), 120.5, 56.1, 25.5, 18.1, −4.6.

C. Synthesis of tert-butyl-(2-chloromethyl-5-trifluoromethylthiophen-3-yloxy)dimethylsilane

To a solution of [3-(tert-butyldimethylsilanyloxy)-5-trifluoromethylthiophen-2-yl]methanol in anhydrous dichloromethane (100 mL) was added triethylamine (4.05 g, 40.0 mmol) followed by thionyl chloride (2.38 g, 20.0 mmol) at 0° C. The reaction mixture was stirred for 30 min and quenched with water (50.0 mL). After separation, the organic layer was washed with water (3×50.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with hexane to afford the title compound (2.31 g, 70%) as a yellow oil, which was directly used.

Preparation 37 Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-5-methyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-5-methyl-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace isatin with 5-methylisatin, and (2-bromoethyl)cyclopropane with 1,1′-(bromomethylene)dibenzene, the title compound was obtained (74%) as a bright orange solid: 1H NMR (300 MHz, CDCl3) δ 7.42-7.26 (m, 11H), 7.09 (d, 1H), 6.95 (s, 1H), 6.37 (d, 1H), 2.24 (s, 3H).

B. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-5-methyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-5-methyl-1H-indole-2,3-dione, the title compound was obtained (92%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.23 (br, 1H), 7.40-7.15 (m, 11H), 6.90-6.85 (m, 2H), 6.57 (s, 1H), 6.33 (d, 1H), 6.31 (s, 1H), 5.87 (s, 2H), 4.46 (br s, 1H), 2.28 (s, 3H); MS (ES+) m/z 448.4 (M−17).

C. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-5-methyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-5-methyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (84%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.37-7.25 (m, 9H), 7.22-7.17 (m, 2H), 7.10 (s, 1H), 6.91 (s, 1H), 6.86 (d, 1H), 6.63 (s, 1H), 6.40 (s, 1H), 6.38 (d, 1H), 5.88 (ABq, 2H), 5.07 (s, 1H), 2.23 (s, 3H); MS (ES+) m/z 450.3 (M+1).

D. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-5-methyl-1,3-dihydro-2H-indol-2-one

To a solution of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-5-methyl-1,3-dihydro-2H-indol-2-one (1.61 g, 3.60 mmol) and para-formaldehyde (0.43 g, 14.6 mmol) in dichloromethane (60.0 mL) was added diisopropylamine (7.20 mmol). After stirring at ambient temperature for 3 h, the reaction was quenched with saturated aqueous ammonium chloride (60.0 mL). The organic layer was separated and washed with water (3×100 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexanes (20-60%) to afford the title compound (1.07 g, 63%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 10.09 (br, 1H), 7.37-7.16 (m, 12H), 6.99 (s, 1H), 6.87 (d, 1H), 6.62 (s, 1H) 6.54 (s, 1H), 6.37 (d, 1H), 5.87 (d, 2H), 4.45 (ABq, 2H), 2.33 (s, 3H); MS (ES+) m/z 480.4 (M+1).

Preparation 38 Synthesis of 3-(hydroxymethyl)-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-hydroxy-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 2-methyl-1,3-benzothiazol-5-ol, the title compound was obtained (81%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 9.90 (br, 1H), 9.05 (br, 1H), 7.78 (d, 1H), 7.25 (dd, 1H), 7.10-6.95 (m, 2H), 6.90-6.80 (m, 2H), 3.81-3.58 (m, 2H), 2.75 (br, 3H), 1.80-1.60 (m, 2H), 1.50-1.31 (m, 4H), 0.90 (t, 3H); MS (ES+) m/z 383.4 (M+1).

B. Synthesis of 3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

A suspension of 3-hydroxy-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one (0.50 g, 1.31 mmol) in hydroiodic acid (10.0 mL) was refluxed for 1.5 days. The reaction mixture was concentrated in vacuo to dryness. The residue was used directly in next step.

C. Synthesis of 3-(hydroxymethyl)-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 367.5 (M+1).

Preparation 39 Synthesis of (5-chloro-1,3,4-thiadiazol-2-yl)methanol

To a solution of ethyl 5-chloro-1,3,4-thiadiazole-2-carboxylate (0.51 g, 2.60 mmol) in anhydrous methanol (5.00 mL) was added sodium borohydride (0.30 g, 7.99 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h, diluted with acetic acid (3.00 mL) and extracted with ethyl acetate (2×150 mL). The combined organics was washed with aqueous saturated sodium bicarbonate (3×25.0 mL) and aqueous saturated sodium chloride (2×25.0 mL). The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to give the title compound (0.30 g, 75%) as a light yellow semi-solid: 1H NMR (300 MHz, CDCl3) δ 5.04 (s, 2H), 2.80 (br, 1H); MS (ES+) 151.1 (M+1), 153.1 (M+1).

Preparation 40 Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-, (diphenylmethyl)-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3,3-dimethyl-2,3-dihydro-1-benzofuran-6-ol, the title compound was obtained: MS (ES+) m/z 478.5 (M+1)

B. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (73% for two steps): 1H NMR (300 MHz, CDCl3) δ 7.38-7.20 (m, 12H), 7.11-7.04 (m, 2H), 6.97 (s, 1H), 6.58 (s, 1H), 6.57-6.51 (m, 1H), 6.50 (s, 1H), 5.08 (s, 1H), 4.19 (s, 2H), 1.25 (s, 3H), 1.18 (s, 3H); MS (ES+) m/z 426.6 (M+1).

C. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 26C, and making non-critical variations to replace 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 492.5 (M+1)

Preparation 41 Synthesis of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 7-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 7-fluoro-1H-indole-2,3-dione, the title compound was obtained (80%): 1H NMR (300 MHz, DMSO-d6) δ 10.66 (s, 1H), 9.11 (s, 1H), 7.18 (s, 1H), 7.07-6.98 (m, 1H), 6.83-6.74 (m, 1H), 6.66 (d, 1H), 6.48 (s, 1H), 6.18 (s, 1H), 5.92-5.85 (m, 2H); MS (ES+) m/z 304.5 (M+1).

B. Synthesis of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 7-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (100%): 1H NMR (300 MHz, DMSO-d6) δ 10.84 (s, 1H), 9.22 (s, 1H), 7.01 (t, 1H), 6.87-6.78 (m, 1H), 6.71 (d, 1H), 6.62 (s, 1H), 6.35 (s, 1H), 5.90-5.85 (m, 2H), 4.67 (s, 1H); MS (ES+) m/z 288.5 (M+1).

Preparation 42 Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl [4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (4-bromo-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, and 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol, the title compound was obtained (68%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.66 (br, 1H), 7.31-7.19 (m, 3H), 6.73 (dd, 1H), 6.49-6.45 (m, 1H), 5.09-4.36 (m, 4H), 4.20 (q, 2H), 3.14-2.90 (m, 2H), 1.23 (t, 3H); MS (ES+) m/z 432.2 (M−17).

B. Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with ethyl [4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (81%) as a white solid: 1H NMR (CDCl3, 300 MHz) δ 7.31-7.19 (m, 3H), 6.75 (d, 1H), 6.50-6.45 (m, 1H), 5.08 (s, 1H), 5.09-4.36 (m, 4H), 4.20 (q, 2H), 3.14-2.90 (m, 2H), 1.23 (t, 3H); MS (ES+) m/z 433.3 (M+1).

C. Synthesis of ethyl [4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (99%): MS (ES+) m/z 463.2 (M+1).

Preparation 43 Synthesis of ethyl [5-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl (5-chloro-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace isatin with 5-chloro-1H-indole-2,3-dione, and (2-bromoethyl)cyclopropane with ethyl 2-bromoacetate, the title compound was obtained (98%) as solid: 1H NMR (300 MHz, CDCl3) δ 7.60 (d, 1H), 7.54 (dd, 1H), 6.74 (d, 1H), 4.46 (s, 2H), 4.23 (q, 2H), 1.27 (t, 3H); MS (ES+) m/z 268.6 (M+1).

B. Synthesis of ethyl [5-chloro-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with ethyl (5-chloro-2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, and 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol, the title compound was obtained (85%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.70 (br, 1H), 7.31-7.24 (m, 2H), 6.92 (d, 1H), 6.68 (s, 1H), 6.46 (s, 1H), 4.53-4.46 (m, 2H), 5.09-4.40 (d, 2H), 4.18 (q, 2H), 3.08-2.88 (m, 2H), 1.23 (t, 3H); MS (ES+) m/z 387.8 (M−17).

C. Synthesis of ethyl [5-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [5-chloro-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (94%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.30-7.24 (m, 2H), 6.72 (d, 1H), 6.66 (s, 1H), 6.39 (s, 1H), 5.05 (s, 1H), 4.53-4.46 (m, 4H), 4.21 (q, 2H), 3.14-2.94 (m, 2H), 1.25 (t, 3H); MS (ES+) m/z 388.8 (M+1).

D. Synthesis of ethyl [5-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with ethyl [5-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (99%): MS (ES+) m/z 418.7 (M+1).

Preparation 44 Synthesis of methyl [3-(4-chloro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of methyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with methyl bromoacetate, the title compound was obtained (72%): 1H NMR (300 MHz, CDCl3) δ 7.64-7.53 (m, 2H), 7.14 (t, 1H), 6.77 (d, 1H), 4.48 (s, 2H), 3.76 (s, 3H); MS (ES+) m/z 220.4 (M+1).

B. Synthesis of methyl [3-(4-chloro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with methyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, and 1,3-benzodioxol-5-ol with 3-chlorophenol, the title compound was obtained (29%) as a yellow solid: 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 7.48 (d, 1H), 7.38 (t, 1H), 7.19 (t, 1H), 7.01 (br, 1H), 6.80-6.64 (m, 3H), 5.28 (br s, 1H), 4.51 (d, 1H), 4.44 (d, 1H), 3.75 (s, 3H); MS (ES+) m/z 370.5 (M+23), 372.4 (M+23).

C. Synthesis of methyl [3-(4-chloro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with methyl [3-(4-chloro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (83%) as a semi-solid; 1H NMR (300 MHz, CDCl3) δ 7.36 (t, 1H), 7.29 (bd, 1H), 7.18 (t, 1H), 6.95 (br, 1H), 6.86-6.78 (m, 3H), 5.13 (br, 1H), 4.55 (d, 1H), 4.45 (d, 1H), 3.75 (s, 3H); MS (ES+) m/z 332.5 (M+1), 334.5 (M+1).

D. Synthesis of methyl [3-(4-chloro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with methyl [3-(4-chloro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: MS (ES+) m/z 362.5 (M+1) 364.5 (M+1).

Preparation 45 Synthesis of ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate A. Synthesis of ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2B, and non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with ethyl (2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetate, the title compound was obtained as a brown oil: MS (ES+) m/z 364.3 (M+1), 348.5 (M−17).

B. Synthesis of ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-3-hydroxy-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (83%) as a light yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.39 (t, 1H), 7.34 (d, 1H), 7.26-7.22 (m, 1H), 6.92-6.82 (m, 2H), 6.73 (dd, 1H), 5.11 (br, 1H), 4.50 (d, 1H), 4.43 (d, 1H), 4.21 (q, 2H), 1.23 (t, 3H); MS (ES+) m/z 448.5 (M+1).

C. Synthesis of ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with methyl [3-(4-chloro-2-hydroxyphenyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained: MS (ES+) m/z 378.3 (M+1), 361.3 (M−17).

Preparation 46 Synthesis of 3-(4-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(4-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1C, and making non-critical variations to replace 4-bromo-1-pentyl-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3-bromophenol, the title compound was obtained (48%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 9.66 (br, 1H), 7.50-7.38 (m, 2H), 7.24-7.16 (m, 2H), 6.98-6.86 (m, 2H), 6.64 (d, 1H), 4.15 (br, 1H), 3.80-3.55 (m, 2H), 1.75-1.62 (m, 2H), 1.40-1.34 (m, 4H), 0.89 (t, 3H); MS (ES+) m/z 391.4 (M+1), 393.4 (M+1).

B. Synthesis of 3-(4-bromo-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (91%) as a white powder: 1H NMR (300 MHz, CDCl3) δ 7.40 (t, 1H), 7.31 (d, 1H) 7.24-7.23 (m, 2H), 7.01-6.91 (m, 2H), 6.74 (d, 1H), 5.05 (br, 1H), 3.80-3.65 (m, 2H), 1.75-1.63 (m, 2H), 1.38-1.29 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 374.4 (M+1), 376.4 (M+1).

C. Synthesis of 3-(4-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(4-bromo-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained: Rf=0.5 (EtOAc/Hexanes, 1/4).

Preparation 47 Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with isatin, 1,3-benzodioxol-5-ol with 4-bromophenol, the title compound was obtained (71%) as a yellowish solid: MS (ES+) m/z 319.4 (M+1), 321.4 (M+1).

B. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1D, and making non-critical variations to replace 4-bromo-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1,3-dihydro-2H-indol-2-one, the title compound was obtained (98%) as a white powder: MS (ES+) m/z 306.2 (M+1), 304.2 (M+1).

C. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 35D, and making non-critical variations to replace 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxyphenyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 334.2 (M+1), 336.2 (M+1).

Preparation 48 Synthesis of 1-(diphenylmethyl)-3-(hydroxymethyl)-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 3-(trifluoromethoxy)phenol, the title compound was obtained (75%): MS (ES+) m/z 514.5 (M+23).

B. Synthesis of 1-(diphenylmethyl)-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one, the title compound was obtained (82%): MS (ES+) m/z 498.4 (M+23).

C. Synthesis of 1-(diphenylmethyl)-3-(hydroxymethyl)-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 488 (M−17), 528 (M+23).

Preparation 49 Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol (Foster et al., J. Chem. Soc. 1948:2254-2258) and 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-1H-indole-2,3-dione, the title compound was obtained (68%) as a white solid: MS (ES+) m/z 450.4 (M+1).

B. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (67%) as a white solid: MS (ES+) m/z 434.3 (M+1).

C. Synthesis of 1-(diphenylmethyl)-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-(3-hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 26C, and making non-critical variations to replace 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one with 1-(diphenylmethyl)-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (45%) as a white solid: MS (ES+) m/z 464.5 (M+1).

Preparation 50 Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol and 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 4-bromo-1H-indole-2,3-dione, the title compound was obtained (78%) as a white solid: 1H NMR (300 MHz, DMSO-d6) δ 10.36 (s, 1H), 9.15 (s, 1H), 7.49 (1H), 7.04 (t, 1H), 6.89 (d, 1H), 6.74 (d, 1H), 6.35 (br, 1H), 5.90 (s, 1H), 4.45 (t, 2H), 3.05 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.4, 160.2, 154.0, 145.7, 131.6, 130.7, 125.5, 125.4, 118.9, 117.7, 116.1, 108.8, 96.8, 76.9, 71.8, 29.1; MS (ES−) m/z 344.4 (M−17), 360.4 (M−1).

B. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 4-bromo-3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (62%) as a white solid: MS (ES+) m/z 346.5 (M+1), 348.5 (M+1).

C. Synthesis of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 14C, and making non-critical variations to replace 3-(5-fluoro-2-hydroxyphenyl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (16%): Rf=0.21 (EtOAc/Hexanes, 7/3).

Preparation 51 Synthesis of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one A. Synthesis of 7-fluoro-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 1A, and making non-critical variations to replace 4-bromoindole with 7-fluoroisatin, and 1-bromopentane with 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (34%): MS (ES+) m/z 336.2 (M+23).

B. Synthesis of 7-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 7-fluoro-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1H-indole-2,3-dione, the title compound was obtained (75%): MS (ES+) m/z 474.3 (M+23).

C. Synthesis of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 7-fluoro-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one, the title compound was obtained (65%): MS (ES+) m/z 436.4 (M+1).

D. Synthesis of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 26C, and making non-critical variations to replace 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one with 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one, the title compound was obtained (67%): MS (ES+) m/z 488.4 (M+23).

Preparation 52 Synthesis of 3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 2,3-dihydrobenzofuran-6-ol, the title compound was obtained (90%) as a white powder: MS (ES+) m/z 376.3 (M+23).

B. Synthesis of 3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 3-hydroxy-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (76%): MS (ES+) m/z 338.3 (M+1).

C. Synthesis of 3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (46%): MS (ES+) m/z 368.3 (M+1), 380.4 (M+23).

Preparation 53 Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one A. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-3-hydroxy-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-(diphenylmethyl)-1H-indole-2,3-dione, and 1,3-benzodioxol-5-ol with 4-bromophenol, the title compound was obtained (90%) as an orange solid: MS (ES+) m/z 486.2 (M+1), 488.2 (M+1).

B. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 15B, and making non-critical variations to replace 3-(5-bromo-2-hydroxyphenyl)-3-hydroxy-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-3-hydroxy-1,3-dihydro-2H-indol-2-one, the title compound was obtained (99%) as a white powder: 1H NMR (300 MHz, CDCl3) δ 7.39-7.20 (m, 11H), 7.11-7.06 (m, 4H), 6.82 (d, 1H), 6.57-6.51 (m, 1H), 5.04 (s, 1H); MS (ES+) m/z 471.2 (M+1), 473.2 (M+1).

C. Synthesis of 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 26C, and making non-critical variations to replace 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-1,3-dihydro-2H-indol-2-one with 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained: MS (ES+) m/z 500.4 (M+1), 502.4 (M+1).

Preparation 54 Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one A. Synthesis of 1-pentyl-1H-indole-2,3-dione

Following the procedure as described in PREPARATION 2A, and making non-critical variations to replace (2-bromoethyl)cyclopropane with 1-bromopentane, the title compound was obtained (72%) as a red solid: 1H NMR (300 MHz, CDCl3) δ 7.90 (d, 1H), 7.53-7.45 (m, 1H), 7.03-6.97 (m, 1H), 6.82 (d, 1H), 3.64-3.57 (m, 2H), 1.68-1.52 (m, 2H), 1.34-1.21 (m, 4H), 0.79 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 183.6, 158.1, 151.0, 138.4, 125.3, 123.5, 117.5, 110.2, 40.2, 28.9, 26.9, 22.2, 13.9.

B. Synthesis of 3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2B, and making non-critical variations to replace 1-(2-cyclopropylethyl)-1H-indole-2,3-dione with 1-pentyl-1H-indole-2,3-dione, the title compound was obtained (47%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.41 (s, 1H), 7.46 (dd, 1H), 7.37 (dt, 1H), 7.16 (dt, 1H), 6.89 (d, 1H), 6.53 (s, 1H), 6.22 (s, 1H), 5.83 (dd, 2H), 4.70 (br, 1H), 3.73-3.54 (m, 2H), 1.69-1.60 (m, 2H), 1.34-1.26 (m, 4H), 0.85 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 178.9, 152.2, 148.8, 142.5, 141.3, 130.3, 129.3, 126.1, 123.8, 117.1, 109.5, 106.8, 101.8, 101.4, 79.3, 40.4, 28.9, 26.8, 22.3, 13.9; MS (ES+1) m/z 355.5 (M+1).

C. Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 2C, and making non-critical variations to replace 1-(2-cyclopropylethyl)-3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one with 3-hydroxy-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (81%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.67 (br, 1H), 7.39-7.29 (m, 2H), 7.18-7.13 (m, 1H), 6.94 (d, 1H), 6.62 (s, 1H), 6.32 (s, 1H), 5.84 (dd, 2H), 5.01 (s, 1H), 3.71-3.63 (m, 2H), 1.71-1.61 (m, 2H), 1.35-1.27 (m, 4H), 0.86 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 178.8, 151.3, 147.6, 143.9, 141.53, 128.7, 126.4, 126.2, 123.1, 115.3, 109.4, 106.5, 101.5, 101.2, 47.4, 40.5, 28.9, 26.9, 22.3, 13.9; MS (ES+) m/z 340 (M+1).

D. Synthesis of 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one

Following the procedure as described in PREPARATION 1E, and making non-critical variations to replace 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one with 3-(6-hydroxy-1,3-benzodioxol-5-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (67%): 1H NMR (300 MHz, CDCl3) δ 10.85-10.63 (br, 1H), 7.48-7.35 (m, 2H), 7.28-7.19 (m, 1H), 6.96 (d, 1H), 6.52 (d, 2H), 5.82 (dd, 2H), 4.63 (d, 1H), 4.11 (d, 1H), 3.70 (d, 2H), 2.04-1.74 (br, 1H), 1.65-162 (m, 2H), 1.31-1.24 (m, 4H), 0.84 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 180.3, 152.6, 148.1, 143.2, 141.3, 129.2, 129.1, 126.2, 123.3, 112.4, 109.6, 108.2, 101.9, 101.3, 64.6, 59.8, 40.6, 28.9, 26.9, 22.2, 13.9; MS (ES+) m/z 370.1 (M+1).

Example 1 Synthesis of 1′-(2-cyclopropylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one (0.92 g, 2.51 mmol) in anhydrous THF (20.0 mL) was added triphenylphosphine (0.82 g, 3.13 mmol) and diethyl azodicarboxylate (0.55, 3.13 mmol) at −78° C. The brown reaction solution was stirred at ambient temperature for 16 h, and quenched with saturated ammonium chloride (50.0 mL). The organic solvent was removed under reduced pressure and the aqueous mixture was extracted with ethyl acetate (3×50.0 mL). The combined organic layers were dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The brown residue was subjected to column chromatography eluting with ethyl acetate/hexane (5% to 20%, gradient) to give the title compound (0.63 g, 72%) which was crystallized from ether to afford a colorless solid: mp 125-127° C.; 1H NMR (300 MHz, CDCl3) δ 7.30-7.25 (m, 1H), 7.14 (d, 1H), 7.02 (t, 1H), 6.89 (d, 1H), 6.49 (s, 1H), 6.11 (s, 1H), 5.84 (m, 2H), 4.76 (m, 2H), 3.93-3.74 (m, 2H), 1.65-1.57 (m, 2H), 0.76-0.56 (m, 1H), 0.48-0.41 (m, 2H), 0.08-0.03 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 155.9, 148.8, 142.6, 142.3, 132.4, 128.8, 124.0, 123.1, 119.5, 108.6, 103.1, 101.5, 93.6, 80.6, 58.2, 40.5, 32.5, 30.8, 8.7, 4.4; MS (ES+) m/z 350.3 (M+1).

Example 1.1 Synthesis of 1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in Example 1, and making non-critical variations using 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (80%) as a white solid: mp 85-87° C.; 1H NMR (300 MHz, CDCl3) δ 7.28 (t, 1H), 7.15 (d, 1H), 7.02 (t, 1H), 6.89 (d, 1H), 6.49 (s, 1H), 6.11 (s, 1H), 5.84 (dd, 2H), 4.77 (ABq, 2H), 3.85-3.62 (m, 2H), 1.76-1.66 (m, 2H), 1.40-1.33 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.3, 155.9, 148.8, 142.4, 142.3, 132.5, 128.9, 123.9, 119.6, 108.6, 103.0, 101.5, 93.6, 80.5, 58.2, 40.4, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 352 (M+1).

Example 1.2 Synthesis of 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.16 (d, 1H), 7.15 (s, 1H), 6.84 (dd, 1H), 6.45 (s, 1H), 6.06 (s, 1H), 5.86 (dd, 2H), 4.90 (ABq, 2H), 3.83-3.60 (m, 2H), 1.74-1.64 (m, 2H), 1.39-1.28 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.1, 157.2, 149.1, 144.6, 142.0, 130.3, 130.1, 127.0, 120.0, 116.5, 107.6, 102.5, 101.5, 93.3, 77.3, 59.6, 40.6, 29.0, 27.0, 22.3, 14.0; MS (ES+) m/z 430 (M+1).

Example 1.3 Synthesis of ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using ethyl [3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a white powder in 90% yield: 1H NMR (300 MHz, DMSO-d6) δ 7.31-7.26 (m, 1H), 7.17-7.00 (m, 3H), 6.67 (s, 1H), 6.18 (s, 1H), 5.90-5.89 (m, 2H), 4.76-4.66 (m, 2H), 4.59 (s, 2H), 4.13 (q, 2H), 1.17 (t, 3H); 13C NMR (75 MHz, DMSO-d6) δ 177.3, 168.3, 155.6, 148.8, 142.4, 142.1, 132.0, 129.3, 124.1, 123.7, 120.4, 109.6, 103.3, 101.9, 93.8, 79.8, 61.8, 57.8, 41.8, 14.5; MS (ES+) m/z 390.2 (M+23).

Example 1.4 Synthesis of methyl 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using methyl 2-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a white powder in 74% yield: mp 166-167° C.; 1H NMR (300 MHz, CDCl3) δ 8.05 (m, 1H), 7.44 (m, 1H), 7.34 (t, 1H), 7.22-7.10 (m, 3H), 7.03 (m, 1H), 6.70 (d, 1H), 6.52 (s, 1H), 6.21 (s, 1H), 5.90-5.84 (m, 2H), 5.52-5.33 (m, 2H), 4.99 (d, 1H), 4.72 (d, 1H), 3.95 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 167.5, 156.0, 148.9, 142.4, 142.3, 137.4, 132.8, 132.1, 131.4, 129.0, 128.6, 127.4, 126.5, 123.9, 123.6, 119.4, 109.5, 103.1, 101.5, 93.7, 80.7, 58.4, 52.3, 42.4; MS (ES+) m/z 430.3 (M+1), 452.3 (M+23).

Example 1.5 Synthesis of methyl 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using methyl 3-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a white powder in 73% yield; 1H NMR (300 MHz, CDCl3) δ 7.97-7.95 (m, 2H), 7.53-7.50 (m, 1H), 7.45-7.40 (m, 1H), 7.21-7.15 (m, 2H), 7.04-6.99 (m, 1H), 6.73-6.71 (m, 1H), 6.52 (s, 1H), 6.20 (s, 1H), 5.86 (s, 1H), 5.18 (d, 1H), 4.72 (d, 1H), 4.80 (d, 1H), 4.69 (d, 1H), 3.89 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 177.7, 166.6, 156.0, 149.0, 142.4, 141.7, 136.1, 132.2, 131.7, 130.9, 129.2, 128.1, 124.0, 123.7, 119.4, 109.2, 103.1, 101.6, 93.7, 80.5, 64.3, 58.3, 52.3, 43.7; MS (ES+) m/z 430 (M+1).

Example 1.6 Synthesis of methyl 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using methyl 4-{[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]methyl}benzoate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a white powder in 87% yield: 1H NMR (300 MHz, CDCl3) δ 8.01 (d, 2H), 7.38 (d, 2H), 7.18 (t, 2H), 7.02 (t, 1H), 6.72 (d, 1H), 6.52 (s, 1H), 6.12 (s, 1H), 5.86 (m, 2H), 5.11 (d, 1H), 4.96 (d, 1H), 4.86 (d, 1H), 4.69 (d, 1H), 3.89 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 177.7, 166.6, 156.0, 149.0, 142.4, 141.8, 140.8, 132.1, 130.3, 129.8, 129.0 127.3, 124.1, 123.7, 119.3, 109.2, 103.0, 102.0, 93.7, 80.5, 58.3, 52.2, 43.9; MS (ES+) m/z 430.1 (M+1).

Example 1.7 Synthesis of 1′-(diphenylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained as a white powder in 26% yield: MS (ES+) m/z 462.3 (M+1).

Example 1.8 Synthesis of spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 1′-(diphenylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (2.10 g, 4.70 mmol) in EtOAc (100 mL) and acetic acid (0.10 mL) was added palladium on carbon (1.00 g). The reaction mixture was hydrogenated under 60 psi of hydrogen at ambient temperature for 5 days and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to yield the title compound (0.87 g, 66%) as a white powder: mp 252° C. (dec.); 1H NMR (300 MHz, CDCl3) δ 10.55 (s, 1H), 7.25-6.84 (m, 4H), 6.64 (s, 1H), 6.22 (s, 1H), 5.88 (s, 2H), 4.76-4.57 (dd, 2H); MS (ES+) m/z 282.2 (M+1).

Example 1.9 Synthesis of 2-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-1H-isoindole-1,3(2H)-dione

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 2-{3-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]propyl}-1H-isoindole-1,3(2H)-dione to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 45% yield: 1H NMR (300 MHz, CDCl3) δ 7.83-7.80 (m, 2H), 7.70-7.68 (m, 2H), 7.28-7.26 (m, 1H), 7.15 (d, 1H), 7.05-7.00 (m, 1H), 6.86 (d, 1H), 6.48 (s, 1H), 6.23 (s, 1H), 5.85-5.83 (m, 2H), 4.91 (d, 1H), 4.65 (d, 1H), 3.94-3.68- (m, 4H), 2.15-2.10- (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 168.2, 155.9, 148.8, 142.4, 141.9, 134.0, 132.5, 132.0, 128.9, 124.1, 123.4, 123.3, 119.4, 108.4, 103.2, 101.5, 93.6, 80.4, 58.2, 38.0, 35.6, 26.8; MS (ES+) m/z 469.3 (M+1), 491.3 (M+23).

Example 1.10 Synthesis of 2-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]-1H-isoindole-1,3(2H)-dione

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 2-{2-[3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]ethyl}-1H-isoindole-1,3(2H)-dione to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 61% yield: 1H NMR (300 MHz, CDCl3) δ 7.81-7.73 (m, 2H), 7.71-7.62 (m, 2H), 7.18-7.08 (m, 2H), 6.98 (t, 1H), 6.87 (d, 1H), 6.43 (s, 1H), 6.29 (s, 1H), 5.91-5.81 (ABq, 2H), 4.79 (d, 1H), 4.58 (d, 1H), 4.18-3.92 (m, 4H), 3.06 (t, 2H), 1.59-1.35 (br, 2H); 13C NMR (75 MHz, CDCl3) δ 178, 168.2, 156.1, 148.7, 142.2, 141.9, 134.1, 132.4, 131.8, 128.7, 124.1, 123.4, 123.3, 119.0, 107.8, 103.7, 101.4, 93.4, 80.9, 58.1, 39.0, 35.6; MS (ES+) m/z 455 (M+1), 477 (M+23).

Example 1.11 Synthesis of 1′-[3-Benzyloxy)propyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 1-[3-(benzyloxy)propyl]-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 98% yield as a pale yellow syrup: 1H NMR (300 MHz, CDCl3) δ 7.38-6.95 (m, 9H), 6.49 (s, 1H), 6.08 (s, 1H), 5.83 (dd, 2H), 5.86 (ABq, 1H), 4.58 (ABq, 1H), 3.96-3.79 (m, 2H), 3.53 (t, 2H), 2.06-2.00 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 155.9, 148.8, 142.5, 142.2, 138.1, 132.3, 128.9, 127.9, 127.6, 123.9, 123.1, 119.5, 108.7, 103.0, 101.4, 93.6, 80.4, 73.1, 67.4, 58.1, 37.7, 27.9; MS (ES+) m/z 430.3 (M+1).

Example 1.12 Synthesis of 5,6-difluoro-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 71% yield: mp 48-50° C.; 1H NMR (300 MHz, CDCl3) δ 7.33 (td, 1H), 7.18-7.12 (m, 2H), 6.93 (d, 1H), 6.77 (dd, 1H), 6.51 (dd, 1H), 4.96 (d, 1H), 4.71 (d, 1H), 3.87-3.64 (m, 2H), 1.82-1.65 (m, 2H), 1.46-1.28 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.6, 156.8, 152.9, 149.8, 144.2, 142.6, 131.8, 129.4, 124.1, 123.5, 111.7, 109.0, 100.2, 80.9, 57.9, 40.6, 29.1, 27.2, 22.5, 14.1; MS (ES+) m/z 344 (M+1).

Example 1.13 Synthesis of 5-fluoro-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 3% yield: 1H NMR (300 MHz, CDCl3) δ 7.37-7.28 (m, 1H), 7.18-7.11 (m, 1H), 7.09-7.01 (m, 1H), 6.98-6.82 (m, 3H), 6.45-6.37 (m, 1H), 4.95 (d, 1H), 4.69 (d, 1H), 3.89-3.63 (m, 2H), 1.81-1.65 (m, 2H), 1.48-1.28 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.7, 159.4, 156.6, 132.2, 130.1, 129.3, 124.1, 123.4, 116.3, 110.8, 110.5, 108.9, 80.4, 58.4, 40.6, 29.2, 27.3, 22.5, 14.1; MS (ES+) m/z 326 (M+1).

Example 1.14 Synthesis of 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 4% yield: 1H NMR (300 MHz, CDCl3) δ 7.38-7.23 (m, 2H), 7.17-7.01 (m, 2H), 6.93 (d, 1H), 6.84 (d, 1H), 6.79 (d, 1H), 4.95 (d, 1H), 4.69 (d, 1H), 3.89-3.64 (m, 2H), 1.81-1.65 (m, 2H), 1.48-1.28 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.7, 160.1, 142.6, 132.7, 132.1, 131.4, 129.3, 126.5, 124.1, 123.5, 113.1, 112.2, 108.9, 80.3, 58.0, 40.6, 29.2, 27.3, 22.5, 14.2; MS (ES+) m/z 386 (M+1), 388 (M+23).

Example 1.15 Synthesis of 5-chloro-6-fluoro-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(5-chloro-4-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 80% yield; mp 74-76° C.; 1H NMR (300 MHz, CDCl3) δ 7.38-7.27 (m, 1H), 7.18-7.02 (m, 2H), 6.94 (d, 1H), 6.77 (d, 1H), 6.69 (d, 1H), 4.98 (d, 1H), 4.72 (d, 1H), 3.87-3.64 (m, 2H), 1.82-1.65 (m, 2H), 1.47-1.28 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.5, 160.6, 157.4, 142.6, 133.9, 131.8, 129.5, 124.6, 124.1, 123.5, 113.1, 109.0, 100.0, 81.2, 57.5, 40.6, 29.2, 27.2, 22.5, 14.1; MS (ES+) m/z 360 (M+1).

Example 1.16 Synthesis of 6-methoxy-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(2-hydroxy-4-methoxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 99% yield: 1H NMR (300 MHz, CDCl3) δ 7.30 (td, 1H), 7.14 (dd, 1H), 7.03 (t, 1H), 6.91 (d, 1H), 6.58 (d, 1H), 6.52 (d, 1H), 6.36 (dd, 1H), 4.93 (d, 1H), 4.69 (d, 1H), 3.91-3.63 (m, 2H), 3.77 (s, 3H), 1.81-1.65 (m, 2H), 1.46-1.29 (m, 4H), 0.91 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.4, 162.1, 161.5, 142.5, 132.9, 128.8, 123.9, 123.5, 123.1, 121.0, 108.5, 107.5, 96.6, 80.5, 57.6, 55.6, 40.3, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 338 (M+1).

Example 1.17 Synthesis of 6-chloro-5-fluoro-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(4-chloro-5-fluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 44% yield: 1H NMR (300 MHz, CDCl3) δ 7.34 (td, 1H), 7.14 (dd, 1H), 7.06 (td, 1H), 6.98 (d, 1H), 6.93 (d, 1H), 6.50 (d, 1H), 4.96 (d, 1H), 4.70 (d, 1H), 3.87-3.63 (m, 2H), 1.81-1.65 (m, 2H), 1.47-1.29 (m, 4H), 0.91 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.2, 156.9, 154.8, 151.6, 142.5, 131.5, 129.4, 128.6, 123.7, 121.7, 121.9, 111.2, 108.9, 80.6, 57.9, 40.5, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 360 (M+1).

Example 1.18 Synthesis of 1′-pentyl-5-(trifluoromethyl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(hydroxymethyl)-3-[2-hydroxy-5-(trifluoromethyl)phenyl]-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 27% yield: 1H NMR (300 MHz, CDCl3) δ 7.48 (dd, 1H), 7.35 (td, 1H), 7.16-6.90 (m, 5H), 5.02 (d, 1H), 4.76 (d, 1H), 3.91-3.65 (m, 2H), 1.82-1.67 (m, 2H), 1.47-1.29 (m, 4H), 0.91 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.5, 163.3, 142.6, 131.8, 129.8, 129.3, 127.7, 124.1, 124.0, 123.9, 123.6, 121.0, 110.6, 108.9, 80.5, 57.6, 40.5, 29.0, 27.1, 22.3, 13.9; MS (ES+) m/z 376 (M+1).

Example 1.19 Synthesis of 5,6-dichloro-1″-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(4,5-dichloro-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 43% yield. 1H NMR (300 MHz, CDCl3) δ 7.35 (td, 1H), 7.17-7.03 (m, 3H), 6.94 (d, 1H), 6.76 (s, 1H), 4.98 (d, 1H), 4.72 (d, 1H), 3.88-3.65 (m, 2H), 1.82-1.67 (m, 2H), 1.47-1.29 (m, 4H), 0.92 (t, 3H). 13C NMR (75 MHz, CDCl3) δ 176.2, 159.9, 142.5, 133.3, 131.5, 129.4, 124.6, 124.5, 123.9, 123.4, 112.4, 108.9, 80.8, 57.5, 40.5, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 376 (M+1), 378 (M+1).

Example 1.20 Synthesis of 1-(diphenylmethyl)-5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 1-(diphenylmethyl)-3-(6-hydroxy-3,3-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained: mp 190-192° C.; 1H NMR (300 MHz, CDCl3) δ 7.40-7.26 (m, 10H), 7.19-7.15 (m, 1H), 7.07-6.93 (m, 3H), 6.55-6.51 (m, 1H), 6.38 (s, 1H), 6.20 (s, 1H), 4.98 (d, 1H), 4.71 (d, 1H), 4.17 (s, 2H), 1.17 (s, 3H), 1.14 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 178.1, 161.1, 161.0, 141.8, 137.9, 137.2, 132.8, 130.0, 128.6, 128.5, 128.4, 128.2, 128.0, 127.8, 123.9, 123.1, 120.8, 116.1, 112.1, 93.4, 85.4, 80.4, 58.7, 57.4, 41.3, 27.7, 27.6; MS (ES+) m/z 474.5 (M+1).

Example 1.21 Synthesis of 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

To a solution of 1′-(diphenylmethyl)-5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.23 g, 0.49 mmol) in methanol (50.0 mL) was added palladium on carbon (0.10 g). The mixture was hydrogenated under 120 psi of hydrogen at ambient temperature overnight. The reaction mixture was filtered through celite, washed with methanol. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/2) to give the title compound (0.10 g, 68%): mp 95-100° C.; 1H NMR (300 MHz, CDCl3) δ 8.74 (s, 1H), 7.28-7.20 (m, 1H), 7.15 (d, 1H), 7.03 (t, 1H), 6.95 (d, 1H), 6.43 (s, 1H), 6.40 (s, 1H), 4.94 (d, 1H), 4.66 (d, 1H), 4.19 (s, 2H), 1.20 (s, 3H), 1.16 (3H); 13C NMR (75 MHz, CDCl3) δ 180.4, 161.3, 161.0, 140.3, 133.0, 130.1, 128.8, 124.2, 123.4, 120.0, 116.6, 110.1, 93.4, 85.5, 80.6, 58.3, 41.4, 27.7, 27.6; MS (ES+) m/z 308.6 (M+1).

Example 1.22 Synthesis of 4′,7′-dichloro-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one (0.69 g, 1.57 mmol) in anhydrous tetrahydrofuran (15.0 mL) was added triphenylphosphine (0.54 g, 2.04 mmol) followed by slow addition of diisopropyl azodicarboxylate (0.41 g, 2.04 mmol) at 0° C. The brown reaction mixture was stirred at ambient temperature for 16 h and quenched with ammonium chloride solution (2.00 mL). The organic solvent was removed in vacuo. The residue was dissolved in ethyl acetate (20.0 mL), washed with 10% aqueous HCl solution (10.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (35%) to give a solid, which was crystallized from ethyl acetate/ether to give the title compound (0.13 g, 20%) as a colorless solid: mp 106-108° C.; 1H NMR (300 MHz, CDCl3) δ 7.24-7.16 (m, 1H), 6.81 (d, 1H), 6.44 (s, 1H), 6.07 (s, 1H), 5.86 (dd, 2H), 4.87 (dd, 2H), 4.12-4.07 (m, 2H), 1.76-1.66 (m, 2H) 1.36-1.31 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.5, 157.0, 149.2, 142.1, 140.0, 132.3, 131.0, 130.2, 124.6, 116.0, 113.8, 102.3, 101.5, 93.3, 77.2, 58.5, 42.1, 29.5, 28.7, 22.3, 14.0; MS (ES+) m/z 420.4 (M+1).

Example 1.23 Synthesis of 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using 4-bromo-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 71% yield as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 10.79 (s, 1H), 7.19-7.08 (m, 2H), 6.90 (dd, 1H), 6.58 (s, 1H), 6.25 (s, 1H), 5.90 (d, 2H), 4.74 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.5, 157.0, 148.8, 144.5, 141.9, 131.2, 130.6, 126.1, 119.2, 117.5, 109.8, 103.3, 101.8, 93.3, 77.6, 59.7; MS (ES−) m/z 360.4 (M−1), 358.4 (M−1).

Example 1.24 Synthesis of 4′-bromo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

To a solution of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one (1.80 g, 4.80 mmol) in anhydrous ethyl acetate (50 mL) was added tributylphosphine (1.26 g, 1.54 mL, 6.24 mmol) at 0° C. under nitrogen. A solution of di-tert-butyl azodicarboxylate (1.44 g, 6.24 mmol) in anhydrous ethyl acetate (15.0 mL) was added over 10 min. The reaction solution was stirred for 2 h, and then quenched with saturated ammonium chloride solution (30.0 mL). After the aqueous layer was separated, the organic layer was washed with 10% aqueous HCl solution (2×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate-hexane (70%) to obtain a solid which was triturated with diethyl ether to give the title compound (0.64 g, 37%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 10.77 (s, 1H), 7.18-7.13 (m, 1H), 7.08 (d, 1H), 6.90 (d, 1H), 6.47 (s, 1H), 6.30 (s, 1H), 4.80 (ABq, 2H), 4.46 (t, 2H), 2.92 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.7, 162.2, 161.7, 144.5, 131.1, 131.0, 126.1, 119.8, 119.2, 119.1, 118.3, 109.7, 92.4, 77.6, 72.5, 59.2, 28.8; MS (ES−) m/z 358.4 (M−1), 356.3 (M−1).

Example 1.25 Synthesis of 4′-bromo-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

A mixture of 4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1-(pyridin-2-ylmethyl)-1,3-dihydro-2H-indol-2-one (1.81 g, 3.88 mmol), triphenylphosphine (2.04 g, 7.77 mmol) and diisopropyl azodicarboxylate (1.57 g, 7.77 mmol) in anhydrous dioxane (60 mL) was heated at reflux for 16 h. After cooling down to ambient temperature, the solvent was removed in vacuo. The gummy residue was diluted with ethyl acetate (50.0 mL), washed with water (3×25.0 mL), brine (3×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (80%) to give the title compound (0.64 g, 37%) as colorless solid: mp>200° C.; 1H NMR (300 MHz, DMSO-d6) δ 8.47 (d, 1H), 7.77 (dt, 1H), 7.37 (d, 1H), 7.27 (dt, 1H), 7.19-7.13 (m, 2H), 6.94 (dd, 1H), 6.61 (s, 1H), 6.33 (s, 1H), 5.08 (d, 1H), 5.03 (d, 1H), 4.93 (d, 1H), 4.74 (d, 1H), 4.48 (t, J=8.6 Hz, 2H), 2.96 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 177.4, 162.2, 161.8, 155.3, 149.8, 145.3, 137.6, 131.0, 130.5, 126.8, 123.3, 122.2, 119.9, 119.5, 119.0, 118.1, 109.3, 92.4, 77.5, 72.5, 58.8, 45.3, 28.8; MS (ES+) m/z 451.3 (M+1).

Example 1.26 Synthesis of 5′-fluoro-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 5-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one (3.34 g, 7.18 mmol) in anhydrous tetrahydrofuran (80.0 mL) was added tributylphosphine (2.18 g, 2.70 mL, 10.8 mmol) under nitrogen. A solution of di-tert-butyl azodicarboxylate (2.49 g, 10.8 mmol) in anhydrous tetrahydrofuran (25.0 mL) was added over 10 min. The reaction solution was stirred for 1 h, and quenched with saturated ammonium chloride (30.0 mL). After the solvent was removed under reduced pressure, the gummy material was extracted with ethyl acetate (3×75.0 mL). The organic layer was washed with 10% aqueous HCl solution (2×25.0 mL), saturated aqueous sodium hydrogen carbonate (3×25.0 mL), brine (3×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (30%) to afforded the title compound (1.10 g, 34%) as a colorless solid: mp 139-141° C.; 1H NMR (300 MHz, CDCl3) δ 7.02-6.96 (m, 1H), 6.93-6.89 (m, 2H), 6.74-6.73 (m, 1H), 6.50 (s, 1H), 6.38 (d, 1H), 6.09 (s, 1H), 5.87 (dd, 2H), 4.95 (ABq, 2H), 4.78 (Abq, 2H); 13C NMR (75 MHz, CDCl3) δ 176.9, 161.5, 158.3, 155.9, 151.7, 149.2, 142.6, 137.1, 137.1, 133.7, 118.6, 115.6, 115.3, 112.7, 112.4, 112.0, 109.7, 109.6, 109.4, 102.8, 101.7, 93.8, 80.1, 58.6, 37.1; MS (ES+) m/z 448.2 (M+1).

Example 1.27 Synthesis of 1′-(diphenylmethyl)-5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 1-(diphenylmethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-5-methyl-1,3-dihydro-2H-indol-2-one (1.31 g, 2.72 mmol) in ethyl acetate (50.0 mL) was added tributylphosphine (0.82 g, 4.07 mmol). A solution of di-tert-butyl azodicarboxylate (0.94 g, 4.07 mmol) in ethyl acetate (45.0 mL) was added to the above reaction mixture over a period of 5 minutes. After stirring for 10 minutes under N2, the reaction was quenched with saturated aqueous ammonium chloride (60.0 mL). The organic layer was separated and washed with 1.0 N hydrochloric acid solution (3×100 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (10-50%) to afford the title compound (0.98 g, 78% yield): 1H NMR (300 MHz, CDCl3) δ 7.40-7.25 (m, 10H), 7.02, (s, 1H), 6.96 (s, 1H), 6.79 (d, 1H), 6.50 (s, 1H), 6.36 (d, 1H), 6.08 (s, 1H), 5.86 (d, 2H), 4.82 (ABq, 2H), 2.20 (s, 3H).

Example 1.28 Synthesis of 5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A stainless steel hydrogenating vessel was successively charged with 1′-(diphenylmethyl)-5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.90 g, 1.95 mmol), glacial acetic acid (50.0 mL) and palladium hydroxide (0.10 g, 1.35 mmol, 20 wt % on carbon). The vessel was flushed with nitrogen, sealed then heated to 60° C. and placed under 120 Psi of H2. After 4 days of stirring, the reaction mixture was diluted with ethyl acetate and passed through a bed of celite. The filtrate was washed with water (6×100 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (40-50%) to afford the title compound (0.25 g, 43%): mp 269-271° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.45 (s, 1H), 7.00 (d, 1H), 6.87 (s, 1H), 6.76 (d, 1H), 6.63 (s, 1H), 6.21 (s, 1H), 5.87 (d, 2H), 4.64 (ABq, 2H), 2.17 (s, 3H); MS (ES+) m/z 296.28 (M+1).

Example 1.29 Synthesis of 5′-methyl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a suspension of sodium hydride (0.03 g, 0.63 mmol, 60% dispersion in mineral oil) in N,N-dimethylformamide (5.00 mL) was slowly added a solution of 5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.10 g, 0.33 mmol) in N,N-dimethylformamide (5.00 mL) at 0° C. After stirring for 15 minutes at 0° C., a solution of 2-(bromomethyl)-5-(trifluoromethyl)furan (0.11 g, 0.49 mmol) in N,N-dimethylformamide (40.0 mL) was added. The resulting mixture was stirred at ambient temperature for 4 h and quenched with water (20.0 mL). The mixture was extracted with ethyl acetate (3×25.0 mL). The combined organic layers was washed with water (50.0 mL) and brine (2×25.0 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography eluting with ethyl acetate/hexane (15-50%) to afford the title compound (0.11 g, 77% yield): mp 96-98° C.; 1H NMR (300 MHz, CDCl3) δ 7.09 (d, 1H), 7.00 (s, 1H), 6.87 (d, 1H), 6.74 (d, 1H), 6.52 (s, 1H), 6.38 (d, 1H), 6.11 (s, 1H), 5.88 (d, 2H), 4.96 (ABq, 2H), 4.80 (ABq, 2H), 2.29 (s, 3H); MS (ES+) m/z 444.2 (M+1).

Example 1.30 Synthesis of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using 3-(4-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 82% yield as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.33 (td, 1H), 7.15-7.14 (m, 2H), 7.04 (dd, 1H), 6.96-6.90 (m, 2H), 6.56 (d, 1H), 4.95 (d, 1H), 4.69 (d, 1H), 3.89-3.64 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.6, 161.6, 142.5, 132.1, 129.1, 128.4, 124.4, 123.9, 123.3, 122.8, 114.1, 108.8, 80.4, 57.6, 40.4, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 386.3 (M+1), 388.3 (M+1).

Example 1.31 Synthesis of 5-bromo-1′-(diphenylmethyl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in Example 1, and making non-critical variations using 3-(5-bromo-2-hydroxyphenyl)-1-(diphenylmethyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (72%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.43-7.25 (m, 11H), 7.14-6.93 (m, 4H), 6.83 (d, 1H), 6.71 (d, 1H), 6.52 (d, 1H), 5.0 (d, 1H), 4.73 (d, 1H); MS (ES+) m/z 484.4 (M+1), 482.4 (M+1).

Example 1.32 Synthesis of 2-methyl-1′-pentylspiro[furo[2,3-f][1,3]benzothiazole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using 3-(hydroxymethyl)-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (50%) as a white solid: mp 105-107° C.; 1H NMR (300 MHz, CDCl3) δ 7.59 (d, 1H), 7.28 (dt, 1H), 7.02-6.92 (m, 2H), 5.02 (d, 1H), 4.77 (d, 1H), 4.01 (m, 1H), 3.64 (m, 1H), 2.54 (s, 3H), 1.92-1.71 (m, 2H), 1.54-1.34 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.7, 169.2, 160.2, 149.2, 142.7, 138.3, 132.7, 129.0, 128.6, 123.5, 122.7, 122.1, 120.2, 108.6, 108.3, 80.1, 58.1, 40.7, 29.1, 27.0, 22.5, 20.2, 14.1; MS (ES+) m/z 379.5 (M+1).

Example 1.33 Synthesis of 5-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using 3-(hydroxymethyl)-3-(5-hydroxy-2-methyl-1,3-benzothiazol-6-yl)-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (30%) as a white solid: mp 143-145° C.; 1H NMR (300 MHz, CDCl3) δ 7.35-7.27 (m, 2H), 7.17-6.98 (m, 3H), 6.84 (d, 1H), 6.78-6.73 (m, 2H), 6.40 (d, 1H), 5.07-4.87 (m, 3H), 4.69 (d, 1H); MS (ES+) m/z 464.2 (M+1), 466.2 (M+1).

Example 1.34 Synthesis of 5-bromospiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-(5-bromo-2-hydroxyphenyl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (25%) as a white solid: mp 225-228° C.; 1H NMR (300 MHz, CDCl3) δ 10.65 (s, 1H), 7.35 (dd, 1H), 7.24 (dt, 1H), 7.11 (d, 1H), 6.99-6.88 (m, 3H), 6.83 (d, 1H), 4.81 (d, 1H), 4.69 (d, 1H); MS (ES+) m/z 316.1 (M+1), 318.1 (M+1).

Example 1.35 Synthesis of 1′-(diphenylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a solution of 1-(diphenylmethyl)-3-(hydroxymethyl)-3-[2-hydroxy-4-(trifluoromethoxy)phenyl]-1,3-dihydro-2H-indol-2-one (17.3 mmol) in anhydrous THF (200 mL) was added triphenylphosphine (6.34 g, 24.2 mmol) followed by diethyl azodicarboxylate (4.39 mL, 24.2 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h, quenched with saturated ammonium chloride (40.0 mL). The aqueous mixture was extracted with ethyl acetate (3×150 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/4) to give the title compound (6.00 g, 71%): 1H NMR (300 MHz, CDCl3) δ 7.45-6.51 (m, 18H), 5.08 (d, 1H), 4.81 (d, 1H); MS (ES+) m/z 488 (M+1).

Example 1.36 Synthesis of 6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a suspension of 1′-(diphenylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (6.00 g, 12.3 mmol) in methanol (100 mL) and acetic acid (1.00 mL) was added 10% palladium on carbon (0.65 g, 0.62 mmol), and the mixture was hydrogenated at ambient temperature under 130 psi of hydrogen for 5 days. The reaction mixture was filtered over celite and the filtrate was concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting with 30% ethyl acetate in hexane to give the title compound (2.95 g, 75%) as a white solid: mp 180-182° C.; 1H NMR (300 MHz, CDCl3) δ 9.19 (s, 1H), 7.29-6.92 (m, 4H), 6.86-6.64 (m, 3H), 5.03 (d, 1H), 4.75 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 179.9, 161.9, 150.6, 132.3, 129.4, 127.4, 125.6, 124.3, 124.2, 123.8, 120.5, 114.1, 110.7, 104.3, 80.8, 58.2; MS (ES+) m/z 322 (M+1).

Example 1.37 Synthesis of ethyl (4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using ethyl [4-bromo-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained (41%) as a colorless solid: MS (ES+) m/z 445.5 (M+1).

Example 1.38 Synthesis of ethyl (4′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using ethyl [4-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 63% yield as a colorless solid: MS (ES+) m/z 400.8 (M+1).

Example 1.39 Synthesis of ethyl (4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using ethyl [4-bromo-3-(6-hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 52% yield: 1H NMR (300 MHz, CDCl3) δ 7.22-7.10 (m, 2H), 6.70 (d, 1H), 6.48 (s, 1H), 6.30 (s, 1H), 5.0 (d, 1H); 4.86 (d, 1H), 4.63 (d, 1H), 4.35 (d, 1H), 4.28-4.18 (m, 2H), 2.79 (s, 2H), 1.43 (s, 3H), 1.39 (s, 3H), 1.28 (t, 3H); MS (ES+) m/z 472.5 (M+1), 474.5 (M+1).

Example 1.40 Synthesis of ethyl (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1, and making non-critical variations using ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 81% yield: MS (ES+) m/z 438.4 (M+1), 440.4 (M+1).

Example 1.41 Synthesis of ethyl (5′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using ethyl [5-chloro-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 90% yield as a colorless solid: MS (ES+) ink 400.8 (M+1).

Example 1.42 Synthesis of 7′-fluorospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A solution of 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-1,3-dihydro-2H-indol-2-one (2.00 g, 7.00 mmol) and paraformaldehyde (2.10 g, 61.0 mmol) in THF (50 mL) was degassed by bubbling through argon for one hour, followed by the slow addition of lithium diisopropylamide (48.8 mL, freshly made 0.50 M solution, 25 mmol) at −78° C. The mixture was stirred at ambient temperature overnight and quenched with saturated ammonium chloride (50.0 mL). The mixture was extracted with ethyl acetate (3×100 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in anhydrous ethyl acetate (50 mL) followed by the addition of tributylphosphine (2.10 mL, 8.00 mmol) and di-tert-butyl azodicarboxylate (1.90 g, 8.00 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and quenched with saturated ammonium chloride (30.0 mL). The organic layer was separated, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in methanol (70.0 mL) followed by the addition of saturated sodium bicarbonate solution (30.0 mL). The resulted mixture was refluxed at 100° C. for one hour. After cooling down to ambient temperature, the mixture was extracted with ethyl acetate (3×50.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/5) to give the title compound (0.27 g, 17%): 1H NMR (300 MHz, DMSO-d6) δ 11.06 (s, 1H), 7.17-7.08 (m, 1H), 7.00-6.88 (m, 2H), 6.64 (s, 1H), 6.33 (s, 1H), 5.92-5.85 (m, 2H), 4.74 (d, 1H), 4.62 (d, 1H).

Example 1.43 Synthesis of methyl (6-chloro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using methyl [3-(4-chloro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 74% yield as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.29 (dt, 1H), 7.14 (dd, 1H), 7.06 (t, 1H), 6.95 (d, 1H), 6.81-6.74 (m, 3H), 5.03 (d, 1H), 4.74 (d, 1H), 4.65 (d, 1H), 4.44 (d, 1H), 3.75 (s, 3H); MS (ES+) m/z 344.5 (M+1), 346.5 (M+1).

Example 1.44 Synthesis of ethyl (5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.22, and making non-critical variations using ethyl [3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace 4,7-dichloro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-pentyl-1,3-dihydro-2H-indol-2-one, the title compound was obtained in 46% yield as a light yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.31 (dt, 1H), 7.16 (dd, 1H), 7.08 (dt, 1H), 6.81-6.71 (m, 2H), 6.67 (dd, 1H), 4.98 (d, 1H), 4.74 (d, 1H), 4.64 (d, 1H), 4.37 (d, 4.24 (q, 7.1 Hz), 1.28 (t, 3H); MS (ES+) m/z 360.5 (M+1).

Example 1.45 Synthesis of ethyl (2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetate

To a solution of ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate (4.20 mmol) in anhydrous THF (60.0 mL) was added triphenylphosphine (1.43 g, 5.46 mmol) and diethyl azodicarboxylate (0.95 g, 5.46 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and quenched with saturated ammonium chloride (20.0 mL). The mixture was extracted with ethyl acetate (3×50.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/4) to give the title compound (0.25 g, 16% in three steps): 1H NMR (300 MHz, CDCl3) δ 7.29 (td, 1H), 7.22-7.17 (m, 1H), 7.07 (t, 1H), 6.81 (s, 1H), 6.78 (d, 1H), 6.65 (s, 1H), 4.95 (d, 1H), 4.71 (d, 1H), 4.64 (d, 1H), 4.42 (d, 1H), 4.24 (q, 2H), 2.84 (t, 2H), 2.73-2.65 (m, 2H), 2.10-1.95 (m, 2H), 1.29 (t, 3H); MS (ES+) m/z 364 (M+1).

Example 1.46 Synthesis of ethyl (2-oxo-5′,6′,7′,8′-tetrahydrospiro[indole-3,3′-naphtho[2,3-b]furan]-1(2H)-yl)acetate

Following the procedure as described in EXAMPLE 1.45, and making non-critical variations using ethyl [3-(hydroxymethyl)-3-(3-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (24% in three steps): 1H NMR (300 MHz, CDCl3) δ 7.29 (td, 1H), 7.19 (d, 1H), 7.07 (t, 1H), 6.79 (d, 1H), 6.66 (s, 1H), 6.51 (s, 1H),), 4.91 (d, 1H), 4.67 (d, 1H), 4.52 (ABq, 2H), 4.24 (q, 2H), 2.77-2.51 (m, 4H), 1.77-1.64 (m, 4H), 1.29 (t, 3H); MS (ES+) m/z 378 (M+1).

Example 1.47 Synthesis of ethyl (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetate

Following the procedure as described in EXAMPLE 1.45, and making non-critical variations using ethyl [4-bromo-3-(4,5-difluoro-2-hydroxyphenyl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate to replace ethyl [3-(6-hydroxy-2,3-dihydro-1H-inden-5-yl)-3-(hydroxymethyl)-2-oxo-2,3-dihydro-1H-indol-1-yl]acetate, the title compound was obtained (41%): mp 133-134° C.; 1H NMR (300 MHz, CDCl3) δ 7.26-7.15 (m, 3H), 6.78-6.58 (m, 2H), 5.08 (d, 1H), 4.91 (d, 1H), 4.63 (d, 1H), 4.35 (d, 1H), 4.24 (q, 2H), 1.29 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.5, 166.8, 157.1, 143.7, 130.7, 129.0, 127.8, 120.0, 111.8, 111.6, 107.5, 99.8, 99.5, 62.2, 59.1, 41.7, 14.1; MS (ES+) m/z 438 (M+1), 440 (M+1), 460 (M+23), 462 (M+23).

Example 1.48 Synthesis of 1′-(diphenylmethyl)-6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 1, and making non-critical variations using 1-(diphenylmethyl)-3-(5-hydroxy-2,3-dihydro-1-benzofuran-6-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (43%): MS (ES+) m/z 446.4 (M+1).

Example 1.49 Synthesis of 6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1′H)-one

A mixture of 1′-(diphenylmethyl)-6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1′H)-one (0.29 g, 0.65 mmol) and palladium hydroxide (0.10 g, 20% on activated carbon) in acetic acid (20.0 mL) was hydrogenated at 60° C. under normal pressure of hydrogen for 20 hours. The reaction mixture was filtered through celite and washed with acetone (50.0 mL). The filtrate was concentrated in vacuo to dryness to give the title compound (0.13 g, 69%): MS (ES+) m/z 280.2 (M+1).

Example 1.50 Synthesis of 1′-(diphenylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 1, and making non-critical variations using 1-(diphenylmethyl)-3-(6-hydroxy-2,3-dihydro-1-benzofuran-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (51%) as a white solid: MS (ES+) m/z 446.3 (M+1).

Example 1.51 Synthesis of 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1H)-one

Following the procedure as described in EXAMPLE 1.49, and making non-critical variations using 1′-(diphenylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 1′-(diphenylmethyl)-6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (68%): mp 208-210° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.53 (s, 1H), 7.39-6.76 (m, 4H), 6.45 (s, 1H), 6.35 (s, 1H), 4.68 (ABq, 2H), 4.45 (t, 2H), 2.92 (t, 2H); MS (ES+) m/z 280.2 (M+1).

Example 1.52 Synthesis of ethyl (2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate

A mixture of 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.28 g, 1.00 mmol), ethyl 2-bromoacetate (0.17 g, 1.00 mmol) and cesium carbonate (0.98 g, 3.00 mmol) in acetone (20.0 mL) was stirred at reflux for 5 hours. After cooling down to ambient temperature, the mixture was filtered. The filtrate was evaporated under reduced pressure and the residue was subjected to column chromatography to give the title compound (0.23 g, 63%) as a white solid: MS (ES+) m/z 366.4 (M+1).

Example 1.53 Synthesis of 4′-methoxy-1′{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 1, and making non-critical variations using 3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-4-methoxy-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (33%) as a white solid: mp 149-153° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.32-7.24 (m, 1H), 6.82-6.62 (m, 3H), 6.46 (s, 1H), 6.40 (d, 1H), 6.08 (s, 1H), 5.87 (ABq, 2H), 4.92 (ABq, 2H), 4.82 (ABq, 2H), 3.70 (s, 3H); MS (ES+) m/z 460.3 (M+1).

Example 1.54 Synthesis of 7′-fluoro-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 1, and making non-critical variations using 7-fluoro-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (32%) as a white solid: mp 116-118° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.36-6.88 (m, 4H), 6.67 (s, 1H), 6.62 (d, 1H), 6.19 (s, 1H), 5.90 (d, 2H), 5.07 (q, 2H), 4.75 (dd, 2H); 13C NMR (75 MHz, DMSO-d6) δ176.9, 155.8, 154.1, 149.1, 148.8, 145.6, 142.4, 140.9, 140.3, 139.2, 139.2, 135.2, 135.2, 128.5, 128.4, 124.9, 128.4, 124.9, 124.8, 124.7, 121.2, 120.4, 120.4, 119.8, 117.6, 117.2, 117.0, 114.5, 114.5, 109.5, 103.2, 102.0, 93.8, 80.1, 58.3, 58.2, 39.0, 38.9; MS (ES+) m/z 448.3 (M+1).

Example 2 Synthesis of (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetic acid

To a suspension of ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate (10.5 g, 24.5 mmol) in THF (200 mL) and water (100 mL) was added lithium hydroxide monohydrate (3.98 g, 95.0 mmol) at 0° C. The reaction mixture was stirred at 0° C. for 30 min and at ambient temperature for 17 h. The mixture was neutralized with of 4 M HCl (15.0 mL). The residue obtained upon removing the solvent was acidified by the addition of 4 M HCl (6.2 mL) to pH 3. The solid was filtered, washed with water and hexane, and dried under the reduced pressure to give the title compound (8.48 g, 87%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.32-7.06 (m, 4H), 6.79 (d, 1H), 6.49 (s, 1H), 6.23 (s, 1H), 5.84 (m, 2H), 4.92 (m, 1H), 4.69-4.63 (m, 2H), 4.45 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 177.8, 171.8, 155.8, 149.0, 142.4, 141.2, 132.0, 129.0, 124.1, 124.0, 119.2, 108.3, 103.4, 101.5, 93.5, 80.2, 58.2, 41.1; MS (ES−) m/z 338.2 (M−1).

Example 2.1 Synthesis of (2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained in 74% yield; MS (ES−) m/z 354 (M−1).

Example 2.2 Synthesis of (4′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (4′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained in 92% yield as a colorless solid: mp 228-229° C.; 1H NMR (300 MHz, CDCl3) δ 7.26-7.21 (m, 1H), 7.03 (dd, 1H), 6.71 (dd, 1H), 6.52 (s, 1H), 6.36 (s, 1H), 4.93 (dd, 2H), 4.69-4.63 (m, 1H), 4.54-4.51 (m, 3H), 2.95 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.8, 170.9, 162.1, 162.1, 143.1, 131.7, 130.0, 128.6, 124.7, 119.6, 118.7, 117.0, 106.7, 92.8, 77.2, 72.3, 58.1, 41.2, 28.9; MS (ES−) m/z 370.4 (M−1).

Example 2.3 Synthesis of (4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained (98%) as a colorless solid: MS (ES−) m/z 415.2 (M−1).

Example 2.4 Synthesis of (5′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (5′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained in 98% yield as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.27-7.25 (m, 1H), 7.16 (d, 1H), 6.72 (d, 1H), 6.54 (s, 1H), 6.39 (s, 1H), 4.93 (dd, 2H), 4.69-4.63 (m, 1H), 4.54-4.51 (m, 3H), 2.95 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.8, 170.9, 162.1, 162.1, 143.1, 131.7, 130.0, 128.6, 124.7, 119.6, 118.7, 117.0, 106.7, 92.8, 77.2, 72.3, 58.1, 41.2, 28.9; MS (ES−) m/z 370.4 (M−1).

Example 2.5 Synthesis of (2-oxo-5′,6′,7′,8′-tetrahydrospiro[indole-3,3′-naphtho[2,3-b]furan]-1(2H)-yl)acetic acid

Following the procedure as described in Example 2, and making non-critical variations using ethyl (2-oxo-5′,6′,7′,8′-tetrahydrospiro[indole-3,3′-naphtho[2,3-b]furan]-1(2H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained (99%): MS (ES−) m/z 348 (M−1).

Example 2.6 Synthesis of (2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid

A mixture of ethyl (2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate (0.23 g, 0.63 mmol) and LiOH (0.10 g, 4.20 mmol) in MeOH/H2O (1/1, 20.0 mL) was stirred at ambient temperature for 20 hours. The mixture was acidified with 0.1 M HCl until pH 2-3. The solid was filtered off and dried to give the title compound (0.15 g, 70%): MS (ES−) m/z 336.3 (M−1).

Example 3 Synthesis of N-(4-chlorobenzyl)-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide

A. Preparation of stock solution of isobutyl (2′-oxospiro[furo[2,3-f][1,3]-benzodioxole-7,3′-indol]-1′-(2′H)-yl)acetyl carbonate

To a solution of (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetic acid (0.30 g, 0.88 mmol) in dichloromethane (12.5 mL) was added N-methylmorpholine (0.09 g, 0.88 mmol) and iso-butyl chloroformate (0.12 g, 0.88 mmol) dropwise at 0° C. The mixture was stirred at 0° C. for 1.5 h and at ambient temperature for 3 h. This mixture was used as a mixed anhydride for the next step amide formation.

B. Synthesis of N-(4-chlorobenzyl)-2-(2′-oxospiro[furo[2,3-f][1,3]-benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide

To the above mixed anhydride stock solution (2.50 mL, 0.18 mmol) was added a solution of 4-chlorobenzylamine in dichloromethane (0.35 mL, 0.50 M, 0.18 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 23 h, washed with saturated aqueous sodium carbonate and water. After removal of the solvent, diethyl ether was added and the precipitate was collected by filtration to give the title compound (0.04 g, 46%): 1H NMR (300 MHz, CDCl3) δ 7.39-6.97 (m, 8H), 6.49 (s, 1H), 6.29 (br, 1H), 6.01 (s, 1H), 5.85 (m, 2H), 4.87 (m, 1H), 4.65 (m, 1H), 4.53-4.29 (m, 4H); MS (ES+), m/z 485.2 (M+23).

Example 3.1

The compounds listed in the following table were synthesized using similar conditions as described in Example 3. The compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 1 N-(3-fluorophenyl)-2-(2′-oxospiro[furo[2,3- 433.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 2 N-butyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 395.2 indol]-1′(2′H)-yl)acetamide 3 1′-(2-oxo-2-piperidin-1-ylethyl)spiro[furo[2,3- 407.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 4 N-butyl-N-methyl-2-(2′-oxospiro[furo[2,3- 409.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 5 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 415.2 1′(2′H)-yl)-N-phenylacetamide 6 N-(4-fluorophenyl)-2-(2′-oxospiro[furo[2,3- 433.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 7 N-(3-fluorobenzyl)-2-(2′-oxospiro[furo[2,3- 447.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 8 N-(3-chlorophenyl)-2-(2′-oxospiro[furo[2,3- 449.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 9 N-(2-fluorophenyl)-2-(2′-oxospiro[furo[2,3- 433.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 10 N-(2-ethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 11 N-(4-ethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 12 N-(3-methylphenyl)-2-(2′-oxospiro[furo[2,3- 429.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 13 N-(2,3-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 14 N-(3,5-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 15 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 409.4 1′(2′H)-yl)-N-pentylacetamide 16 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 381.3 1′(2′H)-yl)-N-propylacetamide 17 N-isopropyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 381.4 7,3′-indol]-1′(2′H)-yl)acetamide 18 N-(3-methylbutyl)-2-(2′-oxospiro[furo[2,3- 409.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 19 N-isobutyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 395.3 7,3′-indol]-1′(2′H)-yl)acetamide 20 N-hexyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 423.4 indol]-1′(2′H)-yl)acetamide 21 N-cyclohexyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 421.4 7,3′-indol]-1′(2′H)-yl)acetamide 22 N-cyclopentyl-2-(2′-oxospiro[furo[2,3- 407.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 23 N-heptyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 437.5 indol]-1′(2′H)-yl)acetamide 24 N-(2-chlorobenzyl)-2-(2′-oxospiro[furo[2,3- 463.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 25 N-(2,6-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 26 N-(2-methoxyphenyl)-2-(2′-oxospiro[furo[2,3- 445.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 27 N-[(5-methyl-2-furyl)methyl]-2-(2′-oxospiro[furo[2,3- 433.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 28 N-ethyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 367.4 indol]-1′(2′H)-yl)acetamide 29 N-methyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 353.3 7,3′-indol]-1′(2′H)-yl)acetamide 30 N-(2-fluorobenzyl)-2-(2′-oxospiro[furo[2,3- 447.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 31 N-[2-(3-methoxyphenyl)ethyl]-2-(2′-oxospiro[furo[2,3- 473.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 32 N-(2-ethoxyethyl)-2-(2′-oxospiro[furo[2,3- 411.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 33 N-(4-methoxybenzyl)-2-(2′-oxospiro[furo[2,3- 459.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 34 N-(2,4-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 35 N-(3-isopropoxypropyl)-2-(2′-oxospiro[furo[2,3- 439.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 36 N-(2-furylmethyl)-2-(2′-oxospiro[furo[2,3- 419.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 37 N-(cyclohexylmethyl)-2-(2′-oxospiro[furo[2,3- 435.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 38 N-(3-fluoro-2-methylphenyl)-2-(2′-oxospiro[furo[2,3- 447.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 39 N-(4-methoxyphenyl)-2-(2′-oxospiro[furo[2,3- 445.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 40 N-cyclobutyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 393.4 7,3′-indol]-1′(2′H)-yl)acetamide 41 N-(2,5-difluorophenyl)-2-(2′-oxospiro[furo[2,3- 451.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 42 N-benzyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 429.3 indol]-1′(2′H)-yl)acetamide 43 N-(cyclopropylmethyl)-2-(2′-oxospiro[furo[2,3- 393.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 44 N-butyl-N-ethyl-2-(2′-oxospiro[furo[2,3- 423.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 45 N-octyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 451.2 indol]-1′(2′H)-yl)acetamide 46 N-(3,3-dimethylbutyl)-2-(2′-oxospiro[furo[2,3- 423.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 47 N-(4-chloro-2-methylphenyl)-2-(2′-oxospiro[furo[2,3- 463.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 48 N-(3-methoxyphenyl)-2-(2′-oxospiro[furo[2,3- 445.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 49 N-(2-fluoro-4-methylphenyl)-2-(2′-oxospiro[furo[2,3- 447.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 50 N-(3,4-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 51 N-(3-chlorobenzyl)-2-(2′-oxospiro[furo[2,3- 463.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 52 N-(3-methoxybenzyl)-2-(2′-oxospiro[furo[2,3- 459.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 53 N-(3,4-difluorophenyl)-2-(2′-oxospiro[furo[2,3- 451.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 54 N-(3-methylbenzyl)-2-(2′-oxospiro[furo[2,3- 443.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 55 N-(2-methoxybenzyl)-2-(2′-oxospiro[furo[2,3- 459.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 56 N-(4-isopropylphenyl)-2-(2′-oxospiro[furo[2,3- 457.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 57 N-(2,3-difluorophenyl)-2-(2′-oxospiro[furo[2,3- 451.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 58 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 423.1 1′(2′H)-yl)-N-(tetrahydrofuran-2-ylmethyl)acetamide 59 N-[2-(4-methylphenyl)ethyl]-2-(2′-oxospiro[furo[2,3- 457.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 60 N-[2-(3-chlorophenyl)ethyl]-2-(2′-oxospiro[furo[2,3- 477.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 61 N-(4-cyanophenyl)-2-(2′-oxospiro[furo[2,3- 440.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 62 N-(2,3-dihydro-1H-inden-1-yl)-2-(2′-oxospiro[furo[2,3- 455.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 63 N-(2-methoxyethyl)-2-(2′-oxospiro[furo[2,3- 397.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 64 N-[2-(4-methoxyphenyl)ethyl]-2-(2′-oxospiro[furo[2,3- 473.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 65 N-(2-cyanoethyl)-2-(2′-oxospiro[furo[2,3- 392.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 66 N-(2,4-dichlorobenzyl)-2-(2′-oxospiro[furo[2,3- 497.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 67 N-(3,5-difluorobenzyl)-2-(2′-oxospiro[furo[2,3- 465.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 68 N-(2,4-difluorobenzyl)-2-(2′-oxospiro[furo[2,3- 465.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 69 N-(2-methylbenzyl)-2-(2′-oxospiro[furo[2,3- 443.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 70 N-(3,4-difluorobenzyl)-2-(2′-oxospiro[furo[2,3- 465.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 71 N-(2,5-difluorobenzyl)-2-(2′-oxospiro[furo[2,3- 465.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 72 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 423.2 1′(2′H)-yl)-N,N-dipropylacetamide 73 N,N-dibutyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 451.2 7,3′-indol]-1′(2′H)-yl)acetamide 74 N-(2,6-difluorobenzyl)-2-(2′-oxospiro[furo[2,3- 465.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 75 N-[2-(methylthio)phenyl]-2-(2′-oxospiro[furo[2,3- 461.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 76 N-(2-isopropylphenyl)-2-(2′-oxospiro[furo[2,3- 457.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 77 N-(4-bromophenyl)-2-(2′-oxospiro[furo[2,3- 493.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 78 N-(4-chlorophenyl)-2-(2′-oxospiro[furo[2,3- 449.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 79 N-(2,4-dichlorophenyl)-2-(2′-oxospiro[furo[2,3- 483.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 80 N-(3,5-dichlorophenyl)-2-(2′-oxospiro[furo[2,3- 483.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 81 N,N-diethyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 395.1 7,3′-indol]-1′(2′H)-yl)acetamide 82 N-methyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 429.1 7,3′-indol]-1′(2′H)-yl)-N-phenylacetamide 83 N-(4-hydroxybutyl)-2-(2′-oxospiro[furo[2,3- 411.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 84 N-allyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 379.1 indol]-1′(2′H)-yl)acetamide 85 N-(2-fluoro-5-methylphenyl)-2-(2′-oxospiro[furo[2,3- 447.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 86 N-(1,3-benzodioxol-5-ylmethyl)-2-(2′-oxospiro[furo[2,3- 473.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 87 N-cyclopropyl-2-(2′-oxospiro[furo[2,3- 379.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 88 N-(2-cyclopropylethyl)-2-(2′-oxospiro[furo[2,3- 407.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 89 N-(3,4-dichlorobenzyl)-2-(2′-oxospiro[furo[2,3- 497.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 90 N-(2,3-dichlorobenzyl)-2-(2′-oxospiro[furo[2,3- 497.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 91 N-(2,5-dimethylphenyl)-2-(2′-oxospiro[furo[2,3- 443.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 92 N-(3,4-dichlorophenyl)-2-(2′-oxospiro[furo[2,3- 483.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 93 N,N-dimethyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 367.2 7,3′-indol]-1′(2′H)-yl)acetamide 94 N-methyl-2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 457.2 7,3′-indol]-1′(2′H)-yl)-N-(2-phenylethyl)acetamide 95 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 457.2 1′(2′H)-yl)-N-(2-phenylpropyl)acetamide 96 N-[(1R)-1-cyclohexylethyl]-2-(2′-oxospiro[furo[2,3- 449.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 97 N-[(1S)-1-cyclohexylethyl]-2-(2′-oxospiro[furo[2,3- 449.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 98 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 451.4 1′(2′H)-yl)-N-(2-piperidin-1-ylethyl)acetamide 99 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 483.1 1′(2′H)-yl)-N-[3-(trifluoromethyl)phenyl]acetamide 100 N-(3-cyanophenyl)-2-(2′-oxospiro[furo[2,3- 440.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 101 1′-(2-morpholin-4-yl-2-oxoethyl)spiro[furo[2,3- 409.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 102 2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 443.1 1′(2′H)-yl)-N-(2-phenylethyl)acetamide 103 N-(4-bromo-2-chlorophenyl)-2-(2′-oxospiro[furo[2,3- 527.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide 104 N-(2-biphenyl-4-ylethyl)-2-(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetamide

Example 3.2 Synthesis of N-(2-fluorophenyl)-2-(2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetamide

To a solution of 2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetic acid (0.18 g, 0.54 mmol) in chloroform (5.00 mL) was added oxalyl chloride (0.09 mL, 1.07 mmol) with one drop of DMF. The mixture was refluxed for 2 hours, and evaporated under reduced vacuum to dryness. To the above residue were added Et3N (0.66 mL, 4.72 mmol), 2-fluoroaniline (0.10 mL, 1.00 mmol) and THF (5.00 mL). The reaction mixture was stirred at ambient temperature overnight, evaporated to dryness. The residue was subjected to column chromatography (25% ethyl acetate in hexane) to yield the title compound (0.04 g, 17%): 1H NMR (300 MHz, CDCl3) δ 8.26 (t, 1H), 8.05-7.90 (br, 1H), 7.33 (td, 1H), 7.26-6.96 (m, 6H), 6.83 (s, 1H), 6.61 (s, 1H), 4.98 (d, 1H), 4.73 (d, 1H), 4.71 (d, 1H), 4.52 (d, 1H), 2.85 (t, 2H), 2.69 (t, 2H), 2.12-1.94 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.6, 165.0, 159.8, 146.9, 141.5, 137.5, 132.5, 129.2, 126.3, 125.2, 124.8, 124.4, 124.3, 121.9, 118.9, 115.2, 114.9, 109.0, 106.8, 79.9, 58.2, 45.3, 33.2, 32.0, 26.1; MS (ES+) m/z 429 (M+1), 451 (M+23).

Example 3.3 Synthesis of N-(2-fluorophenyl)-2-(2-oxo-5′,6′,7′,8′-tetrahydrospiro[indole-3,3′-naphtho[2,3-b]furan]-1(2H)-yl)acetamide

Following the procedure as described in EXAMPLE 3.2, and making non-critical variations using (2-oxo-5′,6′,7′,8′-tetrahydrospiro[indole-3,3′-naphtho[2,3-b]furan]-1(2H)-yl)acetic acid to replace 2′-oxo-6,7-dihydro-5H-spiro[indeno[5,6-b]furan-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained in 5% yield: 1H NMR (300 MHz, CDCl3) δ 8.27 (t, 1H), 8.04-7.90 (br, 1H), 7.33 (td, 1H), 7.26-6.97 (m, 6H), 6.69 (s, 1H), 6.48 (s, 1H), 4.94 (d, 1H), 4.69 (d, 1H), 4.71 (d, 1H), 4.52 (d, 1H), 2.81-2.45 (m, 4H), 1.82-1.60 (m, 4H); MS (ES+) m/z 443 (M+1), 465 (M+23).

Example 3.4 Synthesis of 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

A. Synthesis of (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained in 100% yield. The product was used directly in the next step.

B. Synthesis of 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

To a solution of (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid (0.24 g, 0.59 mmol) and oxalyl chloride (0.15 mL, 1.76 mmol) in toluene (7.00 mL) was added one drop of DMF and the resulted mixture was stirred at ambient temperature overnight. The mixture was concentrated under vacuum. The residue was dissolved in dichloromethane (5.00 mL) and 2-fluoroaniline (0.18 mL, 1.89 mmol) was added at ambient temperature. The mixture was stirred at ambient temperature for one hour. More dichloromethane (100 mL) was added. The organic layer was washed with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/5) to give the title compound (0.23 g, 76%): 1H NMR (300 MHz, CDCl3) δ 8.20 (t, 1H), 7.80 (br, 1H), 7.27-7.17 (m, 2H), 7.16-7.03 (m, 3H), 6.97-6.88 (m, 1H), 6.78-6.60 (m, 2H), 5.08 (d, 1H), 4.93 (d, 1H), 4.68 (d, 1H), 4.49 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 177.1, 163.9, 157.8, 143.6, 131.0, 128.8, 128.1, 124.7, 121.8, 120.0, 115.0, 111.6, 108.1, 99.8, 77.5, 59.2, 44.7; MS (ES+) m/z 503.4 (M+1), 505.4 (M+1).

Example 3.5 Synthesis of 2-(4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

A. Synthesis of (4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid

Following the procedure as described in EXAMPLE 2, and making non-critical variations using ethyl (4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetate to replace ethyl (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)acetate, the title compound was obtained. The product was used directly in the next step.

B. Synthesis of 2-(4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (61% for two steps): MS (ES+) m/z 537.4 (M+1), 539.4 (M+1).

Example 3.6 Synthesis of 2-(4′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (4′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (69%) as a colorless solid: mp 243-245° C.; 1H NMR (300 MHz, CDCl3) δ 8.19 (t, 1H), 7.96 (s, 1H), 7.21-7.27 (m, 1H), 7.10-7.02 (m, 4H), 6.88 (d, 1H), 6.55 (s, 1H), 6.35 (s, 1H), 4.96 (dd, 2H), 4.70 (d, 1H), 4.57-4.53 (m, 3H), 2.97 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 178.2, 164.4, 162.2, 162.1, 143.2, 131.6, 130.2, 128.5, 125.2, 125.1, 124.9, 124.6, 121.9, 119.7, 118.6, 116.8, 115.1, 114.8, 107.3, 92.9, 77.2, 72.4, 58.2, 44.9, 28.9; MS (ES+) m/z 465.5 (M+1).

Example 3.7 Synthesis of 2-(5′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (5′-chloro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (91%) as a colorless solid: mp 229-230° C.; 1H NMR (300 MHz, CDCl3) δ 8.21 (t, 1H), 7.88 (s, 1H), 7.28-7.25 (m, 1H), 7.18 (d, 1H), 7.13-7.04 (m, 3H), 6.90 (d, 1H), 6.57 (s, 1H), 6.40 (s, 1H), 4.95 (d, 1H), 4.70-4.66 (m, 2H), 4.56-4.43 (m, 3H), 2.99 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.8, 170.9, 162.1, 162.1, 143.1, 131.7, 130.0, 128.6, 124.7, 119.6, 118.7, 117.0, 106.7, 92.8, 77.2, 72.3, 58.1, 41.2, 28.9; MS (ES+) m/z 465.4 (M+1).

Example 3.8 Synthesis of 2-(6-chloro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (6-chloro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (10%) as a white solid: mp 70-75° C.; 1H NMR (300 MHz, CDCl3) δ 8.21 (t, 1H), 7.99 (br, 1H), 7.32 (dt, 1H), 7.19-6.93 (m, 7H), 6.80 (dd, 1H), 6.73 (d, 1H), 5.01 (d, 1H), 4.75 (d, 1H), 4.69 (d, 1H), 4.50 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 177.7, 164.6, 161.4, 141.4, 135.5, 131.6, 129.4, 127.3, 125.2, 125.0, 124.7, 124.6, 124.4, 124.3, 124.1, 121.9, 121.8, 115.1, 114.8, 111.3, 109.0, 80.3, 57.6, 44.9; MS (ES+) m/z 423.4 (M+1).

Example 3.9 Synthesis of 2-(5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (35%) as a white solid: mp 97-100° C.; 1H NMR (300 MHz, CDCl3) δ 8.20-8.10 (m, 2H), 7.31 (dt, 1H), 7.19-7.00 (m, 5H), 6.95 (d, 1H), 6.77-6.40 (m, 2H), 5.02 (d, 1H), 4.74 (d, 1H), 4.69 (d, 1H), 4.51 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 177.4, 164.3, 141.4, 131.2, 129.7, 125.6, 125.5, 125.3, 125.2, 125.1, 124.7, 124.4, 124.1, 121.8, 115.1, 114.9, 112.1, 111.8, 109.1, 100.3, 100.0, 80.7, 57.9; MS (ES+) m/z 425.5 (M+1).

Example 3.10 Synthesis of 2-(5-bromo-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (5-bromo-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (94%) as a light yellow solid: mp 100-103° C.; 1H NMR (300 MHz, CDCl3) δ 8.26 (dd, 1H), 7.92 (br, 1H), 7.39-7.31 (m, 2H), 7.22-7.01 (m, 6H), 6.91 (d, 1H), 6.87 (d, 1H), 5.02 (d, 1H), 4.76 (d, 1H), 4.67 (d, 1H), 4.57 (d, 1H); MS (ES+) m/z 467.3 (M+1).

Example 3.11 Synthesis of 2-(4′-fluoro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (4′-fluoro-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained: 1H NMR (300 MHz, CDCl3) δ 8.20 (t, 1H), 7.91 (s, 1H), 7.29 (dt, 1H), 7.13-7.04 (m, 3H), 6.81-6.75 (m, 2H), 6.61 (s, 1H), 6.39 (s, 1H), 4.95-4.87 (m, 2H), 4.70 (d, 1H), 4.55-4.44 (m, 3H), 2.98 (t, 2H); MS (ES+) m/z 449.5 (M+1)

Example 3.12 Synthesis of 2-(4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (75%) as a colorless solid: mp 245-246° C.; 1H NMR (300 MHz, CDCl3) δ 8.20 (t, 1H), 7.90 (s, 1H), 7.20-7.03 (m, 5H), 6.92 (dd, 1H), 6.53 (s, 1H), 6.36 (s, 1H), 5.05 (d, 1H), 4.90 (d, 1H), 4.69 (d, 1H), 4.55-4.43 (m, 3H), 2.97 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 178.3, 164.3, 162.4, 162.2, 143.4, 130.4, 130.0, 128.0, 125.5, 125.2, 124.7, 121.9, 120.0, 119.7, 118.6, 116.7, 115.1, 114.8, 107.8, 92.8, 77.2, 72.4, 59.1, 44.9, 28.9; MS (ES+) m/z 509 (M+1), 511 (M+1).

Example 3.13 Synthesis of N-(2-fluorophenyl)-2-(2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetamide

Following the procedure as described in EXAMPLE 3.4B, and making non-critical variations using (2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (68%) as a white solid: mp 210-212° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.18 (s, 1H), 8.17-7.67 (m, 1H), 7.55-6.90 (m, 7H), 6.54 (s, 1H), 6.38 (s, 1H), 4.68 (m, 4H), 4.46 (t, 2H), 2.93 (t, 2H); MS (ES+) m/z 431.4 (M+1).

Example 3.14 Synthesis of 2-(4′-fluoro-7′-methyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 3.4B and making non-critical variations using (4′-fluoro-7′-methyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetic acid to replace (4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetic acid, the title compound was obtained (21%) as a white solid: mp 250-255° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.23 (s, 1H), 7.99-7.69 (m, 1H), 7.36-7.01 (m, 4H), 6.74 (t, 1H), 6.63 (s, 1H), 6.42 (s, 1H), 5.90 (d, 2H), 4.88 (t, 2H), 4.76 (ABq, 2H), 3.30 (s, 3H); MS (ES+) m/z 463.4 (M+1).

Example 4 Synthesis of 4′-[6-(dimethylamino)pyridin-3-yl]-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To an oven-dried flask was charged with [6-(dimethylamino)pyridin-3-yl]boronic acid (37.0 mg, 0.17 mmol), Pd(PPh3)4 (13.5 mg, 0.012 mmol) followed by flashing with nitrogen. To the flask was added a solution of 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (50.0 mg, 0.12 mmol) in anhydrous dioxane (2.00 mL) followed by the addition of 2.0 M Na2CO3 (0.24 mL). The reaction mixture was heated at reflux for 48 h. After cooling down to ambient temperature, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate (2.00 mL), washed with saturated ammonium chloride (2.00 mL), and concentrated in vacuo to dryness. The residue was subjected to column chromatography to yield the title compounds: 1H NMR (300 MHz, CDCl3) δ 7.77 (d, 1H), 7.32 (t, 1H), 6.87 (dd, 2H), 6.71 (dd, 1H), 6.23 (d, 1H), 6.20 (s, 1H), 5.88 (d, 2H), 4.56 (ABq, 2H), 3.89-3.80 (m, 1H), 3.69-3.59 (m, 1H), 3.05 (s, 6H), 1.78-1.69 (m, 2H), 1.39-1.35 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.9, 158.3, 156.1, 148.8, 147.3, 142.9, 142.0, 137.8, 137.2, 129.9, 128.9, 125.6, 122.0, 121.0, 107.6, 104.3, 102.5, 101.5, 93.6, 77.8, 58.5, 40.5, 38.2, 29.1, 27.2, 22.4, 14.0; MS (ES+, m/z) 472.0 (M+1).

Example 4.1

The compounds listed in the following table were synthesized using similar conditions as described in Example 4. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

MS Com- (m/z, pound M + Number Name 1) 105 4′-(3,5-dimethoxyphenyl)-1′-pentylspiro[furo[2,3- 488.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 106 4′-(4-fluorophenyl)-1′-pentylspiro[furo[2,3- 447.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 107 4′-(3,5-dichlorophenyl)-1′-pentylspiro[furo[2,3- 496.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 108 4′-[4-(dimethylamino)phenyl]-1′-pentylspiro[furo[2,3- 471.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 109 1′-pentyl-4′-(3,4,5-trimethoxyphenyl)spiro[furo[2,3- 518.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 110 4-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 453.3 f][1,3]benzodioxole-7,3′-indol]-4′-yl)benzonitrile 111 4′-dibenzo[b,d]furan-4-yl-1′-pentylspiro[furo[2,3- 518.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 112 4′-(1-benzyl-1H-pyrazol-4-yl)-1′-pentylspiro[furo[2,3- 508.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 113 4′-(2-methoxypyrimidin-5-yl)-1′-pentylspiro[furo[2,3- 460.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 114 4′-(2,4-dimethoxypyrimidin-5-yl)-1′- 490.4 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 115 4-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 471.3 f][1,3]benzodioxole-7,3′-indol]-4′-yl)benzamide 116 4′-{4-[(dimethylamino)methyl]phenyl}-1′- 484.6 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 117 4′-(1-benzofuran-2-yl)-1′-pentylspiro[furo[2,3- 467.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 118 4′-(6-methoxypyridin-3-yl)-1′-pentylspiro[furo[2,3- 458.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 119 N,N-dimethyl-4-(2′-oxo-1′-pentyl-1′,2′- 498.6 dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-4′-yl)benzamide 120 4′-dibenzo[b,d]thien-4-yl-1′-pentylspiro[furo[2,3- 533.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 121 3-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 452.5 f][1,3]benzodioxole-7,3′-indol]-4′-yl)benzonitrile 122 1′-pentyl-4′-pyridin-3-ylspiro[furo[2,3- 428.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 123 4′-(3-fluoro-4-methoxyphenyl)-1′-pentylspiro[furo[2,3- 475.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 124 1′-pentyl-4′-[2-(trifluoromethoxy)phenyl]spiro[furo[2,3- 511.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 125 4′-[3,5-bis(trifluoromethyl)phenyl]-1′- 563.5 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 126 1′-pentyl-4′-[4-(trifluoromethyl)pyridin-3- 496.5 yl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 2′(1′H)-one 127 4′-(2-fluoro-5-methoxyphenyl)-1′-pentylspiro[furo[2,3- 475.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 128 4′-(4-ethoxy-3-fluorophenyl)-1′-pentylspiro[furo[2,3- 489.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 129 4′-(1-benzothien-2-yl)-1′-pentylspiro[furo[2,3- 483.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 130 4′-isobutyl-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole- 407.5 7,3′-indol]-2′(1′H)-one 131 1′-pentyl-4′-[4-(trifluoromethoxy)phenyl]spiro[furo[2,3- 511.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 132 4′-(5-fluoro-2-methoxyphenyl)-1′-pentylspiro[furo[2,3- 475.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 133 4′-(1,3-benzodioxol-5-yl)-1′-pentylspiro[furo[2,3- 471.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 134 1′-pentyl-4′-phenylspiro[furo[2,3-f][1,3]benzodioxole- 427.5 7,3′-indol]-2′(1′H)-one 135 1′-pentyl-4′-[2-(trifluoromethyl)phenyl]spiro[furo[2,3- 495.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 136 4′-(4-chlorophenyl)-1′-pentylspiro[furo[2,3- 461.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 137 4′-(2,3-dihydro-1,4-benzodioxin-6-yl)-1′- 485.5 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 138 1′-pentyl-4′-quinolin-3-ylspiro[furo[2,3- 478.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 139 4′-(3,5-difluorophenyl)-1′-pentylspiro[furo[2,3- 463.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 140 4′-isoquinolin-4-yl-1′-pentylspiro[furo[2,3- 478.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 141 4′-(6-methoxypyridin-2-yl)-1′-pentylspiro[furo[2,3- 458.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 142 4′-(1H-indol-5-yl)-1′-pentylspiro[furo[2,3- 466.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 143 N-[2-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 484.5 f][1,3]benzodioxole-7,3′-indol]-4′- yl)phenyl]acetamide 144 4′-(4-fluoro-2-methylphenyl)-1′-pentylspiro[furo[2,3- 459.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 145 1′-pentyl-4′-quinolin-6-ylspiro[furo[2,3- 478.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 146 N-[4-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 520.6 f][1,3]benzodioxole-7,3′-indol]-4′- yl)phenyl]methanesulfonamide 147 4′-(5-chloro-2-methoxyphenyl)-1′-pentylspiro[furo[2,3- 492.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 148 1′-pentyl-4′-[3-(trifluoromethoxy)phenyl]spiro[furo[2,3- 511.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 149 1′-pentyl-4′-(4-phenoxyphenyl)spiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 150 4′-(2,4-dimethoxyphenyl)-1′-pentylspiro[furo[2,3- 487.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 151 4′-(3-furyl)-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole- 417.5 7,3′-indol]-2′(1′H)-one 152 4′-(3,4-dimethoxyphenyl)-1′-pentylspiro[furo[2,3- 487.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 153 N-[4-(2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3- 484.5 f][1,3]benzodioxole-7,3′-indol]-4′- yl)phenyl]acetamide 154 1′-pentyl-4′-[(E)-2-phenylvinyl]spiro[furo[2,3- 453.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 155 4′-(4-methoxyphenyl)-1′-pentylspiro[furo[2,3- 457.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 156 4′-(6-fluoropyridin-3-yl)-1′-pentylspiro[furo[2,3- 446.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 157 4′-(3-chloro-4-fluorophenyl)-1′-pentylspiro[furo[2,3- 479.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 158 4′-(3-chlorophenyl)-1′-pentylspiro[furo[2,3- 461.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 159 4′-(1-benzothien-3-yl)-1′-pentylspiro[furo[2,3- 483.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 160 1′-pentyl-4′-(2-phenoxyphenyl)spiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 161 4′-(4-isopropoxyphenyl)-1′-pentylspiro[furo[2,3- 485.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 162 4′-[(E)-2-(4-fluorophenyl)vinyl]-1′-pentylspiro[furo[2,3- 471.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 163 4′-(6-fluoropyridin-2-yl)-1′-pentylspiro[furo[2,3- 446.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 164 1′-pentyl-4′-[1-(phenylsulfonyl)-1H-indol-3- 606.7 yl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 2′(1′H)-one 165 4′-(3-fluorophenyl)-1′-pentylspiro[furo[2,3- 445.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 166 4′-(3-acetylphenyl)-1′-pentylspiro[furo[2,3- 469.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 167 4′-(2-furyl)-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole- 417.5 7,3′-indol]-2′(1′H)-one 168 4′-(4-methylphenyl)-1′-pentylspiro[furo[2,3- 441.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 169 4′-(1-methyl-1H-pyrrol-3-yl)-1′-pentylspiro[furo[2,3- 430.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 170 4′-(2,5-difluorophenyl)-1′-pentylspiro[furo[2,3- 463.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 171 4′-(2-fluorophenyl)-1′-pentylspiro[furo[2,3- 445.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 172 4′-(2-chlorophenyl)-1′-pentylspiro[furo[2,3- 461.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 173 4′-(2,4-difluorophenyl)-1′-pentylspiro[furo[2,3- 463.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 174 4′-(4-morpholin-4-ylphenyl)-1′-pentylspiro[furo[2,3- 512.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 175 tert-butyl 5-methoxy-3-(2′-oxo-1′-pentyl-1′,2′- 596.7 dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-4′-yl)-1H-indole-1-carboxylate 176 1′-pentyl-4′-pyrimidin-5-ylspiro[furo[2,3- 429.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 177 tert-butyl 4-[2-(2′-oxo-1′-pentyl-1′,2′- 611.7 dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-4′-yl)phenyl]piperazine-1-carboxylate 178 4′-(2-methoxypyridin-3-yl)-1′-pentylspiro[furo[2,3- 458.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 179 4′-(5-methoxypyridin-3-yl)-1′-pentylspiro[furo[2,3- 458.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 180 4′-(4-butoxy-3-fluorophenyl)-1′-pentylspiro[furo[2,3- 517.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 181 1′-pentyl-4′-pyridin-4-ylspiro[furo[2,3- 428.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 182 1′-pentyl-4′-phenoxathiin-4-ylspiro[furo[2,3- 549.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 183 4′-[(1Z)-3-chloroprop-1-en-1-yl]-1′- 425.9 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 184 1′-pentyl-4′-(3-thienyl)spiro[furo[2,3- 433.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 185 4′-(2,3-dimethoxyphenyl)-1′-pentylspiro[furo[2,3- 487.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 186 4′-(4-butylphenyl)-1′-pentylspiro[furo[2,3- 483.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 187 4′-(3-fluoro-5-methoxyphenyl)-1′-pentylspiro[furo[2,3- 475.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 188 4′-[3-fluoro-4-(pentyloxy)phenyl]-1′- 531.6 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 189 4′-(2-butoxy-5-fluorophenyl)-1′-pentylspiro[furo[2,3- 517.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 190 4′-(3-butoxyphenyl)-1′-pentylspiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 191 4′-(4-butoxyphenyl)-1′-pentylspiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 192 4′-(4-isobutoxyphenyl)-1′-pentylspiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 193 4′-{2-chloro-4-[(3,5-dimethoxybenzyl)oxy]phenyl}-1′- 628.1 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 194 4′-[4-(benzyloxy)-3-chlorophenyl]-1′- 568.1 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 195 4′-(1-methyl-1H-indol-5-yl)-1′-pentylspiro[furo[2,3- 480.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 196 4′-(4-methoxypyridin-3-yl)-1′-pentylspiro[furo[2,3- 458.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 197 4′-[(6-methoxypyridin-3-yl)amino]-1′- 473.5 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one

Example 4.2 Synthesis of 2-(5,6-difluoro-2′-oxo-4′-pyrimidin-5-ylspiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

To a solution of 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide (0.15 g, 0.30 mmol) in anhydrous 1,4-dioxane (5.00 mL) was added Pd(PPh3)4 (0.03 g, 0.03 mmol) and stirred at ambient temperature for 10 min. Pyrimidine-5-boronic acid (0.06 g, 0.45 mmol) and sodium carbonate (0.90 mL of 2 M solution, 1.80 mmol) were added. The reaction mixture was reluxed at 120° C. for 16 h, diluted with ethyl acetate (50.0 mL). The organic layer was washed with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/1) to give the title compound (0.13 g, 84%): 1H NMR (300 MHz, CDCl3) δ 9.13 (s, 1H), 8.29-8.10 (m, 3H), 7.62 (s, 1H), 7.44 (t, 1H), 7.16-7.03 (m, 4H), 6.91 (d, 1H), 6.85-6.76 (m, 1H), 6.46-6.37 (m, 1H), 4.85-4.73 (m, 2H), 4.61-4.47 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.1, 163.9, 157.7, 156.4, 155.7, 141.9, 132.9, 130.0, 126.0, 124.7, 121.9, 115.0, 111.6, 109.8, 100.2, 79.4, 57.9, 44.7; MS (ES+) m/z 503.5 (M+1).

Example 4.3 Synthesis of 2-(6,6-dimethyl-2′-oxo-4′-pyrimidin-5-yl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide

Following the procedure as described in EXAMPLE 4.2, making variation using 2-(4′-bromo-6,6-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, the title compound was obtained (95%): mp>250° C.; 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 8.24 (t, 1H), 8.15 (s, 2H), 8.00 (s, 1H), 7.40 (t, 1H), 7.16-7.03 (m, 4H), 6.88 (d, 1H), 6.61 (s, 1H), 5.99 (s, 1H), 4.84-4.73 (m, 2H), 4.54 (d, 1H), 4.44 (d, 1H), 2.79 (s, 2H), 1.45 (s, 3H), 1.39 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 178.4, 164.5, 161.1, 157.4, 155.8, 154.1, 150.8, 141.7, 132.9, 132.2, 131.3, 129.4, 125.9, 125.5, 125.2, 124.7, 121.9, 120.8, 119.3, 118.8, 115.0, 109.5, 93.5, 88.5, 78.9, 58.0, 45.0, 42.0, 28.0, 27.9; MS (ES+) m/z 537.5 (M+1).

Example 4.4 Synthesis of 4′-(3-furyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, making variations using 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-furanboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (66%) as a colorless solid: mp 270-272° C.; 1H NMR (300 MHz, CDCl3) δ 7.32 (t, 1H), 7.25 (d, 2H), 6.97 (d, 1H), 6.91 (d, 1H), 6.83 (s, 1H), 6.44 (s, 1H), 6.30 (s, 1H), 6.04 (d, 1H), 5.89 (dd, 2H), 4.68 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 180.4, 156.2, 149.2, 142.9, 142.1, 141.2, 140.4, 131.3, 129.2, 128.5, 125.3, 122.6, 120.6, 111.0, 109.5, 102.9, 101.6, 94.0, 77.2, 59.0; MS (ES+) m/z 348.4 (M+1).

Example 4.5 Synthesis of 4′-dibenzo[b,d]furan-4-ylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and dibenzo[b,d]furan-4-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (10%) as a colorless solid: mp>230° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.77 (s, 1H), 8.04 (d, 1H), 7.97 (dd, 1H), 7.43-7.42 (m, 3H), 7.34-7.29 (m, 3H), 7.16 (t, 1H), 6.98 (d, 1H), 6.89 (d, 1H), 6.25 (s, 1H), 5.69 (d, 2H), 4.41 (ABq, 2H); MS (ES+) m/z 448.5 (M+1).

Example 4.6 Synthesis of 4′-(6-methoxypyridin-3-yl)-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and (6-methoxypyridin-3-yl)boronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (51%) as a colorless solid: mp 174-176° C.; 1H NMR (300 MHz, CDCl3) δ 7.73 (d, 1H), 7.69 (d, 1H), 7.34 (t, 1H), 7.03 (d, 1H), 6.89-6.86 (m, 2H), 6.65 (d, 1H), 6.61 (d, 1H), 6.56 (d, 1H), 6.17 (d, 2H), 5.87 (d, 2H), 4.99 (ABq, 2H), 4.56 (ABq, 2H), 3.90 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.7, 163.5, 158.4, 156.1, 151.8, 151.8, 149.2, 147.8, 146.1, 142.3, 141.6, 138.8, 136.9, 132.6, 130.0, 129.1, 127.8, 127.2, 126.2, 119.9, 112.7, 112.7, 110.9, 109.6, 109.5, 108.5, 102.3, 101.6, 93.6, 78.2, 58.5, 53.6, 37.0; MS (ES+) m/z 537.4 (M+1).

Example 4.7 Synthesis of 4′-[6-(dimethylamino)pyridin-3-yl]-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one, the title compound was obtained (37%) as a colorless solid: mp 174-176° C.; MS (ES+) m/z 550.4 (M+1).

Example 4.8 Synthesis of 4′-pyrimidin-5-ylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and pyrimidin-5-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (32%) as a colorless solid: mp 185-187° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.85 (s, 1H), 9.02 (s, 1H), 8.19 (s, 2H), 7.33 (t, 1H), 7.00 (d, 1H), 6.83 (d, 1H), 6.37 (s, 1H), 6.19 (s, 1H), 5.89 (d, 2H); 13C NMR (75 MHz, DMSO-d6) δ 178.7, 157.5, 156.0, 155.6, 148.8, 142.3, 133.1, 132.6, 131.8, 129.5, 124.5, 120.3, 110.9, 103.2, 101.9, 93.3, 79.5, 66.8, 58.5; MS (ES+) m/z 360.4 (M+1).

Example 4.9 Synthesis of 4-(3-furyl)-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-furanboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (75%) as a colorless solid: mp 195-197° C.; 1H NMR (300 MHz, CDCl3) δ 8.58 (d, 1H), 7.68 (t, 1H), 7.32-7.21 (m, 4H), 6.97 (d, 1H), 6.92 (d, 1H), 6.77 (s, 1H), 6.60 (s, 1H), 6.35 (s, 1H), 5.99 (s, 1H), 5.12 (ABq, 2H), 4.71 (ABq, 2H), 4.57 (t, 2H), 3.03 (t, 2H); MS (ES+) m/z 437.4 (M+1).

Example 4.10 Synthesis of 1′-(pyridin-2-ylmethyl)-4′-pyrimidin-5-yl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and pyrimidin-5-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (16%) as a colorless solid: mp>200° C.; 1H NMR (300 MHz, CDCl3) δ 9.09 (s, 1H), 8.59 (d, 1H), 8.14 (s, 2H), 7.74 (t, 1H), 7.67 (d, 1H), 7.63 (d, 1H), 7.52 (d, 1H), 7.47-7.42 (m, 1H), 7.37 (d, 1H), 7.30 (d, 1H), 7.09 (d, 1H), 6.82 (d, 1H), 6.62 (s, 1H), 6.07 (s, 1H), 5.18 (ABq, 2H), 4.62 (ABq, 2H), 4.62-4.48 (m, 2H), 3.02 (t, 2H); MS (ES+) m/z 449.5 (M+1).

Example 4.11 Synthesis of 4′-pyridin-3-yl-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and pyridin-3-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (9%) as a colorless solid: mp>200° C.; 1H NMR (300 MHz, DMSO-d6) δ 8.52 (d, 1H), 8.42 (d, 1H), 7.96 (s, 1H), 7.79 (t, 1H), 7.40 (d, 1H), 7.29 (t, 2H), 7.18-7.08 (m, 2H), 7.00 (d, 1H), 6.81 (d, 1H), 6.72 (s, 1H), 5.98 (s, 1H), 5.08 (ABq, 2H), 4.56-4.40 (m, 4H), 3.10-2.90 (m, 2H); MS (ES+) m/z 448.5 (M+1).

Example 4.12 Synthesis of 4′-(3-furyl)-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-furylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (27%) as a colorless solid: mp 167-169° C.; 1H NMR (300 MHz, CDCl3) δ 7.34-7.29 (m, 2H), 7.01 (dd, 1H), 6.95 (dd, 1H), 6.77 (dd, 1H), 6.74 (dd, 1H), 6.51 (s, 1H), 6.41 (d, 1H), 6.34 (s, 1H), 6.00 (dd, 1H), 4.97 (ABq, 2H), 4.67 (ABq, 2H), 4.56 (t, 2H), 3.01 (t, 2H); MS (ES+) m/z 494.4 (M+1).

Example 4.13 Synthesis of 4′-quinolin-3-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one, quinolin-3-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (50%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 8.52 (d, 1H), 8.09 (d, 1H), 7.74-7.68 (m, 1H), 7.56-7.50 (m, 1H), 7.42-7.39 (m, 2H), 7.32 (s, 1H), 7.09 (d, 1H), 7.01 (d, 1H), 6.78-6.77 (m, 1H), 6.45 (d, 1H), 6.26 (s, 1H), 5.94 (d, 1H), 5.91 (s, 1H), 5.89 (d, 1H), 5.03 (ABq, 2H), 4.52 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 156.0, 151.8, 150.0, 149.3, 147.0, 142.4, 141.8, 136.8, 135.8, 131.1, 130.2, 129.9, 129.3, 129.0, 128.8, 128.0, 127.1, 127.0, 126.4, 126.0, 120.4, 112.7, 109.5, 108.8, 102.5, 101.7, 93.7, 78.3, 58.5, 37.1; MS (ES+) m/z 557.4 (M+1).

Example 4.14 Synthesis of 4′-pyrimidin-5-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

A mixture of 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.11 g, 0.21 mmol), pyrimidine-5-boronic acid (0.04 g, 0.33 mmol), tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.02 mmol), 2.00 M sodium carbonate (1.00 mL) and 1,2-dimethoxyethane (10.0 mL) was heated at reflux for 16 h under nitrogen. After the organic solvent was evaporated in vacuo, the black residue was extracted with ethyl acetate (3×35.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered.

The filtrate was concentrated in vacuo. The residue was subjected to column chromatography eluting with ethyl acetate:hexane (35%) to afford the title compound (0.03 g, 26%): mp 263-266° C.; 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 8.14 (s, 2H), 7.39 (t, 1H), 7.10, (d, 1H), 6.87 (d, 1H), 6.76 (s, 1H), 6.51 (s, 1H), 6.46 (s, 1H), 6.07 (s, 1H), 5.03 (ABq, 2H), 4.62-4.48 (m, 2H), 4.58 (ABq, 2H), 3.01 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.3, 162.5, 161.0, 157.4, 155.9, 151.6, 142.2, 141.7, 132.8, 132.3, 131.3, 129.3, 125.7, 120.6, 120.2, 118.3, 117.0, 112.7, 109.7, 109.4, 93.5, 78.9, 72.5, 57.7, 37.1, 28.9; MS (ES+) m/z 506.5 (M+1).

Example 4.15 Synthesis of tert-butyl 4-[(2′-oxo-4′-pyrimidin-5-ylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]piperidine-1-carboxylate

Following the procedure as described in EXAMPLE 4.14, and making non-critical variations using tert-butyl 4-[(4′-bromo-2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]piperidine-1-carboxylate to replace 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (91%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.13 (s, 1H), 8.23 (s, 2H), 8.24-7.37 (m, 5H), 7.01 (d, 1H), 6.85 (d, 1H), 6.14 (dd 2H), 5.91 (d, 2H), 4.55 (ABq, 2H), 4.15 (d, 2H), 3.84-3.58 (m, 3H), 2.69 (t, 2H), 1.44 (s, 9H); MS (ES+) m/z 557.5 (M+1).

Example 4.16 Synthesis of 1′-methyl-4′-pyrimidin-5-ylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.14, and making non-critical variations using 4′-bromo-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (22%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 8.18 (s, 2H), 7.41 (t, 1H), 7.00 (d, 1H), 6.85 (d, 1H), 6.20 (s, 1H), 6.12 (s, 1H), 5.87 (d, 2H), 4.54 (ABq, 2H), 3.32 (s, 1H); MS (ES+) m/z 374.5 (M+1).

Example 4.17 Synthesis of 4′-(3-furyl)-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.14, and making non-critical variations using 4′-bromo-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 3-furanboronic acid to replace pyrimidine-5-boronic acid, the title compound was obtained (81%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.40-7.28 (m, 2H), 7.05-6.95 (m, 1H), 6.90-6.78 (m, 2H), 6.45-6.38 (m, 1H), 6.23-6.16 (m, 1H), 6.07-5.97 (m, 1H), 5.97-5.80 (m, 2H), 4.75-4.50 (m, 2H), 3.30-3.22 (m, 3H); MS (ES+) m/z 362.4 (M+1).

Example 4.18 Synthesis of 4′-(6-fluoropyridin-3-yl)-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.14, and making non-critical variations using 4′-bromo-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and (6-fluoropyridin-3-yl)boronic acid to replace pyrimidine-5-boronic acid, the title compound was obtained (100%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.75-7.65 (m, 1H), 7.42-7.30 (m, 1H), 7.19-7.05 (m, 1H), 7.00-6.90 (m, 1H), 6.90-6.80 (m, 1H), 6.78-6.64 (m, 1H), 6.24-6.12 (m, 2H), 5.92-5.79 (m, 2H), 4.74-4.63 (m, 1H), 4.40-4.29 (m, 1H), 3.34-3.26 (m, 3H); MS (ES+) m/z 391.4 (M+1).

Example 4.19 Synthesis of 1′-(2-cyclopropylethyl)-4′-quinolin-3-ylspiro[furo[2,3-f][1,3]-benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 4′-bromo-1′-(2-cyclopropylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and quinolin-3-ylboronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained: MS (ES+) m/z 477.5 (M+1)

Example 4.20 Synthesis of N-(2-fluorophenyl)-2-(2′-oxo-4′-pyrimidin-5-yl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)acetamide

Following the procedure as described in EXAMPLE 4, and making non-critical variations using 2-(4′-bromo-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and pyrimidine-5-boronic acid to replace [6-(dimethylamino)pyridin-3-yl]boronic acid, the title compound was obtained (53%) as a colorless solid: mp 229-230° C.; 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 8.26-8.15 (m, 3H), 7.98 (s, 1H), 7.41 (t, 1H), 7.15-7.05 (m, 4H), 6.89 (d, 1H), 6.68 (s, 1H), 6.06 (s, 1H), 4.81-4.76 (m, 2H), 4.59-4.42 (m, 4H), 3.00 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 178.2, 164.4, 162.5, 161.0, 157.0, 155.8, 141.8, 132.6, 131.1, 129.4, 125.8, 125.5, 125.4, 125.2, 125.1, 124.7, 121.9, 120.6, 119.9, 118.7, 115.1, 114.8, 109.5, 93.4, 79.0, 72.4, 57.8, 44.9, 28.9; MS (ES+) m/z 509.5 (M+1).

Example 5 Synthesis of 4′-[(6-methoxypyridin-3-yl)amino]-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To an oven-dried 2-neck 25 mL round bottom flask equipped with a condenser was charged with 4′-bromo-1′-pentylspiro-(6,7-dihydrofuro-[2,3-f][1,3]benzodioxole-7,3′-indole)-2′-(1H)-one (50.5 mg, 0.12 mmol), 5-amino-2-methoxypyridine (22.3 mg, 0.18 mmol), Pd2(dba)3 (10 mole %), BINAP (10 mole %) and sodium methoxide (12.9 mg, 0.24 mmol). The flask was flushed with nitrogen for 5 min followed by the addition of degassed toluene (5.00 mL). The reaction mixture was heated at reflux for 16 h. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (20.0 mL) and washed with saturated ammonium chloride (10.0 mL), brine (10.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The brown residue was subjected to column chromatography eluting with ethyl acetate-hexane (20% to 50%) to yield the title compound (30.0 mg) in 54% yield: MS (ES+), m/z 474.3 (M+1).

Example 5.1

The compounds listed in the following table were synthesized using similar conditions as described in EXAMPLE 5. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

MS Compound (m/z, Number Name M + 1) 198 4′-[(3,5-difluorophenyl)amino]-1′- 479.1 pentylspiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 199 4′-[(4,6-dimethylpyridin-2-yl)amino]-1′- 473.3 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- (M + 2) indol]-2′(1′H)-one 200 4′-[(4-methyl-1,3-thiazol-2-yl)amino]-1′- 464.1 pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one

Example 5.2 Synthesis of 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.05 g, 0.12 mmol), 3-(trifluoromethyl)aniline (0.03 g, 0.17 mmol), Pd2(dba)3 (0.02 g, 0.01 mmol), xanthphos (0.007 g, 0.01 mmol), and sodium tert-butoxide (0.02 g, 0.17 mmol) in toluene (5.00 mL) was heated at 110° C. for 4 days. After cooling down to ambient temperature, the mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate/hexane to give the title compound (0.06 g, 71%) as a solid: MS (ES+) m/z 511.5 (M+1).

Example 5.3

The compounds listed in the following table were synthesized using similar conditions as described in EXAMPLE 5.2. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 201 4′-morpholino-1′-pentyl-6H-spiro[benzofuro[6,5- 437.5 d][1,3]dioxole-7,3′-indolin]-2′-one 202 4′-(4-methylpiperazin-1-yl)-1′-pentyl-6H-spiro[benzofuro[6,5- 450.5 d][1,3]dioxole-7,3′-indolin]-2′-one 203 1′-pentyl-4′-(pyrimidin-4-ylamino)-6H-spiro[benzofuro[6,5- 445.5 d][1,3]dioxole-7,3′-indolin]-2′-one 204 1′-pentyl-4′-(pyridin-3-ylamino)-6H-spiro[benzofuro[6,5- 444.5 d][1,3]dioxole-7,3′-indolin]-2′-one 205 4′-(4-chloro-2-(trifluoromethyl)phenylamino)-1′-pentyl-6H- 545.5 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 206 1′-pentyl-4′-(pyrimidin-2-ylamino)-6H-spiro[benzofuro[6,5- 444.5 d][1,3]dioxole-7,3′-indolin]-2′-one 207 4′-(benzo[d][1,3]dioxol-5-ylamino)-1′-pentyl-6H- 487.5 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 208 4′-(3-fluorophenylamino)-1′-pentyl-6H-spiro[benzofuro[6,5- 461.5 d][1,3]dioxole-7,3′-indolin]-2′-one 209 4′-(naphthalen-2-ylamino)-1′-pentyl-6H-spiro[benzofuro[6,5- 493.5 d][1,3]dioxole-7,3′-indolin]-2′-one 210 4′-(2-methoxyphenylamino)-1′-pentyl-6H- 473.2 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 211 4′-(4-methylthiazol-2-ylamino)-1′-pentyl-6H- 464.1 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 212 4′-(4,6-dimethylpyridin-2-ylamino)-1′-pentyl-6H- 473.3 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 213 4′-(3,5-difluorophenylamino)-1′-pentyl-6H- 479.1 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one 214 4′-(6-methoxypyridin-3-ylamino)-1′-pentyl-6H- 474.3 spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one

Example 6 Synthesis of 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid

To a solution of methyl 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate (7.56 g, 17.6 mmol) in a mixture of THF/water (2/1 v/v, 180 mL) was added lithium hydroxide monohydrate (1.48 g, 35.2 mmol). The resulting mixture was stirred at ambient temperature overnight and concentrated in vacuo followed by the addition of water (150 mL). The mixture was extracted with of ethyl acetate/hexanes, 1/3 v/v, 50.0 mL). The water layer was acidified with 1 N HCl solution until the pH value reached 2. The precipitate was filtered and dried to give the title compound (7.30 g, 100%) as a white solid: mp>250° C.; 1H NMR (300 MHz, DMSO-d6) δ 13.25 (s, 1H), 7.95 (dd, 1H), 7.49 (dt, 1H), 7.37 (t, 1H), 7.24-7.16 (m, 2H), 7.11-6.98 (m, 2H), 6.80 (d, 1H), 6.68 (s, 1H), 6.36 (s, 1H), 5.91 (s, 2H), 5.37-5.19 (m, 2H), 4.88-4.68 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 177.6, 168.8, 156.0, 148.8, 143.0, 142.3, 137.6, 133.1, 132.1, 131.5, 129.9, 129.4, 127.7, 126.5, 124.2, 123.6, 120.1, 109.8, 103.8, 101.9, 93.8, 80.5, 58.0, 42.6.

Example 7 Synthesis of N-[2-(4-chlorophenyl)ethyl]-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

A. Preparation of stock solution of 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoyl chloride

A solution of 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid (0.21 g, 0.50 mmol), oxalyl chloride (0.09 mL, 1.00 mmol) and one drop of DMF in toluene (10.0 mL) was stirred at ambient temperature overnight. The mixture was concentrated under vacuum to afford a solid, which was dissolved in dichloromethane (5.00 mL) to form an acid chloride stock solution (0.10 mmol/mL) for use.

B. Synthesis of N-[2-(4-chlorophenyl)ethyl]-2-[(2′-oxospiro[furo[2,3-f][1,3]-benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

The acid chloride stock solution obtained above (1.00 mL, 0.10 mmol) was added to a mixture of 2-(4-chlorophenyl)ethylamine (0.02 g, 0.13 mmol), triethylamine (0.14 mL, 1.00 mmol) in dichloromethane (1.00 mL). The resulting mixture was stirred at ambient temperature overnight and diluted with dichloromethane (5.00 mL). The mixture was washed with 1 N HCl, saturated sodium bicarbonate solution, dried over sodium sulfate and filtered. The filtrate was concentrated under vacuum to dryness to give the title compound as a white powder: 1H NMR (300 MHz, CDCl3) δ 7.70-7.13 (m, 10H), 7.10-6.96 (m, 2H), 6.65-6.54 (br, 1H), 6.50 (s, 1H), 6.11 (s, 1H), 5.89-5.82 (m, 2H), 5.09-4.88 (m, 3H), 4.68 (d, 1H), 3.79-3.66 (m, 2H), 2.93 (t, 2H); MS (ES+), m/z 553.3 (M+1), 575.3 (M+23).

Example 7.1

The compounds listed in the following table were synthesized using similar conditions as described in EXAMPLE 7. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 215 N-(3-methylbutyl)-2-[(2′-oxospiro[furo[2,3- 485.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 216 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 491.2 1′(2′H)-yl)methyl]-N-phenylbenzamide 217 N,N-diisopropyl-2-[(2′-oxospiro[furo[2,3- 499.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 218 N-(3-fluorophenyl)-2-[(2′-oxospiro[furo[2,3- 509.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 219 N-(4-chlorobenzyl)-2-[(2′-oxospiro[furo[2,3- 539.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 220 N-butyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 471.3 indol]-1′(2′H)-yl)methyl]benzamide 221 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 485.3 1′(2′H)-yl)methyl]-N-pentylbenzamide 222 N-hexyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 499.4 indol]-1′(2′H)-yl)methyl]benzamide 223 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 457.3 1′(2′H)-yl)methyl]-N-propylbenzamide 224 N-isopropyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 457.3 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 225 N-cyclohexyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 497.3 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 226 N-cyclopentyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 483.3 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 227 N-heptyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 513.4 indol]-1′(2′H)-yl)methyl]benzamide 228 N-(4-fluorophenyl)-2-[(2′-oxospiro[furo[2,3- 509.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 229 N-(3-fluorobenzyl)-2-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 230 N-(3-chlorophenyl)-2-[(2′-oxospiro[furo[2,3- 525.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 231 N-(2-fluorophenyl)-2-[(2′-oxospiro[furo[2,3- 509.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 232 N-(2-ethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 233 N-(4-ethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 234 N-(3-methylphenyl)-2-[(2′-oxospiro[furo[2,3- 505.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 235 N-(2,3-dimethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 236 N-(3,5-dimethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 237 1′-[2-(piperidin-1-ylcarbonyl)benzyl]spiro[furo[2,3- 483.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 238 N-isobutyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 471.2 indol]-1′(2′H)-yl)methyl]benzamide 239 N-(2-chlorobenzyl)-2-[(2′-oxospiro[furo[2,3- 539.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 240 N-(2,6-dimethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 241 N-(2-methoxyphenyl)-2-[(2′-oxospiro[furo[2,3- 521.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 242 N-(3-methoxypropyl)-2-[(2′-oxospiro[furo[2,3- 487.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 243 N-[2-(4-methylphenyl)ethyl]-2-[(2′-oxospiro[furo[2,3- 533.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 244 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.2 1′(2′H)-yl)methyl]-N-(tetrahydrofuran-2- ylmethyl)benzamide 245 N,N-dibenzyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 595.2 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 246 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 533.2 1′(2′H)-yl)methyl]-N-(3-phenylpropyl)benzamide 247 N-[2-(3-chlorophenyl)ethyl]-2-[(2′-oxospiro[furo[2,3- 553.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 248 N-[2-(4-fluorophenyl)ethyl]-2-[(2′-oxospiro[furo[2,3- 537.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 249 N-(4-fluorobenzyl)-2-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 250 N-(3-ethoxypropyl)-2-[(2′-oxospiro[furo[2,3- 501.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 251 N-hexyl-N-methyl-2-[(2′-oxospiro[furo[2,3- 513.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 252 N-(3-isopropoxypropyl)-2-[(2′-oxospiro[furo[2,3- 515.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 253 N-(4-methoxybenzyl)-2-[(2′-oxospiro[furo[2,3- 535.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 254 N-(cyclopropylmethyl)-2-[(2′-oxospiro[furo[2,3- 469.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 255 N-(2-ethoxyethyl)-2-[(2′-oxospiro[furo[2,3- 487.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 256 N-(cyclohexylmethyl)-2-[(2′-oxospiro[furo[2,3- 511.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 257 N-(2-furylmethyl)-2-[(2′-oxospiro[furo[2,3- 495.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 258 N-(2,4-dimethylphenyl)-2-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 259 N-(4-cyanophenyl)-2-[(2′-oxospiro[furo[2,3- 516.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 260 N-(3,5-dichlorophenyl)-2-[(2′-oxospiro[furo[2,3- 559.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 261 N-(3-fluoro-2-methylphenyl)-2-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 262 N-(4-methoxyphenyl)-2-[(2′-oxospiro[furo[2,3- 521.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 263 N-(5-chloro-2-methylphenyl)-2-[(2′-oxospiro[furo[2,3- 539.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 264 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 559.1 1′(2′H)-yl)methyl]-N-[3- (trifluoromethyl)phenyl]benzamide 265 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.1 1′(2′H)-yl)methyl]-N-(pyridin-4-ylmethyl)benzamide 266 N-cyclobutyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 469.1 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 267 N-methyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 429.1 indol]-1′(2′H)-yl)methyl]benzamide 268 N-ethyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 443.1 indol]-1′(2′H)-yl)methyl]benzamide 269 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 497.1 1′(2′H)-yl)methyl]-N-(2,2,2-trifluoroethyl)benzamide 270 N-(2,2-diphenylethyl)-2-[(2′-oxospiro[furo[2,3- 595.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 271 N-[2-(diethylamino)ethyl]-2-[(2′-oxospiro[furo[2,3- 514.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 272 N-(3,3-dimethylbutyl)-2-[(2′-oxospiro[furo[2,3- 499.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 273 N-(2-ethylbutyl)-2-[(2′-oxospiro[furo[2,3- 499.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 274 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 512.4 1′(2′H)-yl)methyl]-N-(2-pyrrolidin-1-ylethyl)benzamide 275 N-[(1-ethylpyrrolidin-2-yl)methyl]-2-[(2′-oxospiro[furo[2,3- 526.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 276 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 526.5 1′(2′H)-yl)methyl]-N-(2-piperidin-1-ylethyl)benzamide 277 N-(2-morpholin-4-ylethyl)-2-[(2′-oxospiro[furo[2,3- 528.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 278 N-[(1S)-1-cyclohexylethyl]-2-[(2′-oxospiro[furo[2,3- 525.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 279 N-(2-fluoro-5-methylphenyl)-2-[(2′-oxospiro[furo[2,3- 523.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 280 N-(2,4-difluorophenyl)-2-[(2′-oxospiro[furo[2,3- 527.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 281 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 533.4 1′(2′H)-yl)methyl]-N-(4-propylphenyl)benzamide 282 N-(3,3-diphenylpropyl)-2-[(2′-oxospiro[furo[2,3- 609.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 283 N-(2-methoxyethyl)-2-[(2′-oxospiro[furo[2,3- 473.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 284 N-(2,5-difluorobenzyl)-2-[(2′-oxospiro[furo[2,3- 541.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 285 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 511.4 1′(2′H)-yl)methyl]-N-(2-thienylmethyl)benzamide 286 N-[4-chloro-2-(trifluoromethyl)phenyl]-2-[(2′- 593.3 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 287 N-[2-(4-methoxyphenyl)ethyl]-2-[(2′-oxospiro[furo[2,3- 549.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 288 N-(3,5-dichlorobenzyl)-2-[(2′-oxospiro[furo[2,3- 573.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 289 N-(3-chlorobenzyl)-2-[(2′-oxospiro[furo[2,3- 539.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 290 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 525.4 1′(2′H)-yl)methyl]-N-[2-(2-thienyl)ethyl]benzamide 291 N-(2,3-dihydro-1H-inden-1-yl)-2-[(2′-oxospiro[furo[2,3- 531.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 292 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.3 1′(2′H)-yl)methyl]-N-[4- (trifluoromethyl)benzyl]benzamide 293 N-[4-fluoro-2-(trifluoromethyl)phenyl]-2-[(2′- 577.5 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 294 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.4 1′(2′H)-yl)methyl]-N-(pyridin-3-ylmethyl)benzamide 295 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.3 1′(2′H)-yl)methyl]-N-[2- (trifluoromethyl)benzyl]benzamide 296 N-(3-methylpyridin-2-yl)-2-[(2′-oxospiro[furo[2,3- 506.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 297 N-(1-benzylpiperidin-4-yl)-2-[(2′-oxospiro[furo[2,3- 588.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 298 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 559.4 1′(2′H)-yl)methyl]-N-[2- (trifluoromethyl)phenyl]benzamide 299 N-[(1R)-1-cyclohexylethyl]-2-[(2′-oxospiro[furo[2,3- 525.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 300 N-(2-cyanoethyl)-2-[(2′-oxospiro[furo[2,3- 468.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 301 N-(6-methoxypyridin-3-yl)-2-[(2′-oxospiro[furo[2,3- 522.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 302 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 498.3 1′(2′H)-yl)methyl]-N-1,3-thiazol-2-ylbenzamide 303 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.3 1′(2′H)-yl)methyl]-N-1,3,4-thiadiazol-2-ylbenzamide 304 N-(4,6-dimethylpyridin-2-yl)-2-[(2′-oxospiro[furo[2,3- 520.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 305 N-(2,3-dihydro-1H-inden-5-yl)-2-[(2′-oxospiro[furo[2,3- 531.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 306 1′-{2-[(4-pyrimidin-2-ylpiperazin-1- 562.4 yl)carbonyl]benzyl}spiro[furo[2,3-f][1,3]benzodioxole- 7,3′-indol]-2′(1′H)-one 307 1′-(2-{[4-(1,3-benzodioxol-5-ylmethyl)piperazin-1- 618.4 yl]carbonyl}benzyl)spiro[furo[2,3-f][1,3]benzodioxole- 7,3′-indol]-2′(1′H)-one 308 N-2-adamantyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 549.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 309 N-1-adamantyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 549.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 310 N-1-naphthyl-2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 541.4 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 311 N-(3,5-difluorophenyl)-2-[(2′-oxospiro[furo[2,3- 527.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 312 1′-[2-(morpholin-4-ylcarbonyl)benzyl]spiro[furo[2,3- 485.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 313 N-[3-(dimethylamino)propyl]-N-methyl-2-[(2′- 514.4 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide

Example 8 Synthesis of 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid

Following the procedure described in EXAMPLE 6, and making non-critical variations using methyl 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate to replace methyl 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate, the title compound was obtained (100%): 1H NMR (300 MHz, CDCl3) δ 13.03 (s, 1H), 7.86-7.80 (m, 2H), 7.59-7.57 (m, 1H), 7.48-7.44 (m, 1H), 7.25-7.16 (m, 2H), 7.03-6.95 (m, 2H), 6.68 (s, 1H), 6.18 (s, 1H), 5.90 (s, 2H), 5.05 (ABq, 2H), 4.75 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 167.5, 155.9, 148.9, 142.5, 142.3, 137.3, 132.2, 131.7, 129.6, 129.4, 128.8, 128.1, 124.3, 123.7, 120.1, 109.9, 103.3, 101.9, 93.9, 80.3, 58.0, 43.2; MS (ES+) m/z 416.2 (M+1).

Example 9 Synthesis of N-[2-(3-chlorophenyl)ethyl]-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

A. Preparation of stock solution of 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoyl chloride

To a stirred slurry of 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid (2.08 g, 5.00 mmol) in dry chloroform (50.0 mL) was added oxalyl chloride (0.95 g, 7.5 mmol) at ambient temperature followed by 1 drop of DMF. The mixture was stirred at ambient temperature overnight and evaporated to dryness in vacuo. The residue was dissolved in dry dichlormethane (60.0 mL) to form an acid chloride stock solution for use.

B. Synthesis of N-[2-(3-Chlorophenyl)ethyl]-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

To a solution of 2-(3-chlorophenyl)ethylamine (0.02 mL, 0.24 mmol) in dry dichloromethane (2.00 mL) and triethylamine (0.05 mL, 0.32 mmol) was added the acid chloride stock solution (2.0 mL, 0.081 M in dichloromethane) obtained above at ambient temperature. The mixture was stirred for 2 h, washed with 15% HCl solution and water. The organic layer was separated, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in ethyl acetate, and the product was precipitated by the addition of hexane. The white solid was filtered and collected to yield the title compound (0.06 g) in 65% yield: 1H NMR (300 MHz, CDCl3) δ 7.97-7.95 (m, 2H), 7.53-7.50 (m, 1H), 7.45-7.40 (m, 1H), 7.21-7.15 (m, 2H), 7.04-6.99 (m, 1H), 6.73-6.71 (m, 1H), 6.52 (s, 1H), 6.20 (s, 1H), 5.86 (s, 1H), 5.18 (d, 1H), 4.72 (d, 1H), 4.80 (d, 1H), 4.69 (d, 1H), 3.89 (s, 1H); MS (ES+) m/z 554.0 (M+1).

Example 9.1

The compounds listed in the following table were synthesized using the similar procedure as described in EXAMPLE 9. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

MS Com- (m/z, pound M + Number Name 1) 314 N-(3-methylbutyl)-3-[(2′-oxospiro[furo[2,3- 485.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 315 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 491.5 1′(2′H)-yl)methyl]-N-phenylbenzamide 316 N,N-diisopropyl-3-[(2′-oxospiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 317 N-(3-fluorophenyl)-3-[(2′-oxospiro[furo[2,3- 509.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 318 N-(4-chlorobenzyl)-3-[(2′-oxospiro[furo[2,3- 540.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 319 N-butyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 471.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 320 N-(3-fluorobenzyl)-3-[(2′-oxospiro[furo[2,3- 523.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 321 N-(3-chlorophenyl)-3-[(2′-oxospiro[furo[2,3- 526.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 322 N-(2-fluorophenyl)-3-[(2′-oxospiro[furo[2,3- 509.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 323 N-(2-ethylphenyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 324 N-(4-ethylphenyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 325 N-(3-methylphenyl)-3-[(2′-oxospiro[furo[2,3- 505.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 326 N-(2,3-dimethylphenyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 327 N-(3,5-dimethylphenyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 328 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 485.5 1′(2′H)-yl)methyl]-N-pentylbenzamide 329 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 457.5 1′(2′H)-yl)methyl]-N-propylbenzamide 330 N-isopropyl-3-[(2′-oxospiro[furo[2,3- 457.5 f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 331 1′-[3-(piperidin-1-ylcarbonyl)benzyl]spiro[furo[2,3- 483.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 332 N-isobutyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 471.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 333 N-hexyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 499.6 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 334 N-cyclohexyl-3-[(2′-oxospiro[furo[2,3- 497.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 335 N-cyclopentyl-3-[(2′-oxospiro[furo[2,3- 483.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 336 N-heptyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 513.6 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 337 N-(2-methoxybenzyl)-3-[(2′-oxospiro[furo[2,3- 535.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 338 N-(2-methoxyphenyl)-3-[(2′-oxospiro[furo[2,3- 521.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 339 N-cyclopropyl-3-[(2′-oxospiro[furo[2,3- 455.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 340 N-(3-methoxypropyl)-3-[(2′-oxospiro[furo[2,3- 487.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 341 N-(2,4-dimethylphenyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 342 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.5 1′(2′H)-yl)methyl]-N-(tetrahydrofuran-2- ylmethyl)benzamide 343 N,N-dibenzyl-3-[(2′-oxospiro[furo[2,3- 595.7 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 344 N-[2-(diethylamino)ethyl]-3-[(2′-oxospiro[furo[2,3- 514.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 345 N-methyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 429.4 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 346 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 559.5 1′(2′H)-yl)methyl]-N-[3- (trifluoromethyl)phenyl]benzamide 347 N-ethyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 443.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 348 N-(3-ethoxypropyl)-3-[(2′-oxospiro[furo[2,3- 501.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 349 N-(4-methoxybenzyl)-3-[(2′-oxospiro[furo[2,3- 535.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 350 N-(3,5-dichlorophenyl)-3-[(2′-oxospiro[furo[2,3- 560.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 351 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 492.5 1′(2′H)-yl)methyl]-N-pyridin-3-ylbenzamide 352 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.5 1′(2′H)-yl)methyl]-N-(pyridin-4-ylmethyl)benzamide 353 N-(2-furylmethyl)-3-[(2′-oxospiro[furo[2,3- 495.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 354 N-(3-fluoro-2-methylphenyl)-3-[(2′-oxospiro[furo[2,3- 523.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 355 N-hexyl-N-methyl-3-[(2′-oxospiro[furo[2,3- 513.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 356 N-(3-isopropoxypropyl)-3-[(2′-oxospiro[furo[2,3- 515.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 357 N-(2-ethoxyethyl)-3-[(2′-oxospiro[furo[2,3- 487.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 358 N-(cyclopropylmethyl)-3-[(2′-oxospiro[furo[2,3- 469.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 359 N-(4-methoxyphenyl)-3-[(2′-oxospiro[furo[2,3- 521.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 360 N-cyclobutyl-3-[(2′-oxospiro[furo[2,3- 469.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 361 N-[2-(4-fluorophenyl)ethyl]-3-[(2′-oxospiro[furo[2,3- 537.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 362 N-(cyclohexylmethyl)-3-[(2′-oxospiro[furo[2,3- 511.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 363 N-[2-(4-methylphenyl)ethyl]-3-[(2′-oxospiro[furo[2,3- 533.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 364 N-(2-ethylbutyl)-3-[(2′-oxospiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 365 N-benzyl-3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 505.5 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 366 N-(2-methoxyethyl)-3-[(2′-oxospiro[furo[2,3- 473.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 367 1′-[3-(morpholin-4-ylcarbonyl)benzyl]spiro[furo[2,3- 485.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 368 N-(1-benzylpiperidin-4-yl)-3-[(2′-oxospiro[furo[2,3- 588.7 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 369 N-[2-(4-methoxyphenyl)ethyl]-3-[(2′-oxospiro[furo[2,3- 549.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 370 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 526.6 1′(2′H)-yl)methyl]-N-(2-piperidin-1- ylethyl)benzamide 371 N-(1-cyclohexylethyl)-3-[(2′-oxospiro[furo[2,3- 525.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 372 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 511.6 1′(2′H)-yl)methyl]-N-(2-thienylmethyl)benzamide 373 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 533.6 1′(2′H)-yl)methyl]-N-(4-propylphenyl)benzamide 374 N-(2,4-difluorobenzyl)-3-[(2′-oxospiro[furo[2,3- 541.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 375 N-(3,5-difluorophenyl)-3-[(2′-oxospiro[furo[2,3- 527.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 376 N-(2,3-dihydro-1H-inden-5-yl)-3-[(2′-oxospiro[furo[2,3- 531.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 377 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.5 1′(2′H)-yl)methyl]-N-[4- (trifluoromethyl)benzyl]benzamide 378 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 525.6 1′(2′H)-yl)methyl]-N-[2-(2-thienyl)ethyl]benzamide 379 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.5 1′(2′H)-yl)methyl]-N-(pyridin-3-ylmethyl)benzamide 380 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.5 1′(2′H)-yl)methyl]-N-[2- (trifluoromethyl)benzyl]benzamide 381 N-[2-(4-chlorophenyl)ethyl]-3-[(2′-oxospiro[furo[2,3- 554.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 382 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 512.6 1′(2′H)-yl)methyl]-N-(2-pyrrolidin-1- ylethyl)benzamide 383 N-(3-methylpyridin-2-yl)-3-[(2′-oxospiro[furo[2,3- 506.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 384 N-1,3-benzodioxol-5-yl-3-[(2′-oxospiro[furo[2,3- 535.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 385 N-(2-morpholin-4-ylethyl)-3-[(2′-oxospiro[furo[2,3- 528.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 386 1′-{3-[(4-pyrimidin-2-ylpiperazin-1- 562.6 yl)carbonyl]benzyl}spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 387 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 498.5 1′(2′H)-yl)methyl]-N-1,3-thiazol-2-ylbenzamide 388 N-(6-methoxypyridin-3-yl)-3-[(2′-oxospiro[furo[2,3- 522.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 389 N-(3,5-dichlorobenzyl)-3-[(2′-oxospiro[furo[2,3- 574.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 390 N-1-naphthyl-3-[(2′-oxospiro[furo[2,3- 541.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 391 N-(4,6-dimethylpyridin-2-yl)-3-[(2′-oxospiro[furo[2,3- 520.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 392 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 493.5 1′(2′H)-yl)methyl]-N-pyrimidin-4-ylbenzamide 393 N-(5-methyl-1,3-thiazol-2-yl)-3-[(2′-oxospiro[furo[2,3- 512.5 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 394 N-(4-methylbenzyl)-3-[(2′-oxospiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 395 N-[3-(1H-imidazol-1-yl)propyl]-3-[(2′-oxospiro[furo[2,3- 523.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 396 1′-{3-[(4-methylpiperazin-1- 498.5 yl)carbonyl]benzyl}spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 397 N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)-3-[(2′- 539.6 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 398 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.5 1′(2′H)-yl)methyl]-N-1,3,4-thiadiazol-2- ylbenzamide 399 N-(3,3-dimethylbutyl)-3-[(2′-oxospiro[furo[2,3- 499.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 400 N-(4-morpholin-4-ylphenyl)-3-[(2′-oxospiro[furo[2,3- 576.6 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 401 N-[(1-ethylpyrrolidin-2-yl)methyl]-3-[(2′- 526.6 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 402 N-(2-cyanoethyl)-3-[(2′-oxospiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 403 N-(2,2-diphenylethyl)-3-[(2′-oxospiro[furo[2,3- 595.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide

Example 10 Synthesis of 1′-(4-fluorobenzyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′1H)-one

To a solution of spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.16 g, 0.57 mmol) in ethylmethylketone (5.00 mL) was added Cs2CO3 (0.40 g, 1.20 mmol). The reaction mixture was stirred at ambient temperature for 15 min followed by the addition of 4-fluorobenzyl bromide (0.20 g, 1.0 mmol). The reaction mixture was refluxed for 4 h. After the completion of the reaction, the mixture was filtered and the solvent was removed under reduced pressure. The residue was recrystallized from EtOAc/Hexane to yield the title compound (0.111 g) as a white solid in 50% yield: MS (ES+) m/z 390.3 (M+1).

Example 10.1

The compounds listed in the following table were synthesized using the similar procedure as described in EXAMPLE 10. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Com- MS pound (m/z, Number Name M + 1) 404 1′-{[1-(2,6-difluorobenzyl)-1H-1,2,3-triazol-4- 489.3 yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 405 1′-prop-2-yn-1-ylspiro[furo[2,3-f][1,3]benzodioxole- 320.3 7,3′-indol]-2′(1′H)-one 406 1′-benzylspiro[furo[2,3-f][1,3]benzodioxole-7,3′- 372.2 indol]-2′(1′H)-one 407 1′-{[6-(trifluoromethyl)pyridin-3- 441.2 yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 408 1′-(3,5-difluorobenzyl)spiro[furo[2,3- 408.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 409 1′-(3-nitrobenzyl)spiro[furo[2,3-f][1,3]benzodioxole- 417.2 7,3′-indol]-2′(1′H)-one 410 1′-[(6-chloropyridin-3-yl)methyl]spiro[furo[2,3- 407.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 411 1′-(tetrahydro-2H-pyran-2-ylmethyl)spiro[furo[2,3- 380.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 412 1′-(3-fluorobenzyl)spiro[furo[2,3-f][1,3]benzodioxole- 390.3 7,3′-indol]-2′(1′H)-one 413 1′-(tetrahydrofuran-2-ylmethyl)spiro[furo[2,3- 365.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 414 3-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 397.2 indol]-1′(2′H)-yl)methyl]benzonitrile 415 1′-(2,3-dihydro-1,4-benzodioxin-2- 430.3 ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 416 1′-(2-ethoxyethyl)spiro[furo[2,3-f][1,3]benzodioxole- 354.2 7,3′-indol]-2′(1′H)-one 417 1′-[(2E)-pent-2-en-1-yl]spiro[furo[2,3- 350.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 418 1′-hex-5-en-1-ylspiro[furo[2,3-f][1,3]benzodioxole- 364.3 7,3′-indol]-2′(1′H)-one 419 1′-(cyclobutylmethyl)spiro[furo[2,3- 350.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 420 1′-pent-2-yn-1-ylspiro[furo[2,3-f][1,3]benzodioxole- 348.2 7,3′-indol]-2′(1′H)-one 421 1′-(5-chloropentyl)spiro[furo[2,3-f][1,3]benzodioxole- 386.2 7,3′-indol]-2′(1′H)-one 422 1′-[4-(1H-pyrazol-1-yl)benzyl]spiro[furo[2,3- 438.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 423 1′-[(7-methoxy-2-oxo-2H-1,4-benzoxazin-3- 471.3 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 424 1′-(4-fluorobutyl)spiro[furo[2,3-f][1,3]benzodioxole- 356.2 7,3′-indol]-2′(1′H)-one 425 1′-(5-methylhexyl)spiro[furo[2,3-f][1,3]benzodioxole- 380.3 7,3′-indol]-2′(1′H)-one 426 1′-[(3Z)-4-methylhex-3-en-1-yl]spiro[furo[2,3- 378.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 427 1′-[(5-methyl-2-phenyl-2H-1,2,3-triazol-4- 453.2 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 428 1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3- 430.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 429 1′-(3,4-dihydro-2H-1,5-benzodioxepin-7- 444.3 ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 430 1′-(biphenyl-4-ylmethyl)spiro[furo[2,3- 448.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 431 4′-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 473.3 indol]-1′(2′H)-yl)methyl]biphenyl-2-carbonitrile 432 1′-(2-bromoethyl)spiro[furo[2,3-f][1,3]benzodioxole- 389.1 7,3′-indol]-2′(1′H)-one 433 1′-(1H-1,2,3-triazol-4-ylmethyl)spiro[furo[2,3- 363.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 434 1′-(biphenyl-2-ylmethyl)spiro[furo[2,3- 448.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 435 1′-(diphenylmethyl)spiro[furo[2,3-f][1,3]benzodioxole- 448.3 7,3′-indol]-2′(1′H)-one 436 5-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 363.2 indol]-1′(2′H)-yl)pentanenitrile 437 1′-[2-(2-methoxyethoxy)ethyl]spiro[furo[2,3- 384.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 438 1′-(cyclopropylmethyl)spiro[furo[2,3- 336.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 439 1′-(4,4,4-trifluorobutyl)spiro[furo[2,3- 392.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 440 ethyl 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 449.3 7,3′-indol]-1′(2′H)-yl)ethyl]-1H-1,2,3-triazole-5- carboxylate 441 ethyl 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 449.3 7,3′-indol]-1′(2′H)-yl)ethyl]-1H-1,2,3-triazole-4- carboxylate 442 diethyl [2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 446.1 7,3′-indol]-1′(2′H)-yl)ethyl]phosphonate 443 1′-(1,3-thiazol-4-ylmethyl)spiro[furo[2,3- 379.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 444 1′-[(5-chloro-1-benzothien-3-yl)methyl]spiro[furo[2,3- 462.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 445 1′-(pyridin-2-ylmethyl)spiro[furo[2,3- 373.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 446 1′-(pyridin-4-ylmethyl)spiro[furo[2,3- 373.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 447 1′-(pyridin-3-ylmethyl)spiro[furo[2,3- 373.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 448 1′-[2-(1H-pyrrol-1-yl)ethyl]spiro[furo[2,3- 375.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 449 1′-{[4-chloro-2-(trifluoromethyl)quinolin-6- 525.1 yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 450 1′-(4-fluoro-3-methylbenzyl)spiro[furo[2,3- 404.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 451 1′-(5-fluoro-2-methylbenzyl)spiro[furo[2,3- 404.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 452 1′-[(2-methyl-1,3-thiazol-4-yl)methyl]spiro[furo[2,3- 393.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 453 1′-(1,3-benzothiazol-2-ylmethyl)spiro[furo[2,3- 329.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 454 1′-(2,5-difluorobenzyl)spiro[furo[2,3- 408.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 455 1′-[4-(1H-pyrrol-1-yl)benzyl]spiro[furo[2,3- 437.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 456 1′-[3-(1H-pyrrol-1-yl)benzyl]spiro[furo[2,3- 437.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 457 1′-(2,1,3-benzothiadiazol-4-ylmethyl)spiro[furo[2,3- 430.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 458 1′-(2,1,3-benzothiadiazol-5-ylmethyl)spiro[furo[2,3- 430.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 459 1′-[(1-methyl-1H-1,2,3-benzotriazol-5- 427.2 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 460 1′-[(4-chlorophenoxy)methyl]spiro[furo[2,3- 422.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 461 1′-[2-fluoro-3-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 462 1′-[2-fluoro-6-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 463 1′-[3-fluoro-4-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 464 1′-[4-fluoro-3-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 465 1′-[2-fluoro-5-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 466 1′-[4-fluoro-2-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 467 1′-[5-fluoro-2-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 468 1′-[2-fluoro-4-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 469 1′-[3-(1H-pyrrol-1-yl)propyl]spiro[furo[2,3- 389.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 470 1′-[(2,2,3,3- 422.1 tetrafluorocyclobutyl)methyl]spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 471 1′-[(3-methyl-5-phenylisoxazol-4- 453.3 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 472 1′-[2-(diethylamino)ethyl]spiro[furo[2,3- 381.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 473 1′-(2,3-difluorobenzyl)spiro[furo[2,3- 408.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 474 1′-[(1-bromo-2-naphthyl)methyl]spiro[furo[2,3- 501.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 475 1′-[(7-methoxy-2-oxo-2H-chromen-4- 470.3 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 476 1′-[(benzyloxy)methyl]spiro[furo[2,3- 402.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 477 1′-[2-(2,5,5-trimethyl-1,3-dioxan-2- 438.2 yl)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 478 1′-[(6-fluoro-4H-1,3-benzodioxin-8- 448.2 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one 479 1′-allylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 322.3 2′(1′H)-one 480 1′-(1-naphthylmethyl)spiro[furo[2,3- 423.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 481 1′-[3-fluoro-5-(trifluoromethyl)benzyl]spiro[furo[2,3- 458.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 482 1′-(2,4-difluorobenzyl)spiro[furo[2,3- 408.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 483 1′-(2,6-difluorobenzyl)spiro[furo[2,3- 408.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 484 1′-[(5-phenyl-1,3-oxazol-4-yl)methyl]spiro[furo[2,3- 439.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 485 1′-(3,5,5-trimethylhexyl)spiro[furo[2,3- 408.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 486 1′-(2-ethylbutyl)spiro[furo[2,3-f][1,3]benzodioxole- 366.3 7,3′-indol]-2′(1′H)-one 487 1′-(4-methylpentyl)spiro[furo[2,3-f][1,3]benzodioxole- 366.3 7,3′-indol]-2′(1′H)-one 488 1′-(3-methoxybenzyl)spiro[furo[2,3- 402.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 489 1′-(3-methylbutyl)spiro[furo[2,3-f][1,3]benzodioxole- 352.2 7,3′-indol]-2′(1′H)-one 490 1′-(3-methylbut-2-en-1-yl)spiro[furo[2,3- 350.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 491 1′-pent-4-en-1-ylspiro[furo[2,3-f][1,3]benzodioxole- 350.2 7,3′-indol]-2′(1′H)-one 492 4-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 349.1 indol]-1′(2′H)-yl)butanenitrile 493 1′-[4-(1H-1,2,4-triazol-1-yl)benzyl]spiro[furo[2,3- 439.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 494 1′-(1,3-benzodioxol-5-ylmethyl)spiro[furo[2,3- 416.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 495 1′-[4,4-bis(4-fluorophenyl)butyl]spiro[furo[2,3- 526.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 496 1′-[(2-methylcyclopropyl)methyl]spiro[furo[2,3- 350.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 497 1′-(3-cyclopropylpropyl)spiro[furo[2,3- 364.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 498 1′-hexylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 366.3 2′(1′H)-one 499 1′-[(2-cyclopropyl-6-hydroxypyrimidin-4- 430.3 yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′- indol]-2′(1′H)-one

Example 10.2 Synthesis of 1′-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 10, and making non-critical variations using tert-butyl 4-(bromomethyl)peridine-1-carboxylate to replace 4-fluorobenzyl bromide, the title compound was obtained in 67% yield as a white solid upon acidification of the intermediate with 33% HBr: MS (ES+) m/z 379.3 (M+1).

Example 10.3 Synthesis of 1-[(1-methylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

To a solution of 1′-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.19 g, 0.50 mmol) in dichloroethane (5.00 mL) was added formaldehyde (0.10 mL, 33% solution, 0.03 g, 1.10 mmol) and sodium triacetoxyborohydride (0.30 g, 1.40 mmol). After stirring at ambient temperature for 20 hours, the reaction mixture was diluted with of dichloromethane (20.0 mL) and washed with water (2×20.0 mL). The organic layer was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography and the product was dissolved in dichloromethane (5.00 mL) and excess of HCl in ether was added. The precipitate was filtered to give the title compound in 20% yield: MS (ES+) m/z 393.3 (M+1).

Example 10.4 Synthesis of 1′-[(1-ethylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using acetaldehyde to replace formalin, the title compound was obtained in 20% yield as a white solid: MS (ES+) m/z 407.3 (M+1).

Example 10.5 Synthesis of 1′-[(1-cyclohexyllpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using cyclohexanone to replace formalin, the title compound was obtained 24% yield as a white solid: MS (ES+) m/z 461.5 (M+1).

Example 10.6 Synthesis of 1′-{[1-cyclopropylmethyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using cyclopropanecarbaldehyde to replace formalin, the title compound was obtained in 14% yield as a white solid: MS (ES+) m/z 433.5 (M+1).

Example 10.7 Synthesis of 1-[(1-cyclopentylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using cyclopentanone to replace formalin, the title compound was obtained in 37% yield as a white solid: MS (ES+) m/z 447.3 (M+1).

Example 10.8 Synthesis of 1′-{[1-(pyridine-3-ylmethyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using nicotinaldehyde to replace formalin, the title compound was obtained in 11% yield as a white solid: MS (ES+) m/z 470.4 (M+1).

Example 10.9 Synthesis of 1′-{[1-(3-methylbutyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using 3-methylbutanal to replace formalin, the title compound was obtained in 15% yield as a white solid: MS (ES+) m/z 449.5 (M+1).

Example 10.10 Synthesis of 1′-{[1-(1-ethylpropyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using pentan-3-one to replace formalin, the title compound was obtained in 17% yield as a white solid: MS (ES+) m/z 449.4 (M+1).

Example 10.11 Synthesis of 1-[(1-cyclobutylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using cyclobutanone to replace formalin, the title compound was obtained in 31% yield as a white solid: MS (ES+) m/z 433.4 (M+1).

Example 10.12 Synthesis of 1′-[(1-isopropyllpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in Example 10.3, and making non-critical variations using acetone to replace formalin, the title compound was obtained in 31% yield as a white solid: 1H NMR (300 MHz, DMSO-d6) δ 10.36 (s, 1H), 7.79-6.87 (m, 4H), 6.82-6.48 (m, 1H), 6.38-6.15 (m, 1H), 5.89 (s, 2H), 4.67 (ABq, 2H), 4.12 (s, 1H), 3.79-0.60 (m, 16H); MS (ES+) m/z 421.4 (M+1).

Example 10.13 Synthesis of 1′-{[1-(pyridin-2-ylmethyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using picolinaldehyde to replace formalin, the title compound was obtained in 15% yield as a white solid: MS (ES+) m/z 470.4 (M+1).

Example 10.14 Synthesis of 1′-{[1-(2-thienylmethyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using thiophene-2-carbaldehyde to replace formalin, the title compound was obtained in 21% yield as a white solid: MS (ES+) m/z 475.3 (M+1).

Example 10.15 Synthesis of 1-({1-[3-(methylthio)propyl]piperidin-4-yl}methyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using 3-(methylthio)propanal to replace formalin, the title compound was obtained in 7% yield as a white solid: MS (ES+) m/z 467.5 (M+1).

Example 10.16 Synthesis of 1′-{[1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using tetrahydro-4H-pyran-4-one to replace formalin, the title compound was obtained in 33% yield as a white solid: MS (ES+) m/z 463.4 (M+1).

Example 10.17 Synthesis of 1′-{[1-(3,3-dimethylbutyl)piperidin-4-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.3, and making non-critical variations using 3,3-dimethylbutanal to replace formalin, the title compound was obtained in 19% yield as a white solid: MS (ES+) m/z 463.5 (M+1).

Example 10.18 Synthesis of tert-butyl 4-[(5,5-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)methyl]piperidine-1-carboxylate

Following the procedure as described in EXAMPLE 10, and making non-critical variations using 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and tert-butyl 4-(tosyloxymethyl)piperidine-1-carboxylate to replace 4-fluorobenzyl bromide, the title compound was obtained in 70% yield: mp 65-75° C.; 1H NMR (300 MHz, CDCl3) δ 7.30 (td, 1H), 7.18 (d, 1H), 7.05 (t, 1H), 6.89 (d, 1H), 6.38 (s, 1H), 6.28 (s, 1H), 4.88 (d, 1H), 4.64 (d, 1H), 4.18 (s, 2H), 4.17-4.01 (br, 2H), 3.74-3.53 (m, 2H), 2.74-2.59 (m, 2H), 2.11-1.92 (m, 1H), 1.70-1.59 (m, 2H), 1.43 (s, 9H), 1.37-1.19 (m, 2H), 1.17 (s, 3H), 1.14 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 178.0, 161.3, 161.0, 154.7, 142.8, 132.6, 129.9, 128.7, 124.2, 123.3, 120.3, 116.2, 108.5, 93.4, 85.4, 80.6, 79.5, 57.7, 45.7, 41.3, 35.0, 30.0, 28.4, 27.8, 27.5; MS (ES+) m/z 527.5 (M+23).

Example 10.19 Synthesis of 5,5-dimethyl-1′-(piperidin-4-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one hydrochloride

To a stirred solution of tert-butyl 4-[(5,5-dimethyl-2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)methyl]piperidine-1-carboxylate (80 mg, 0.16 m mol) in 10.0 mL dichloromethane was added hydrobromic acid (0.50 mL of hydrobromic acid ≧33% in glacial acetic acid, 1.60 mmol) slowly at 0° C. The mixture was stirred at ambient temperature for one hour and concentrated in vacuo to dryness. The residue was treated with 10.0 mL of 2 N sodium hydroxide solution and extracted with dichloromethane (3×30.0 mL). The combined organic layers was washed with brine (100 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (2% methanol in ethyl acetate) to give 5,5-dimethyl-1-(piperidin-4-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.03 g, 46%), which was treated with 2.0 M HCl in diethyl ether to give the title compound: 1H NMR (300 MHz, CD3OD) δ 7.41 (td, 1H), 7.25-7.12 (m, 3H), 6.43 (s, 1H), 6.37 (s, 1H), 4.87 (d, 1H), 4.72 (d, 1H), 4.23 (s, 2H), 3.80 (d, 2H), 3.51-3.38 (m, 2H), 3.11-2.94 (m, 2H), 2.39-2.19 (m, 1H), 2.06-1.94 (m, 2H), 1.67-1.49 (m, 2H), 1.22 (s, 3H), 1.19 (s, 3H); 13C NMR (75 MHz, CD3OD) δ 181.4, 163.9, 163.4, 144.7, 134.7, 132.3, 131.0, 125.9, 125.8, 122.6, 118.4, 111.3, 94.9, 87.4, 82.6, 60.2, 46.7, 45.7, 45.6, 43.3, 34.6, 28.8, 28.7, 28.6; MS (ES+) m/z 405.4 (M+1).

Example 10.20 Synthesis of 7′-fluoro-1′-[(1-isopropylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3-indol]-2′(1′H)-one hydrochloride

A. Following the procedure as described in EXAMPLES 10.18 and 10.19, and making non-critical variations using 7′-fluorospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, 7′-fluoro-1′-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one was obtained and used in the next step.

B. To a stirred solution of 7′-fluoro-1′-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (120 mg, 0.28 mmol) and triethylamine (3.9 μL, 0.028 mmol) in 5.00 mL dichloromethane was added acetone (4.1 μL, 0.56 mmol) followed with sodium triacetoxyborohydride (124 mg, 0.56 mmol) at ambient temperature. The mixture was stirred at ambient temperature overnight, quenched with water (10.0 mL). The mixture was extracted with dichloromethane (3×30.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (2% methanol in ethyl acetate/hexane) to give 7′-fluoro-1′-[(1-isopropylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (85 mg, 69%) as a white solid, which was treated with 2.0 M HCl in diethyl ether to give the title compound: mp 157-160° C.; 1H NMR (300 MHz, CD3OD) δ 7.22-7.05 (m, 2H), 7.05-6.98 (m, 1H), 6.52 (s, 1H), 6.21 (s, 1H), 5.86 (s, 2H), 4.83 (d, 1H), 4.68 (d, 1H), 3.95-3.77 (m, 2H), 3.55-3.42 (m, 3H), 3.12-2.96 (m, 2H), 2.30-2.10 (m, 1H), 2.10-1.97 (m, 2H), 1.76-1.52 (m, 2H), 1.34 (d, 6H); 13C NMR (75 MHz, CD3OD) δ 179.7, 157.6, 150.6, 150.4, 147.1, 143.9, 136.6, 125.8, 121.2, 120.3, 118.0, 103.9, 103.0, 94.3, 81.8, 60.1, 59.7, 47.6, 35.33, 35.30, 28.6, 28.5, 16.98, 16.96; MS (ES+) m/z 439.27 (M+1).

Example 10.21 Synthesis of 5,5-dimethyl-1-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

To a solution of 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.09 g, 0.29 mmol) in 2-butanone (10.0 mL) was added 2-bromomethyl-5-(trifluoromethyl)furan (0.08 g, 0.35 mmol) followed by cesium carbonate (0.19 g, 0.58 mmol) at 0° C. The mixture was stirred at ambient temperature overnight. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/5) to give the title compound (0.06 g, 45%): mp 155-160° C.; 1H NMR (300 MHz, CDCl3,) δ 7.29 (t, 1H), 7.19 (d, 1H), 7.07 (t, 1H), 6.97 (d, 1H), 6.73 (t, 1H), 6.42-6.37 (m, 2H), 6.30 (s, 1H), 5.08 (d, 1H), 4.94-4.84 (m, 2H), 4.65 (d, 1H), 4.18 (s, 2H), 1.19 (s, 3H), 1.14 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.5, 161.2, 161.0, 152.0, 141.4, 132.5, 130.1, 128.8, 124.2, 123.8, 120.1, 116.4, 112.6, 109.3, 108.7, 93.4, 85.5, 80.6, 57.7, 41.4, 36.9, 27.6, 27.5; MS (ES+) m/z 456.5 (M+1).

Example 10.22 Synthesis of 5,5-dimethyl-1′-(pyridin-3-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one hydrochloride

To a solution of 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one (0.08 g, 0.26 mmol) in DMF (10 mL) was added sodium hydride (0.03 g, 0.78 mmol) slowly at 0° C. After 30 min, 3-(bromomethyl)-pyridine hydrobromide (0.10 g, 0.39 mmol) was added. The mixture was stirred at ambient temperature overnight, quenched with saturated ammonium chloride (10.0 mL). The mixture was extracted with ethyl acetate (3×20.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 2/1) to give 5,5-dimethyl-1′-(pyridin-3-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1H)-one as a white solid (0.05 g, 48%), which was treated with 2.0 M HCl in diethyl ether to give the title compound: mp 124-126° C.; 1H NMR (300 MHz, CD3OD) δ 8.96 (br, 1H), 8.82 (br, 1H), 8.62 (d, 1H), 7.3 (t, 1H), 7.32 (td, 1H), 7.23-7.17 (m, 1H), 7.16-7.08 (m, 2H), 6.42 (s, 1H), 6.32 (s, 1H), 5.35-5.14 (m, 2H), 4.93-4.84 (m, 1H), 4.74 (d, 1H), 4.18 (s, 2H), 1.18 (s, 3H), 1.14 (s, 3H); 13C NMR (75 MHz, CD3OD) δ 178.9, 161.6, 161.1, 145.4, 141.3, 141.1, 132.5, 130.1, 128.8, 124.0, 123.9, 120.1, 116.2, 108.8, 92.6, 85.1, 80.2, 57.8, 41.0, 40.5, 26.5, 26.4; MS (ES+) m/z 399.5 (M+1).

Example 10.23 Synthesis of 5,5-dimethyl-1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.22, and making non-critical variations using 2-(bromomethyl)-pyridine hydrobromide to replace 3-(bromomethyl)-pyridine hydrobromide, the title compound was obtained (45%): mp 145-147° C.; 1H NMR (300 MHz, CD3OD) δ 8.86 (dd, 1H), 8.56 (td, 1H), 8.05-7.97 (m, 2H), 7.37 (td, 1H), 7.31-7.25 (m, 1H), 7.24-7.16 (m, 1H), 7.11 (d, 1H), 6.55 (s, 1H), 6.37 (s, 1H), 5.52 (d, 1H), 5.38 (d, 1H), 4.97 (d, 1H), 4.79 (d, 1H), 4.23 (s, 2H), 1.24 (s, 3H), 1.20 (s, 3H); 13C NMR (75 MHz, CD3OD) δ 177.4, 160.0, 159.6, 150.3, 144.7, 141.0, 139.7, 131.0, 128.6, 127.2, 124.3, 123.7, 122.6, 122.4, 118.5, 114.8, 107.2, 91.0, 83.6, 78.7, 56.3, 40.1, 39.4, 24.9, 24.8; MS (ES+) m/z 399.5 (M+1).

Example 10.24 Synthesis of 1′-[(6-methylpyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.21, and making non-critical variations using (6-methylpyridin-3-yl)methyl 4-methylbenzenesulfonate to replace 2-bromomethyl-5-(trifluoromethyl)furan, and spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, 1′-[(6-methylpyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one was obtained (56%), which was treated with 2.0 M HCl in diethyl ether to give the title compound: 1H NMR (300 MHz, CD3OD) δ 8.77 (s, 1H), 8.46 (dd, 1H), 7.91 (d, 1H), 7.33 (t, 1H), 7.24-7.09 (m, 3H), 6.52 (s, 1H), 6.14 (s, 1H), 5.86 (s, 2H), 5.18 (s, 2H), 4.93-4.85 (m, 1H), 4.71 (d, 1H), 2.77 (s, 3H); 13C NMR (75 MHz, CD3OD) δ 180.0, 157.6, 155.1, 150.6, 146.6, 143.8, 142.7, 141.2, 135.7, 133.5, 130.3, 129.5, 125.3, 125.2, 120.5, 110.3, 103.8, 103.0, 94.3, 81.5, 59.7, 41.5, 19.5; MS (ES+) m/z 387.4 (M+1).

Example 10.25 Synthesis of 1′-[(6-methoxypyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 10.21, and making non-critical variations using (6-methoxypyridin-3-yl)methyl 4-methylbenzenesulfonate to replace 2-bromomethyl-5-(trifloromethyl)furan, and spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (45%): 1H NMR (300 MHz, CDCl3) δ 8.19 (d, 1H), 7.59 (dd, 1H), 7.26-7.12 (m, 2H), 7.02 (t, 1H), 6.83 (d, 1H), 6.74 (d, 1H), 6.50 (s, 1H), 6.07 (s, 1H), 5.89-5.82 (m, 2H), 5.00-4.90 (m, 2H), 4.76 (d, 1H), 4.65 (d, 1H), 3.93 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.6, 163.7, 155.9, 149.0, 145.3, 142.4, 141.6, 138.9, 132.2, 129.0, 124.4, 124.1, 123.7, 119.2, 111.7, 109.0, 102.9, 101.5, 93.7, 80.4, 58.2, 53.9, 41.1; MS (ES+) m/z 403.2 (M+1).

Example 10.26 Synthesis of 1-[(6-chloropyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 2-chloro-5-(chloromethyl)pyridine to replace 2-bromomethyl-5-(trifloromethyl)furan, and spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1H)-one, the title compound was obtained (69%): 1H NMR (300 MHz, CDCl3) δ 8.42 (d, 1H), 7.63 (dd, 1H), 7.34-7.14 (m, 3H), 7.05 (t, 1H), 6.77 (d, 1H), 6.51 (s, 1H), 6.06 (s, 1H), 5.89-5.84 (m, 2H), 5.07-4.78 (m, 3H), 4.66 (d, 1H); MS (ES+) m/z 407.3 (M+1).

Example 10.27 Synthesis of 1′-{[6-(dimethylamino)pyridin-3-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

To a seal tube was added 1′-((6-chloropyridin-3-yl)methyl)-6H-spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one (0.10 g, 0.25 mmol) and dimethylamine (2.00 mL of 2 M THF solution, 4.00 mmol). The mixture was stirred at 130° C. overnight. After cooling down to ambient temperature, the mixture was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/2) to give 1′-{[6-(dimethylamino)pyridin-3-yl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′1H)-one as a white solid (50 mg, 48%), which was treated with 2.0 M HCl in diethyl ether to give the title compound: mp 146-150° C.; 1H NMR (300 MHz, CD3OD) δ 8.03 (d, 1H), 7.95 (dd, 1H), 7.36 (td, 1H), 7.25-7.12 (m, 4H), 6.57 (s, 1H), 6.09 (s, 1H), 5.90 (s, 2H), 5.07-4.87 (m, 3H), 4.72 (d, 1H), 3.27 (s, 6H); 13C NMR (75 MHz, CD3OD) δ 179.9, 157.6, 154.6, 150.5, 143.8, 143.4, 142.9, 137.7, 133.5, 130.2, 125.1, 121.8, 120.6, 113.2, 110.4, 103.7, 103.0, 94.3, 81.4, 59.7, 41.1, 39.5; MS (ES+) m/z 416.5 (M+1).

Example 10.28 Synthesis of 1′-[(6-morpholin-4-ylpyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.27, and making non-critical variations using morpholine to replace dimethylamine solution, the title compound was obtained (52%): mp 185-200° C.; 1H NMR (300 MHz, CD3OD) δ 8.13-8.04 (m, 2H), 7.45 (d, 1H), 7.37 (t, 1H), 7.26-7.14 (m, 3H), 6.56 (s, 1H), 6.10 (s, 1H), 5.89 (s, 2H), 5.10-4.87 (m, 3H), 4.72 (d, 1H), 3.91-3.84 (m, 4H), 3.73-3.67 (m, 4H); 13C NMR (75 MHz, CD3OD) δ 180.0, 157.6, 153.7, 150.5, 145.1, 143.8, 142.8, 136.3, 133.5, 130.3, 125.2, 125.1, 123.6, 120.6, 114.6, 110.4, 103.7, 103.0, 94.3, 81.5, 66.7, 59.7, 47.2, 40.9; MS (ES+) m/z 458.5 (M+1).

Example 10.29 Synthesis of 1′-[(6-pyrrolidin-1-ylpyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.27, and making non-critical variations using pyrrolidine to replace dimethylamine solution, the title compound was obtained (45%): mp 160-165° C.; 1H NMR (300 MHz, CD3OD) δ 7.99-7.91 (m, 2H), 7.33 (td, 1H), 7.22-7.06 (m, 4H), 6.53 (s, 1H), 6.05 (s, 1H), 5.86 (s, 2H), 5.04-4.82 (m, 3H), 4.68 (d, 1H), 3.57 (t, 4H), 2.13 (t, 4H); 13C NMR (75 MHz, CD3OD) δ 177.0, 154.6, 148.0, 147.6, 141.1, 140.8, 139.9, 132.5, 130.5, 127.3, 122.2, 118.8, 117.6, 112.0, 107.4, 100.7, 100.0, 91.3, 78.5, 56.7, 38.0, 23.2; MS (ES+) m/z 442.2 (M+1).

Example 10.30 Synthesis of 1′-(2-chloro-4-fluorobenzyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-2-chloro-4-fluorobenzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (54%) as a white solid: mp 174-175° C.; MS (ES+) m/z 424.2 (M+1).

Example 10.31 Synthesis of 1′-[(2-methylcyclopropyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-2-methylcyclopropane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (37%) as a white solid: MS (ES+) m/z 350.3 (M+1).

Example 10.32 Synthesis of 1′-(3-cyclopropylpropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and (3-bromopropyl)cyclopropane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (51%) as a white solid: mp 111-113° C.; MS (ES+) m/z 364.3 (M+1).

Example 10.33 Synthesis of 1′-butylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-bromobutane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (62%) as a white solid: mp 119-120° C.; MS (ES+) m/z 338.3 (M+1).

Example 10.34 Synthesis of 1′-[(5-methylisoxazol-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 4-(bromomethyl)-5-methylisoxazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (25%) as a white solid: mp 159-161° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.39-6.91 (m, 4H), 6.50 (s, 1H), 6.11 (s, 1H), 5.94 (d, 1H), 5.85 (ABq, 2H), 4.95 (ABq, 2H), 4.78 (ABq, 2H), 2.37 (s, 3H); MS (ES+) m/z 377.3 (M+1).

Example 10.35 Synthesis of 1′-(tetrahydro-2H-pyran-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 4-(bromomethyl)tetrahydro-2H-pyran to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (25%) as a white solid: mp 142-144° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.34-6.85 (m, 4H), 6.50 (s, 1H), 6.08 (s, 1H), 5.85 (ABq, 2H), 4.76 (ABq, 2H), 4.18-3.86 (m, 2H), 3.63 (ddd, 2H), 3.34 (t, 2H), 2.38-1.92 (m, 1H), 1.70-1.36 (m, 4H); MS (ES+) m/z 380.3 (M+1).

Example 10.36 Synthesis of 1′[2-(trifluoromethoxy)benzyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-2-(trifluoromethoxy)benzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (77%) as a white solid: mp 130-135° C.; MS (ES+) m/z 456.3 (M+1).

Example 10.37 Synthesis of 1′[3-trifluoromethoxy)benzyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-3-(trifluoromethoxy)benzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (65%) as a white solid: mp 88-91° C.; MS (ES+) m/z 456.3 (M+1).

Example 10.38 Synthesis of 1′[4-(trifluoromethoxy)benzyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-4-(trifluoromethoxy)benzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (50%) as a white solid: mp 99-101° C.; MS (ES+) m/z 456.3 (M+1).

Example 10.39 Synthesis of 1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and iodomethane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (72%) as a white solid: mp 142-144° C.; MS (ES+) m/z 296.2 (M+1).

Example 10.40 Synthesis of 1-Propylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-bromopropane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (64%) as a white solid: mp 158-160° C.; MS (ES+) m/z 324.4 (M+1).

Example 10.41 Synthesis of 1′-(2,1,3-benzoxadiazol-5-ylmethyl)spiro[furo2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 5-(bromomethyl)benzo[c][1,2,5]oxadiazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (17%) as a white solid: mp 163-165° C.; MS (ES+) m/z 414.4 (M+1).

Example 10.42 Synthesis of 1′[(1-methyl-1H-benzotriazol-6-yl)methyl]spiro[furo2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 6-(bromomethyl)-1-methyl-1H-benzotriazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (17%) as a white solid: mp 230-235° C.; MS (ES+) m/z 427.3 (M+1).

Example 10.43 Synthesis of tert-butyl 4-[(2′-oxo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-1′(2′H)-yl)methyl]piperidine 1-carboxylate

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and tert-butyl 4-(bromomethyl)peridine-1-carboxylate to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (58%) as a white solid: mp 96-98° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.84-6.85 (m, 4H), 6.40 (s, 1H), 6.37 (s, 1H), 4.68 (ABq, 2H), 4.46 (t, 2H), 4.06-3.73 (m, 2H), 3.68-3.45 (m, 2H), 2.92 (t, 2H), 2.63 (s, 2H), 2.04-1.82 (m, 1H), 1.76-0.66 (m, 13H); MS (ES+) m/z 477.4 (M+1).

Example 10.44 Synthesis of 1′-(2,3-difluorobenzyl)-5,6-dihydrospyro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(bromomethyl)-2,3-difluorobenzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (67%) as a white solid: mp 156-158° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.50-6.85 (m, 7H), 6.43 (s, 1H), 6.39 (s, 1H), 5.01 (q, 2H), 4.75 (dd, 2H), 4.46 (t, 2H), 2.92 (t, 2H); MS (ES+) m/z 406.2 (M+1).

Example 10.45 Synthesis of 1′-(pyridin-2-ylmethyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 2-(bromomethyl)pyridine hydrobromide to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, 1′-(pyridin-2-ylmethyl)-5,6-dihydrospyro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one was obtained (27%) as a white solid, which was treated in CH2Cl2 with excess of HCl in ether to give the title compound: mp 208-210° C.; 1H NMR (300 MHz, DMSO-d6) δ 8.78-8.53 (m, 1H), 8.05 (t, 1H), 7.64-7.47 (m, 2H), 7.30-6.92 (m, 4H), 6.59 (s, 1H), 6.38 (s, 1H), 5.24-5.06 (m, 2H), 4.78 (ABq, 2H), 4.46 (t, 2H), 2.94 (t, 2H); MS (ES+) m/z 371.4 (M+1).

Example 10.46 Synthesis of 1′-(4-methoxybenzyl)-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, and 1-(chloromethyl)-4-methoxybenzene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (56%) as a white solid: mp 120-121° C.; MS (ES+) m/z 400.2 (M+1).

Example 10.47 Synthesis of 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.48 g, 1.33 mmol) in N,N-dimethylformamide (5.00 mL) was added sodium hydride (0.08 g, 1.98 mmol, 60% dispersion in mineral oil) in one portion at 0° C. The reaction mixture was stirred for 0.5 h followed by the addition of a solution of 2-(bromomethyl)-5-trifluoromethyl)furan in N,N-dimethylformamide (1.00 mL). The reaction mixture was stirred at ambient temperature for 16 h and quenched by slow addition of water (5.00 mL). The reaction mixture was extracted with ethyl acetate (3×20.0 mL), washed with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate:hexane (35%) to afford the title compound (0.46 g, 69%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.22-7.14 (m, 2H), 6.94 (dd, 1H), 6.73 (d, 1H), 6.46 (s, 1H), 6.39 (d, 1H), 6.04 (s, 1H) 5.86 (dd, 2H), 4.94 (ABq, 2H), 4.92 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.0, 157.2, 151.6, 151.5, 149.3, 143.4, 142.2, 130.5, 127.8, 129.6, 120.1, 116.0, 112.7, 109.5, 107.9, 102.5, 101.6, 93.3, 77.1, 59.6, 37.1; MS (ES+) m/z 508.2 (M+2).

Example 10.48 Synthesis of 4′-bromo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 4′-bromo-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (76%) as a colorless solid: mp 182-184° C.; 1H NMR (300 MHz, CDCl3) δ 7.21-7.11 (m, 2H), 6.92 (dd, 1H), 6.74 (d 1H), 6.41 (d, 1H), 6.38 (s, 1H), 6.37 (s, 1H), 5.10 (d, 1H), 5.02 (d, 1H), 4.87 (d, 1H), 4.81 (d, 1H), 4.53 (t, 2H), 2.98 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.3, 162.4, 162.2, 151.5, 143.4, 130.2, 127.7, 120.5, 120.0, 119.7, 118.4, 117.0, 112.7, 112.6, 109.5, 107.8, 92.9, 77.1, 72.4, 59.1, 37.0, 28.9; MS (ES+) m/z 506.3 (M+1).

Example 10.49 Synthesis of 4′-bromo-1′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using iodomethane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (79%) as a colorless solid: mp 155-157° C.; 1H NMR (300 MHz, CDCl3) δ 7.19 (d, 1H), 7.17 (s, 1H), 6.84 (dd, 1H), 6.46 (s, 1H), 6.08 (s, 1H), 5.86 (dd, 2H), 4.90 (ABq, 2H), 3.25 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.3, 157.2, 149.2, 145.1, 142.0, 130.4, 129.9, 127.3, 119.9, 116.3, 107.3, 102.7, 101.5, 93.3, 77.3, 59.7, 26.9; MS (ES+) m/z 376.4 (M+2).

Example 10.50 Synthesis of tert-butyl 4-[(4′-bromo-2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]piperidine-1-carboxylate

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using tert-butyl 4-({[(4-methylphenyl)sulfonyl]oxy}methyl)piperidine-1-carboxylate to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (43%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.17 (d, 2H), 6.83 (t, 1H), 6.46 (s, 1H), 6.04 (s, 1H), 5.87 (d, 2H), 4.89 (ABq, 2H), 4.11 (d, 2H), 3.73-3.42 (m, 3H), 2.66 (t, 2H), 2.03-1.90 (m, 1H), 1.43 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 177.6, 157.3, 154.7, 149.2, 144.8, 142.1, 130.3, 129.8, 127.3, 120.2, 116.3, 107.6, 102.4, 101.6, 93.4, 79.6, 77.2, 59.6, 46.1, 43.4, 34.9, 28.4; MS (ES+) m/z 581.4 (M+23), 579.4 (M+23), 503.3 (M−57), 501.3 (M−57).

Example 10.51 Synthesis of 1′-[(3,5-dimethylisoxazol-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 4-(chloromethyl)-3,5-dimethylisoxazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (35%) as a colorless solid: mp 165-167° C.; 1H NMR (300 MHz, CDCl3) δ 7.24 (t, 1H), 7.16 (d, 1H), 7.05 (t, 1H), 6.72 (d, 1H), 6.50 (s, 1H), 6.05 (s, 1H), 5.85 (d, 2H), 4.75 (ABq, 2H), 4.67 (ABq, 2H), 2.46 (s, 3H), 2.22 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.5, 167.1, 159.1, 156.1, 149.1, 142.4, 141.7, 131.8, 129.0, 124.3, 123.8, 118.9, 108.8, 108.6, 102.9, 101.6, 93.8, 80.6, 58.2, 33.3, 11.5, 10.7; MS (ES+) m/z 391.3 (M+1).

Example 10.52 Synthesis of 1′-(2-furylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-chloromethylfuran to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound (40%) as a colorless solid: mp 110-112° C.; 1H NMR (300 MHz, CDCl3) δ 7.35-7.33 (m, 1H), 7.29-7.23 (m, 1H), 7.15 (d, 1H), 7.06-7.00 (m, 2H), 6.50 (s, 1H), 6.34-6.31 (m, 2H), 6.10 (s, 1H), 5.85 (dd, 2H), 4.92 (ABq, 2H), 4.79 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.1, 155.9, 149.0, 148.9, 142.6, 142.3, 141.8, 132.2, 128.9, 123.8, 123.5, 119.5, 110.6, 109.3, 108.7, 103.1, 101.5, 93.6, 80.4, 58.2, 37.1; MS (ES+) m/z 362.5 (M+1).

Example 10.53 Synthesis of ethyl 5-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)pentanoate

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one; and ethyl 5-bromovalerate to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (62%) as a gummy material: 1H NMR (300 MHz, CDCl3) δ 7.28 (t, 1H), 7.14 (d, 1H), 7.03 (t, 1H), 6.88 (d, 1H), 6.48 (s, 1H), 6.13 (s, 1H), 5.84 (d, 2H), 4.76 (ABq, 2H), 4.07 (q, 2H), 3.87-3.65 (m, 2H), 2.35 (t, 2H), 1.80-1.64 (m, 4H), 1.20 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.4, 173.1, 155.9, 148.8, 142.3, 142.2, 132.5, 128.9, 124.04, 123.3, 119.5, 108.6, 103.0, 101.5, 93.6, 80.5, 60.4, 58.2, 39.9, 33.7, 26.8, 22.2, 14.2; MS (ES+) m/z 432.09 (M+23).

Example 10.54 Synthesis of ethyl 4-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)butanoate

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and ethyl 4-bromobutyrate to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (80%) as a gummy material: 1H NMR (300 MHz, CDCl3) δ 7.29 (t, 1H), 7.14 (d, 1H), 7.04 (d, 1H), 6.99 (d, 1H), 6.48 (s, 1H), 6.18 (s, 1H), 5.84 (d, 2H), 4.76 (ABq, 2H), 4.11 (q, 2H), 3.88-3.71 (m, 2H), 2.40 (t, 2H), 2.03 (t, 2H), 1.21 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.4, 172.8, 156.0, 148.9, 142.4, 142.2, 132.4, 129.0, 124.0, 123.3, 119.4, 108.7, 103.0, 101.5, 93.6, 80.5, 60.7, 58.2, 39.6, 31.2, 22.6, 14.3; MS (ES+) m/z 418.08 (M+23), 396.1 (M+1).

Example 10.55 Synthesis of 1′-(1,2,4-oxadiazol-3-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-(chloromethyl)-1,2,4-oxadiazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (36%)) as a colorless solid: mp 160-162° C.; 1H NMR (300 MHz, CDCl3) δ 7.39 (dt, 1H), 7.20-7.13 (m, 3H), 7.05 (d, 1H), 6.50 (s, 1H), 6.12 (s, 1H), 5.86 (dd, 2H), 4.78 (ABq, 2H), 4.68 (s, 2H); 13C NMR (75 MHz, CDCl3) δ 176.7, 156.0, 149.3, 142.5, 139.6, 131.6, 129.4, 124.8, 124.5, 118.4, 113.6, 108.7, 103.0, 101.7, 93.7, 80.3, 58.2, 29.7, 28.0; MS (ES+) m/z 365.2 (M+1).

Example 10.56 Synthesis of 1′-{[5-(3-chlorophenyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-(chloromethyl)-5-[3-chlorophenyl]furan to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (22%) as a colorless solid: mp 205-207° C.; 1H NMR (300 MHz, CDCl3) δ 7.55 (t, 1H), 7.46 (dt, 1H), 7.28 (d, 2H), 7.21-7.14 (m, 2H), 7.09-7.04 (m, 2H), 6.59 (d, 1H), 6.50 (s, 1H), 6.40 (d, 1H), 6.10 (s, 1H), 5.84 (dd, 2H), 4.98 (ABq, 2H), 4.80 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.2, 155.9, 152.5, 149.2, 148.9, 142.4, 141.7, 134.8, 132.1, 132.0, 130.1, 128.9, 127.5, 124.0, 123.7, 123.6, 121.7, 119.4, 110.8, 109.2, 106.9, 103.0, 101.5, 93.6, 80.4, 58.2, 37.3; MS (ES+) m/z 472.2 (M+1).

Example 10.57 Synthesis of 1-(3-chloropropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 1-bromo-3-chloropropane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (22%) as a colorless solid: mp 144-146° C.; 1H NMR (300 MHz, CDCl3) δ 7.31 (dt, 1H), 7.14-7.12 (m, 2H), 7.01 (t, 1H), 6.65 (s, 1H), 6.23 (s, 1H), 5.89 (s, 2H), 4.68 (ABq, 2H), 3.85-3.79 (m, 2H), 3.67 (t, 2H), 2.06 (t, 1H); 13C NMR (75 MHz, DMSO-d6) δ 177.2, 155.8, 148.7, 142.9, 142.2, 132.4, 129.3, 124.1, 123.3, 120.3, 109.3, 103.6, 101.7, 80.3, 57.8, 43.4, 30.6; MS (ES+) m/z 358.2 (M+1).

Example 10.58 Synthesis of 1′-[(2-isopropyl-1,3-oxazol-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 4-chloromethyl-2-isopropyloxazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (22%) as a colorless solid: mp 118-120° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.97 (s, 1H), 7.24 (t, 1H), 7.13 (d, 1H), 7.05 (d, 1H), 6.98 (t, 1H), 6.65 (s, 1H), 6.26 (s, 1H), 5.88 (d, 2H), 4.85 (d, 1H), 4.77 (d, 1H), 4.71-4.66 (m, 2H), 3.04-2.95 (m, 1H), 1.18 (dd, 6H); 13C NMR (75 MHz, DMSO-d6) δ 176.9, 169.1, 155.6, 148.7, 142.4, 142.2, 136.8, 135.2, 132.4, 129.2, 123.9, 123.4, 120.5, 109.9, 103.6, 101.9, 93.7, 79.9, 57.9, 36.2, 28.1, 20.7, 20.6; MS (ES+) m/z 405.2 (M+1).

Example 10.59 Synthesis of 1′-[(1-methyl-1H-benzimidazol-2-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-(bromomethyl)-1-methyl-1H-benzimidozole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (22%) as a colorless solid: mp>250° C.; 1H NMR (300 MHz, CDCl3) δ 7.71 (d, 1H), 7.65 (d, 1H), 7.54 (t, 1H), 7.39 (t, 1H), 7.30-7.24 (m, 1H), 7.16 (d, 1H), 7.05 (d, 2H), 6.63 (s, 1H), 6.49 (s, 1H), 6.44 (d, 1H), 6.11 (s, 1H), 5.83 (d, 2H), 4.99 (ABq, 2H), 4.80 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.2, 155.9, 150.6, 149.6, 148.9, 142.3, 141.7, 132.1, 131.8, 129.8, 128.9, 127.9, 126.8, 126.7, 126.6, 123.9, 123.6, 119.4, 111.0, 110.9, 110.6, 109.3, 103.1, 101.5, 93.6, 80.4, 58.2, 37.3; MS (ES+) m/z 506.3 (M+1).

Example 10.60 Synthesis of 1′-[(2-oxo-1,3-benzothiazol-3(2H)-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3″-indol]-2″(1″H)-one to replace 4″-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3″-indol]-2″(1″H)-one, and 3-(bromomethyl)-benzo[d]thiazol-2(3H)-one to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (31%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 7.67 (d, 1H), 7.41 (d, 1H), 7.35-7.29 (m, 3H), 7.23-7.14 (m, 2H), 7.05 (t, 1H), 6.68 (s, 1H), 5.94-5.85 (m, 5H), 4.69 (td, 1H); 13C NMR (75 MHz, DMSO-d6) δ 178.1, 170.6, 155.9, 148.9, 142.2, 141.0, 136.1, 131.8, 129.6, 127.3, 124.5, 124.4, 124.3, 123.7, 121.5, 119.8, 112.1, 110.0, 103.4, 101.9, 93.8, 80.3, 58.3, 47.9; MS (ES+) m/z 467.2 (M+23).

Example 10.61 Synthesis of 1′-[(5-chloro-2-thienyl)methyl]-5′-fluorospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 5′-fluorospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 5-chloro-2-(chloromethyl)thiophene to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (76%) as a colorless solid: mp 142-144° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.22-7.17 (m, 1H), 7.14-7.13 (m, 1H), 7.12-7.10 (m, 2H), 6.96 (d, 1H), 6.68 (s, 1H), 6.13 (s, 1H), 5.91 (d, 2H), 5.02 (ABq, 2H), 4.73 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.9, 161.0, 157.8, 156.0, 149.0, 142.2, 138.3, 138.2 (d, 4JCF=7.0 Hz) 133.6 (d, 3JCF=33 Hz), 128.3, 127.8, 127.1, 119.5, 115.6 (d, 4JCF=93 Hz), 112.5 (d, 1JCF=100 Hz), 110.8 (d, 3JCF=32 Hz), 103.2, 102.0, 93.9, 79.8, 58.2 (d, 4JCF=7.0 Hz), 39.0; MS (ES+) m/z 430.1 (M+1).

Example 10.62 Synthesis of 1′-[(5-chloro-2-furyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To an ice-cooled solution of (5-chloro-2-furyl)methanol (2.03 g, 15.3 mmol) in anhydrous dichloromethane (50.0 mL) was added triethylamine (4.64 g, 45.9 mmol) followed by thionyl chloride (3.64 g, 30.6 mmol). The reaction mixture was stirred at 0° C. for 30 min and quenched with saturated ammonium chloride (25.0 mL). After the aqueous layer was separated, the organic layer was washed with 10% aqueous HCl (20.0 mL), brine (20 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness to give 5-chloro-2-chloromethylfuran as a yellow oil. A solution of this oil in anhydrous N,N-dimethylformamide (3.00 mL) was added directly without any further purification to a mixture of spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H′)-one (0.84 g, 3.00 mmol) and sodium hydroxide (0.48 g, 12.0 mmol) in anhydrous N,N-dimethylformamide (9.00 mL). The reaction mixture was heated at 70° C. for 16 h, cooled to ambient temperature followed by the addition of saturated ammonium chloride (5.0). N,N-Dimethylformamide was removed under high vacuum. The residue was diluted with ethyl acetate (100 mL), washed with 10% aqueous HCl (25.0 mL), brine (25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The brown residue was subjected to column chromatography eluting with ethyl acetate/hexane (35%) to afford the title compound (0.74 g, 62%) as a colorless solid: mp 148-150° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.29 (t, 1H), 7.15-7.12 (m, 2H), 7.01 (d, 1H), 6.67 (s, 1H), 6.60 (d, 1H), 6.39 (d, 1H), 6.10 (s, 1H), 5.89 (d, 2H), 4.89 (ABq, 2H), 4.72 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.9 155.8 149.7, 148.8, 142.2, 142.1, 134.8, 132.1, 129.3 124.1, 123.7 120.2, 112.0, 109.9, 108.2 103.2, 101.9, 93.8, 80.0, 57.9 37.0; MS (ES+) m/z 396 (M+1).

Example 10.63 Synthesis of 1′-[(4-hydroxy-1,2,2,6,6-pentamethylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using 5,5,6,7,7-pentamethyl-1-oxa-6-azaspiro[2.5]octane to replace (5-chloro-2-furyl)methanol, the title compound was obtained (70%) as a colorless solid: mp 210-214° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.29 (d, 1H), 7.24 (t, 1H), 7.10 (d, 1H), 7.01 (t, 1H), 6.66 (s, 1H), 6.45 (s, 1H), 5.90 (d, 2H), 5.20 (br, 1H), 4.70 (ABq, 2H), 3.57 (q, 2H), 3.30 (s, 3H), 2.01-1.83 (m, 4H), 1.45 (s, 6H), 1.34 (s, 6H); 13C NMR (75 MHz, DMSO-d6) δ 178.5, 156.0, 148.7, 144.5, 142.2, 132.3, 128.9, 123.8, 123.2, 120.3, 110.9, 104.1, 101.9, 93.7, 80.9, 71.6, 65.3, 57.8, 52.6, 30.2, 28.7, 22.1; MS (ES+) m/z 465.4 (M+1).

Example 10.64 Synthesis of 1′-{[5-(2-chlorophenyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using [5-(2-chlorophenyl)-2-furyl]methanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (48%) as a colorless solid: mp 148-150° C.; 1H NMR (300 MHz, CDCl3) δ 7.74 (d, 1H), 7.39 (d, 1H), 7.29 (d, 1H), 7.24 (d, 1H), 7.19-7.15 (m, 2H), 7.08-7.04 (m, 3H), 6.51 (s, 1H), 6.45 (d, 1H), 6.12 (s, 1H), 6.84 (s, 2H), 4.99 (ABq, 2H), 4.78 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.2, 155.9, 150.3, 149.0, 148.6, 142.4, 141.8, 132.1, 130.8, 130.0, 128.9, 128.7, 128.2, 127.7, 126.9, 123.9, 123.6, 119.4, 111.8, 110.7, 109.2, 103.1, 101.5, 93.6, 80.4, 58.2, 37.3; MS (ES+) m/z 472.2 (M+1).

Example 10.65 Synthesis of 1′-[(5-methyl-2-furyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using (5-methyl-2-furyl)methanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (70%) as a colorless solid: mp 117-119° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.26 (t, 1H), 7.12 (t, 2H), 6.99 (t, 1H), 6.67 (s, 1H), 6.32 (d, 1H), 6.07 (s, 1H), 5.97 (d, 1H), 5.89 (d, 2H), 4.84 (ABq, 2H), 4.72 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.8, 155.7, 151.9, 148.8, 147.7, 142.3, 142.2, 132.1, 129.2, 124.0, 123.5, 120.4, 110.1, 110.0, 107.0, 103.2, 101.9, 93.8, 79.9, 57.9, 37.2, 13.7; MS (ES+) m/z 376 (M+1).

Example 10.66 Synthesis of 1′-[(5-bromo-2-furyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using (5-bromo-2-furyl)methanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (76%) as colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 9.29 (s, 1H), 7.69 (dt, 1H), 7.32-7.26 (m, 2H), 7.04 (d, 1H), 6.99 (d, 1H), 6.71 (d, 1H), 6.02 (s, 1H), 4.91 (ABq, 2H), 4.47 (t, 2H), 3.08 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.9, 160.4, 156.3, 153.8, 149.7, 146.1, 137.5, 130.9, 130.8, 126.5, 125.8, 123.1, 121.5, 118.8, 116.4, 108.3, 96.7, 76.6, 71.9, 45.7, 29.1; MS (ES+) m/z 440.1 (M+1), 442.1 (M+1).

Example 10.67 Synthesis of 1′-[(5-chloro-2-thienyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using (5-chloro-2-thienyl)methanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (77%) as a colorless solid: mp 145-146° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.28 (t, 1H), 7.20-7.14 (m, 2H), 7.10 (d, 1H), 7.01 (t, 1H), 6.95 (d, 1H), 6.67 (s, 1H), 6.09 (s, 1H), 5.89 (d, 2H), 5.02 (ABq, 2H), 4.71 (ABq, 2H); MS (ES+) m/z 411.9 (M+1).

Example 10.68 Synthesis of 1′-{[3-hydroxy-5-(trifluoromethyl)-2-thienyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using 2-(hydroxymethyl)-5-(trifluoromethyl)thiophene-3-ol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (48%) as a colorless solid: mp 225-227° C.; 1H NMR (300 MHz, DMSO-d6) δ 10.4 (s, 1H), 7.29 (dt, 1H), 7.16-7.10 (m, 3H), 7.01 (dt, 1H), 6.68 (s, 1H), 6.09 (s, 1H), 5.89 (d, 2H), 4.94 (ABq, 2H), 4.70 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 176.9, 155.8, 152.3, 148.9, 142.2, 141.9, 132.1, 129.4, 125.9, 125.4, 124.5, 124.2, 123.8, 122.6, 120.9, 120.0, 116.5, 109.5, 103.3, 101.9, 93.8, 80.2, 57.9, 34.9; MS (ES+) m/z 460.38 (M−1).

Example 10.69 Synthesis of 1′-{[5-(2-trifluoromethylphenyl)-2-furyl]methyl}-4H-spiro[furo[2,3-g][1,3]benzodioxine-8,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using {5-[2-(trifluoromethyl)phenyl]-2-furyl}methanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (28%) as a colorless solid: mp 124-126° C.; 1H NMR (300 MHz, CDCl3) δ 7.71 (d, 1H), 7.65 (d, 1H), 7.54 (t, 1H), 7.39 (t, 1H), 7.30-7.24 (m, 1H), 7.16 (d, 1H), 7.05 (d, 2H), 6.63 (s, 1H), 6.49 (s, 1H), 6.44 (d, 1H), 6.11 (s, 1H), 5.83 (d, 2H), 4.99 (ABq, 2H), 4.80 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.2, 155.9, 150.6, 149.6, 148.9, 142.3, 141.7, 132.1, 131.8, 129.8, 128.9, 127.9, 126.8, 126.7, 126.6, 123.9, 123.6, 119.4, 111.0, 110.9, 110.6, 109.3, 103.1, 101.5, 93.6, 80.4, 58.2, 37.3; MS (ES+) m/z 506.27 (M+1).

Example 10.70 Synthesis of 1′-[(2-chloro-1,3-thiazol-5-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of (2-chloro-1,3-thiazol-5-yl)methanol (0.30 g, 2.00 mmol) in anhydrous CH2Cl2 (20.0 mL) was added thionyl chloride (0.50 g, 4.20 mmol) followed by triethylamine (0.40 g, 4.00 mmol) at 0° C. After stirring at 0° C. for one hour and ambient temperature for one hour, the reaction mixture was diluted with CH2Cl2 (50.0 mL) and extracted with water (2×20 mL). The organic phase was dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in methyl-ethyl ketone (10.0 mL) followed by the additions of spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.36 g, 2.00 mmol) and cesium carbonate (1.95 g, 6.00 mmol). The reaction mixture was heated at 70° C. overnight, cooled, filtered and the filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to yield the title compound (0.032 g, 3.4%) as a colorless solid: mp 195-198° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.81 (s, 1H), 7.39-6.93 (m, 5H), 6.66 (s, 1H), 6.15-6.12 (m, 1H), 5.89 (d, 2H), 5.10 (s, 2H), 4.70 (dd, 2H); MS (ES+) m/z 413.1 (M+1).

Example 10.71 Synthesis of 1′-{[5-(trifluoromethyl)-2-furyl]methyl}-6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1H)-one

Following the procedure as described in EXAMPLE 10.21, and making non-critical variations using 6,7-dihydrospiro[benzo[1,2-b:4,5-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (19%) as a white solid: mp 174-177° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.33-6.95 (m, 5H), 6.84 (s, 1H), 6.71 (d, 1H), 5.88 (s, 1H), 5.03 (ABq, 2H), 4.70 (ABq, 2H), 4.46-4.31 (m, 2H), 3.07 (t, 2H); MS (ES+) m/z 428.0 (M+1).

Example 10.72 Synthesis of 1′{[5-(trifluoromethyl)-2-furyl]methyl}5,6-dihydrospyro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]2′(1′H)-one

Following the procedure described in EXAMPLE 10.21, and making non-critical variations using 5,6-dihydrospyro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one to replace 5,5-dimethyl-5,6-dihydrospiro[benzo[1,2-b:5,4-b′]difuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (71%) as a white solid: mp 173-176° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.50-6.90 (m, 5H), 6.73 (d, 1H), 6.38 (s, 1H), 6.32 (s, 1H), 5.04 (ABq, 2H), 4.75 (ABq, 2H), 4.55-4.36 (m, 2H), 2.88 (t, 2H); 13C NMR (75 MHz, DMSO-d6) δ 177.2, 161.7, 161.0, 153.5, 142.0, 140.3, 139.7, 139.2, 132.6, 129.1, 124.1, 123.8, 121.2, 121.0, 120.3, 119.1, 117.7, 114.6, 114.5, 110.4, 109.6, 93.0, 80.0, 72.5, 57.3, 36.8, 28.7; MS (ES+) m/z 428.2 (M+1).

Example 10.73 Synthesis of 1-{[5-(trifluoromethyl)-2-thienyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 1′-{[3-hydroxy-5-(trifluoromethyl)-2-thienyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.75 g, 1.62 mmol) in anhydrous dichloromethane (12.0 mL) was added triethylamine (0.49 g, 0.70 mL, 4.85 mmol) and trifluoromethanesulfonic anhydride (0.91 g, 0.50 mL, 3.24 mmol) at 0° C. under nitrogen. The reaction mixture was stirred for 30 min and quenched with saturated ammonium chloride (15.0 mL). After the aqueous layer was separated, the organic layer was washed with 10% HCl (10.0 mL), brine (10.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to provide brown gummy material as the triflate. A mixture of this triflate (15.3 mmol), tetrakis(triphenylphosphine)palladium(0) (0.19 g, 0.17 mmol), triethylamine (1.66 g, 2.30 mL, 16.5 mmol), and formic acid (0.76 mg, 0.60 mL, 16.5 mmol) in anhydrous dioxane (24 mL) was heated at reflux for 16 h. After the reaction mixture was cooled down to ambient temperature, the solvent was removed under reduced pressure. The black residue was diluted with ethyl acetate (50.0 mL), washed with 10% HCl (20.0 mL), saturated ammonium chloride (20.0 mL), brine (20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate:hexane (35%) to afford the title compound (0.65 g, 89%) as a colorless solid: mp 127-130° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.58-7.56 (m, 1H), 7.32-7.27 (m, 2H), 7.22 (s, 1H), 7.18 (d, 1H), 7.16 (s, 1H), 7.09 (dt, 1H), 6.68 (s, 1H), 6.10 (s, 1H), 5.89 (d, 2H), 5.17 (ABq, 2H), 4.72 (ABq, 2H); 13C NMR (75 MHz, DMSO-d6) δ 177.0, 155.9, 148.9, 144.7, 142.2, 141.8, 132.1, 130.6, 130.5, 129.3, 128.7, 128.0, 124.3, 123.9, 120.0, 109.8, 103.3, 102.0, 93.9, 80.2, 57.8, 38.7; MS (ES+) m/z 446.1 (M+1).

Example 10.74 Synthesis of 1′-{[3-methoxy-5-(trifluoromethyl)-2-thienyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of 1′-{[3-hydroxy-5-(trifluoromethyl)-2-thienyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.18 g, 0.39 mmol), NaOH (0.08 g, 1.96 mmol) and iodomethane (0.17 g, 1.18 mmol) in anhydrous N,N-dimethylformamide (2.00 mL) was stirred at ambient temperature for 16 h. The reaction was quenched by addition of saturated ammonium chloride (10.0 mL) and extracted with ethyl acetate (3×50.0 mL). The combined organic layers was washed with water (3×20.0 mL), brine (20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The colorless solid was triturated with ether to give the title compound (0.15 g, 81%): mp 178-180° C.; 1H NMR (300 MHz, DMSO-d6) δ 7.71 (s, 1H), 7.30 (dt, 1H), 7.15 (d, 1H), 7.07-7.02 (m, 2H), 6.68 (s, 1H), 6.08 (s, 1H), 5.89 (d, 2H), 4.95 (ABq, 2H), 4.70 (ABq, 2H), 3.90 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 177.0, 155.8, 154.9, 148.9, 142.2, 141.8, 132.1, 129.4, 125.7, 124.3, 123.8, 120.4, 120.3, 120.0, 119.5, 109.4, 103.2, 102.0, 93.9, 80.1, 59.9, 57.9, 34.9; MS (ES+) m/z 476.3 (M+1).

Example 10.75 Synthesis of 4′-methyl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3-indol]-2′(1′H)-one

A mixture of 4′-bromo-1′-(5-(trifluoromethyl)furan-2-yl)methyl)-6H-spiro[benzofuro[6,5-d][1,3]dioxole-7,3′-indolin]-2′-one (0.51 g, 1.00 mmol), lithium chloride (0.09 mg, 2.00 mmol), Pd2(dba)3 (0.09 mg, 10 mole %) was flushed with nitrogen. To the above mixture was added anhydrous 1-methyl-2-pyrrolidinone (5.00 mL) and tetraethyltin (0.27 mg, 0.20 mL, 1.50 mmol). The reaction mixture was heated at 60° C. for 16 h and quenched with saturated ammonium chloride (10.0 mL). The reaction mixture was extracted with ethyl acetate (3×10.0 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate:hexane (20%) to afford the title compound (0.07 g, 16%) as a colorless solid: mp 117-119° C.; 1H NMR (300 MHz, CDCl3) δ 7.18 (t, 1H), 6.82 (t, 2H), 6.72 (d, 1H), 6.47 (s, 1H), 6.37 (d, 1H), 6.09 (s, 1H), 5.86 (d, 2H), 4.95 (ABq, 2H), 4.83 (ABq, 2H), 2.03 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.6, 156.2, 152.0, 149.1, 142.3, 141.3, 135.6, 129.4, 128.9, 126.0, 120.6, 117.2, 112.7, 112.6, 109.2, 106.5, 102.9, 101.6, 93.3, 78.4, 58.3, 37.0, 17.1; MS (ES+) m/z 444.1 (M+1).

Example 10.76 Synthesis of 5′-methyl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (77%): mp 96-98° C.; 1H NMR (300 MHz, CDCl3) δ 7.09 (d, 1H), 7.00 (s, 1H), 6.87 (d, 1H), 6.74 (d, 1H), 6.52 (s, 1H), 6.38 (d, 1H), 6.11 (s, 1H), 5.88 (d, 2H), 4.96 (ABq, 2H), 4.80 (ABq, 2H), 2.29 (s, 3H); MS (ES+) m/z 444.2 (M+1).

Example 10.77 Synthesis of 1′-({5-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-3-yl}methyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-chloromethyl-5-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazole to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (44%): 1H NMR (300 MHz, CDCl3) δ 8.22 (d, 2H), 7.76 (d, 2H), 7.30-7.18 (m, 2H), 7.06 (t, 1H), 6.91 (d, 1H), 6.51 (s, 1H), 6.40 (s, 1H), 5.88 (s, 2H), 5.17 (ABq, 2H), 4.86 (ABq, 2H); MS (ES+) m/z 508.1 (M+1).

Example 10.78 Synthesis of 1-(2-thienylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.62, and making non-critical variations using 2-thiophenemethanol to replace (5-chloro-2-furyl)methanol, the title compound was obtained (37%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 7.26-7.20 (m, 2H), 7.18-7.13 (m, 1H), 7.10-6.98 (m, 2H), 6.97-6.90 (m, 2H), 6.50 (s, 1H), 6.12 (s, 1H), 5.85 (d, 2H), 5.10 (ABq, 2H), 4.79 (ABq, 2H); MS (ES+) m/z 378.19 (M+1).

Example 10.79 Synthesis of 5-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]thiophene-2-carbonitrile

A mixture of 1′-[(5-bromo-2-thienyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.23 g, 0.49 mmol), zinc cyanide (0.07 g, 0.59 mmol), tris(dibenzylideneacetone)dipalladium(0) (0.10 g, 0.11 mmol), 1,1′-bis(diphenylphosphino)ferrocene (0.06 g, 0.11 mmol), N,N-dimethylformamide (6.00 mL) and a catalytic amount of water (2 drops) was heated at 120° C. for 24 hours. After cooling down to ambient temperature, the organic solvent was evaporated in vacuo. The residue was extracted with ethyl acetate (5×15.0 mL) and the combined organic solution was passed through a bed of celite. The filtrate was successively washed with saturated aqueous ammonium chloride (25.0 mL), water (2×35.0 mL) and brine (40.0 mL). The organic layer was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluted with 20-35% ethyl acetate in hexanes to afford solid which was further purified by preparative thin layer chromatography, eluted with 20% ethyl acetate in hexanes to afford the title compound (0.09 g, 44%): 1H NMR (300 MHz, CDCl3) δ 7.50 (d, 1H), 7.32-7.16 (m, 2H), 7.12-7.04 (m, 2H), 6.86 (d, 1H), 6.51 (s, 1H), 6.08 (s, 1H), 5.87 (d, 2H), 5.10 (ABq, 2H), 4.78 (ABq, 2H); MS (ES+) m/z 403.0 (M+1).

Example 10.80 Synthesis of 5-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]-2-furonitrile

Following the procedure described in EXAMPLE 10.79, and making non-critical variations using 1′-[(5-bromo-2-furyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 1′-[(5-bromo-2-thienyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (44%) as a colorless solid: mp 167-169° C.; 1H NMR (300 MHz, CDCl3) δ 7.34-7.27 (m, 1H), 7.21-7.17 (m, 1H), 7.12-7.08 (m, 1H), 7.07-7.03 (m, 1H), 6.95 (d, 1H), 6.51 (s, 1H), 6.44 (d, 1H), 6.08 (s, 1H), 5.86 (q, 2H), 4.96 (ABq, 2H), 4.78 (ABq, 2H); MS (ES+) m/z 387.2 (M+1).

Example 10.81 Synthesis of 1′-{[5-(methylsulfonyl)-2-furyl]methyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of 1′-[(5-bromo-2-furyl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.70 g, 1.59 mmol), sodium methanesulfinate (85%, 0.23 g, 1.91 mmol), copper (I) iodide (0.04 g, 0.22 mmol), L-proline (0.04 g, 0.35 mmol) and dimethyl sulfoxide (4.00 mL) was heated at 100° C. After 3 days, the reaction mixture was cooled down to ambient temperature, quenched with water (50.0 mL) and extracted with ethyl acetate (3×40.0 mL). The combined organic layers was washed with brine (2×50.0 mL), dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography eluting with ethyl acetate:hexane (30-50%) to afford the title compound (0.50 g, 71%): mp 177-179° C.; 1H NMR (300 MHz, CDCl3) δ 7.29 (t, 1H), 7.19 (d, 1H), 7.12-7.04 (m, 2H), 6.94 (d, 1H), 6.50 (s, 1H), 6.42 (d, 1H), 6.11 (s, 1H), 5.86 (s, 2H), 5.00 (ABq, 2H), 4.79 (ABq, 2H), 3.11 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.3, 155.9, 154.5, 149.1, 149.1, 142.4, 141.1, 131.9, 129.1, 124.2, 124.1, 119.0, 118.4, 109.9, 108.7, 102.9, 101.6, 93.7, 80.3, 58.2, 43.4, 37.2; MS (ES+) m/z 440.0 (M+1).

Example 10.82 Synthesis of 1′-[(6-oxo-1,6-dihydropyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a mixture of 1-[(6-methoxypyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.23 g, 0.57 mmol), sodium iodide (0.28 g, 1.87 mmol), water (2 drops) in anhydrous acetonitrile (5.00 mL) was added chlorotrimethylsilane (0.19 g, 1.78 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and quenched with sodium bisulfite (0.20 g). The reaction mixture was diluted with ethyl acetate (100 mL) and washed with brine (2×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was triturated with ether (2×10.0 mL) to give the title compound (0.16 g, 72%) as a light yellow solid: mp 247-250° C.; 1H NMR (300 MHz, DMSO-d6) δ 11.50 (br, 1H), 7.50 (bd, 1H), 7.36-7.24 (m, 2H), 7.17-7.12 (m, 2H), 7.01 (dt, 1H), 6.67 (s, 1H), 6.28 (d, 1H), 6.09 (s, 1H), 5.91-5.88 (m, 2H), 4.78 (d, 1H), 4.67-4.62 (m, 3H); MS (ES+) m/z 389.15 (M+1).

Example 10.83 Synthesis of 1′-[(1-methyl-6-oxo-1,6-dihydropyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in PREPARATION 1A, and making non-critical variations using 1′-[(6-oxo-1,6-dihydropyridin-3-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4-bromoindole, and methyl iodide to replace 1-bromopentane, the title compound was obtained (78%): mp 115-118° C.; 1H NMR (300 MHz, CDCl3) δ 7.39-7.23 (m, 3H), 7.18 (d, 1H), 7.06 (t, 1H), 6.87 (d, 1H), 6.57-6.48 (m, 2H), 6.02 (s, 1H), 5.87-5.83 (m, 2H), 4.90 (d, 1H), 4.75-4.52 (m, 3H), 3.51 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 162.5, 155.9, 149.1, 142.4, 141.6, 139.7, 137.6, 132.1, 129.1, 124.4, 123.9, 121.3, 119.1, 114.0, 108.6, 102.8, 101.6, 93.7, 80.3, 58.2, 40.8, 38.0; MS (ES+) m/z 403.3 (M+1).

Example 10.84 Synthesis of 5-bromo-1′-[(5-chloro-2-thienyl)methyl]spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10, and making non-critical variations using 5-bromospiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-chloro-5-(chloromethyl)thiophene to replace 4-fluorobenzyl bromide, the title compound was obtained (95%) as a white solid: mp 140-142° C.; 1H NMR (300 MHz, CDCl3) δ 7.33-7.26 (m, 2H), 7.16-7.02 (m, 2H), 6.94 (d, 1H), 6.97-6.75 (m, 4H), 5.07-4.91 (m, 3H), 4.68 (d, 1H); MS (ES+) m/z 446.7 (M+1), 448.7 (M+1).

Example 10.85 Synthesis of 1′-[(5-chloro-1,3,4-thiadiazol-2-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.56 g, 1.99 mmol) and (5-chloro-1,3,4-thiadiazol-2-yl)methanol (0.30 g, 1.99 mmol) in anhydrous tetrahydrofuran (12.0 mL) was added tributylphosphine (0.60 g, 2.99 mmol) at 0° C. The reaction mixture was stirred for 15 min followed by the addition of N,N,N′,N′-tetramethylazodicarboxamide (0.51 g, 2.99 mmol). The reaction mixture was stirred at ambient temperature overnight, quenched with aqueous ammonium chloride (10.0 mL) and diluted with ethyl acetate (350 mL). The organic layer was washed with aqueous saturated sodium chloride (2×25.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/2) to give the title compound (0.20 g, 24%) as a yellowish solid: mp 194-197° C.; 1H NMR (300 MHz, DMSO-d6,) δ 7.30 (dt, 1H), 7.20-7.12 (m, 2H), 7.05 (dt, 1H), 6.67 (s, 1H), 6.28 (s, 1H), 5.90 (s, 2H), 5.43 (d, 1H), 5.34 (d, 1H), 4.78 (d, 1H), 4.67 (d, 1H); 13C NMR (75 MHz, DMSO-d6) δ 177.2, 168.3, 155.8, 155.4, 148.9, 142.2, 141.9, 132.2, 129.4, 124.2, 124.0, 120.1, 109.8, 103.7, 101.9, 93.8, 80.1, 67.5, 57.9, 25.6; MS (ES+) m/z 414.2 (M+1), 416.2 (M+1).

Example 10.86 Synthesis of 1′-[(1-pyridin-2-ylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of 1-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrobromide (0.20 g, 0.44 mmol), 2-bromopyridine (0.16 mL, 0.65 mmol), tetrabutyl ammonium iodide (0.05 g) and DBU (0.16 mL, 1.09 mmol) in DMF (5.00 mL) was heated at 120° C. for 15 hrs. After cooling down to ambient temperature, water (30.0 mL) was added. The above mixture was extracted twice with ethyl acetate (50.0 mL), the combined organic phase was dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting with 30% ethyl acetate in hexane to give a white solid (0.05 g, 27%): mp 95-97° C.; 1H NMR (300 MHz, CDCl3) δ 8.17 (d, 1H), 7.47 (td, 1H), 7.31 (t, 1H), 7.18 (d, 1H), 7.06 (t, 1H), 6.92 (d, 1H), 6.66 (d, 1H), 6.59 (dd, 1H), 6.52 (s, 1H), 6.12 (s, 1H), 5.91-5.84 (m, 2H), 4.91 (d, 1H), 4.66 (d, 1H), 4.42-4.27 (m, 2H), 3.82-3.53 (m, 2H), 2.85 (t, 2H), 2.22-2.05 (m, 1H), 1.85-1.70 (m, 2H), 1.53-1.35 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.9, 158.8, 156.1, 149.0, 147.4, 142.8, 142.5, 138.0, 132.4, 129.1, 124.2, 123.5, 119.5, 112.9, 108.8, 107.7, 103.1, 101.7, 93.8, 80.7, 58.3, 46.0, 45.5, 45.4, 35.2, 29.8, 29.7; MS (ES+) m/z 456 (M+1).

Example 10.87 Synthesis of 1′-[(1-phenyl-2-ylpiperidin-4-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of 1′-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrobromide (0.20 g, 0.44 mmol), 2-bromobenzene (0.07 mL, 0.65 mmol), Pd2(dba)3 (0.03 g, 0.03 mmol), BINAP (0.06 g, 0.10 mmol) and NaOBut (0.13 g, 1.30 mmol) in toluene was heated at 100° C. for 15 hrs under nitrogen. After cooling down to ambient temperature, water (30.0 mL) was added. The above mixture was extracted twice with ethyl acetate (50.0 mL), the combined organic phase was dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting 30% ethyl acetate in hexane to give a white solid (0.10 g, 48%): mp 76-78° C.; 1H NMR (300 MHz, CDCl3) δ 7.37-7.16 (m, 4H), 7.12-6.80 (m, 5H), 6.53 (s, 1H), 6.14 (s, 1H), 5.87 (dd, 2H), 4.92 (d, 1H), 4.66 (d, 1H), 3.87-3.55 (m, 4H), 2.72 (t, 2H), 2.12-1.94 (m, 1H), 1.89-1.73 (m, 2H), 1.71-1.45 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.9, 156.1, 149.0, 142.9, 142.5, 132.4, 129.2, 129.1, 124.2, 123.4, 119.9, 119.5, 116.9, 108.8, 103.1, 101.6, 93.8, 80.8, 60.5, 58.3, 49.8, 46.1, 34.8, 30.1, 30.0; MS (ES+) m/z 455 (M+1).

Example 10.88 Synthesis of 1′-(pyridin-2-ylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-(bromomethyl)pyridine hydrobromide to replace 2-(bromomethyl)-2-(trifluoromethyl)furan, 1′-(pyridin-2-ylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one was obtained, which was treated with 4.0 M HCl in dioxane to give the title compound (39%): mp 150-152° C.; 1H NMR (300 MHz, CD3OD) δ 8.89-8.78 (m, 1H), 8.62-8.47 (m, 1H), 8.07-7.00 (m, 2H), 7.42-6.70 (m, 7H), 5.52-5.31 (m, 2H), 5.05 (d, 1H), 4.89 (d, 1H); 13C NMR (75 MHz, CD3OD) δ 179.4, 163.5, 153.1, 152.7, 148.2, 143.8, 142.8, 133.1, 130.6, 129.3, 127.4, 126.8, 125.7, 125.6, 125.4, 114.9, 110.4, 104.9, 82.0, 58.9, 43.0; MS (ES+) m/z 413 (M+1).

Example 10.89 Synthesis of 1′-(pyridin-3-ylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 3-(bromomethyl)pyridine hydrobromide to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, 1′-(pyridin-3-ylmethyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one was obtained, which was treated with 4.0 M HCl in dioxane to give the title compound (70%) as a white solid: mp 151-153° C.; 1H NMR (300 MHz, CD3OD) δ 9.07-8.61 (m, 3H), 8.19-8.04 (m, 1H), 7.42-6.71 (m, 7H), 5.28 (s, 2H), 5.05 (d, 1H), 4.86 (d, 1H); 13C NMR (75 MHz, CD3OD) δ 179.43, 163.5, 151.8, 147.0, 142.9, 142.4, 142.2, 133.0, 130.6, 129.3, 128.9, 125.5, 125.4, 125.3, 114.9, 110.5, 104.9, 82.0, 58.9, 42.0; MS (ES+) m/z 413 (M+1).

Example 10.90 Synthesis of 6-(trifluoromethoxy)-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′1-1)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (82%) as a white solid: mp 78-80° C.; 1H NMR (300 MHz, CDCl3) δ 7.33 (td, 1H), 7.21-6.98 (m, 3H), 6.86-6.73 (m, 2H), 6.67 (s, 2H), 6.42 (d, 1H), 5.09 (d, 1H), 5.04 (d, 1H), 4.88 (d, 1H), 4.77 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 176.7, 161.7, 151.9, 150.6, 141.5, 131.7, 129.5, 127.5, 124.2, 124.2, 124.0, 114.1, 112.8, 112.8, 109.6, 109.2, 104.3, 80.7, 57.6, 37.1; MS (ES+) m/z 470 (M+1).

Example 10.91 Synthesis of 1′-(4-methoxybenzyl)-6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using 6-(trifluoromethoxy)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 4-methoxybenzyl chloride to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (91%) as a white solid: mp 82-84° C.; 1H NMR (300 MHz, CDCl3) δ 7.32-6.80 (m, 9H), 6.68 (s, 2H), 5.06 (d, 1H), 5.03 (d, 1H), 4.80 (d, 1H), 4.77 (d, 1H), 3.80 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 171.1, 161.8, 159.4, 150.5, 142.3, 132.0, 129.2, 128.9, 127.7, 124.1, 124.0, 123.7, 122.2, 118.8, 114.4, 114.1, 109.7, 104.3, 80.9, 57.6, 55.4, 43.9; MS (ES+) m/z 442 (M+1).

Example 10.92 Synthesis of 1′-(cyclohexylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and bromomethyl cyclohexane to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (74%) as a white solid: mp 153-154° C.; 1H NMR (300 MHz, CDCl3) δ 7.30 (td, 1H), 7.16 (d, 1H), 7.04 (t, 1H), 6.90 (d, 1H), 6.51 (s, 1H), 6.14 (s, 1H), 5.90-5.84 (m, 2H), 4.91 (d, 1H), 4.65 (d, 1H), 3.72-3.44 (m, 2H), 1.94-1.60 (m, 6H), 1.32-0.99 (m, 5H); 13C NMR (75 MHz, CDCl3) δ 177.8, 156.1, 148.9, 143.0, 142.4, 132.5, 128.9, 124.0, 123.2, 119.7, 109.0, 103.2, 101.6, 93.7, 80.8, 58.3, 46.8, 36.3, 31.1, 31.0, 26.4, 25.9, 25.8; MS (ES+) m/z 378 (M+1), 400 (M+23).

Example 10.93 Synthesis of 1′-(methylsulfonyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.47, and making non-critical variations using spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 4′-bromospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and methanesulfonyl chloride to replace 2-(bromomethyl)-5-(trifluoromethyl)furan, the title compound was obtained (51%) as a white solid: mp 215-217° C.; 1H NMR (300 MHz, CDCl3) δ 7.83 (d, 1H), 7.42-7.31 (m, 1H), 7.25-7.17 (m, 2H), 6.52 (s, 1H), 6.20 (s, 1H), 5.93-5.87 (m, 2H), 4.98 (d, 1H), 4.68 (d, 1H), 3.46 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 176.9, 155.8, 149.5, 142.7, 138.1, 130.5, 129.7, 125.9, 124.3, 118.5, 113.8, 102.9, 101.8, 93.8, 80.6, 58.8, 41.8; MS (ES+) m/z 360 (M+1), 382 (M+23).

Example 10.94 Synthesis of 1′-(2-piperidin-1-ylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

A mixture of 1′-(2-aminoethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.20 g, 0.62 mmol), 1,5-dibromopentane (0.08 mL, 0.62 mmol) and triethyl amine (0.17 mL, 1.23 mmol) in THF (10.0 mL) was refluxed for 15 hrs and concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting with 10% methanol in ethyl acetate to give 1-(2-piperidin-1-ylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, which was treated with 4.0 M HCl in dioxane to give the title compound (28%): mp>240° C.; 1H NMR (300 MHz, CD3OD) δ 7.40 (t, 1H), 7.27-7.11 (m, 3H), 6.51 (s, 1H), 6.17 (s, 1H), 5.86 (s, 2H), 4.91 (d, 1H), 4.71 (d, 1H), 4.40-4.13 (m, 2H), 3.95-3.84 (m, 1H), 3.66-3.37 (m, 3H), 3.14-2.96 (m, 2H), 2.06-1.45 (m, 6H); 13C NMR (75 MHz, CD3OD) δ 180.4, 157.5, 150.5, 143.8, 142.5, 133.9, 130.3, 125.3, 125.1, 120.6, 110.2, 103.9, 102.9, 94.2, 81.4, 59.7, 55.4, 54.9, 53.9, 36.4, 24.2, 22.6; MS (ES+) m/z 393 (M+1).

Example 10.95 Synthesis of 1′-[2-(pyridin-2-ylamino)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one and 1′-[2-(dipyridin-2-ylamino)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Following the procedure described in EXAMPLE 10.87, and making non-critical variations using 1-(2-aminoethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 1-(piperidin-4-ylmethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-bromopyridine to replace 2-bromobenzene, 1-(2-(pyridin-2-ylamino)ethyl)-spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one was obtained as the first fraction from the chromatography as a white solid (5%): mp 61-63° C.; 1H NMR (300 MHz, CDCl3) δ 8.05 (d, 1H), 7.50-6.97 (m, 5H), 6.57 (dd, 1H), 6.50 (s, 1H), 6.38 (d, 1H), 6.03 (s, 1H), 5.85 (s, 1H), 5.84 (s, 1H), 4.84 (d, 1H), 4.79 (t, 1H), 4.60 (d, 1H), 4.15-3.94 (m, 2H), 3.81-3.64 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.4, 158.2, 156.0, 149.0, 148.0, 142.4, 142.38, 137.4, 132.3, 129.1, 124.0, 123.5, 119.5, 113.3, 109.0, 108.3, 103.2, 101.6, 93.7, 80.5, 58.3, 40.1, 39.9; MS (ES+) m/z 402 (M+1). 1′-(2-(dipyridin-2-ylamino)ethyl)-spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one was obtained as the second fraction from the chromatography (31%): mp 165-167° C.; 1H NMR (300 MHz, CDCl3) δ 8.31 (dd, 2H), 7.48 (d, 2H), 7.23 (t, 1H), 7.09-6.83 (m, 7H), 6.47 (s, 1H), 5.95 (s, 1H), 5.88-5.81 (m, 2H), 4.73 (d, 1H), 4.67-4.49 (m, 2H), 4.46 (d, 1H), 4.20 (t, 2H); 13C NMR (75 MHz, CDCl3) δ 177.6, 157.0, 156.0, 148.8, 148.4, 143.1, 142.3, 137.4, 132.3, 128.9, 123.6, 123.1, 119.6, 117.5, 114.5, 109.3, 103.4, 101.6, 93.6, 80.7, 58.2, 45.9, 39.5; MS (ES+) m/z 479 (M+1).

Example 10.96 Synthesis of tert-butyl 4-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]piperidine-1-carboxylate

Following the procedure as described in EXAMPLE 10, and making non-critical variations using tert-butyl 4-(2-{[(4-methylphenyl)sulfonyl]oxy}ethyl)piperidine-1-carboxylate to replace 4-fluorobenzyl bromide, the title compound was obtained in 95% yield: mp 173-175° C.; 1H NMR (300 MHz, CDCl3) δ 7.31 (t, 1H), 7.17 (d, 1H), 7.06 (t, 1H), 6.88 (d, 1H), 6.51 (s, 1H), 6.10 (s, 1H), 5.90-5.84 (m, 2H), 4.90 (d, 1H), 4.65 (d, 1H), 4.0-3.64 (m, 4H), 2.75-2.58 (m, 2H), 1.85-1.09 (m, 16H); 13C NMR (75 MHz, CDCl3) δ 177.5, 156.0, 155.0, 149.0, 142.4, 142.2, 132.6, 129.0, 124.2, 123.4, 119.5, 108.6, 103.0, 101.6, 93.8, 80.5, 79.5, 58.3, 38.0, 34.0, 33.9, 32.1, 31.9, 28.6; MS (ES+) m/z 515 (M+23), 393 (M−100).

Example 10.97 Synthesis of 1′-(2-piperidin-4-ylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

To a solution of tert-butyl 4-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]piperidine-1-carboxylate (0.94 g, 1.91 mmol) in dioxane (5.00 mL) was added 4.0 M HCl in dioxane (2.00 mL, 8.00 mmol). The mixture was stirred at ambient temperature for 30 min followed by the addition of anhydrous ether (40.0 mL). The precipitated white solid was filtered, washed with ether and dried to give the title compound (0.75 g, 91%): 1H NMR (300 MHz, CD3OD) δ 7.37 (t, 1H), 7.20-7.07 (m, 3H), 6.52 (s, 1H), 6.10 (s, 1H), 5.86 (s, 2H), 4.83 (d, 1H), 4.67 (d, 1H), 3.97-3.75 (m, 2H), 3.45-3.33 (m, 2H), 3.01-2.85 (m, 2H), 2.15-2.01 (m, 2H), 1.82-1.37 (m, 5H); 13C NMR (75 MHz, CD3OD) δ 179.8, 157.6, 150.4, 143.7, 143.4, 133.6, 130.3, 124.9, 124.8, 120.8, 110.3, 103.7, 102.9, 94.3, 81.4, 59.8, 45.2, 38.5, 34.4, 32.6, 29.8, 29.7; MS (ES+) m/z 393 (M+1).

Example 10.98 Synthesis of 1′-[2-(1-cyclopentylpiperidin-4-yl)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

To a solution of cyclopentanone (0.04 mL, 0.45 mmol) and triethyl amine (0.12 mL, 0.84 mmol) in dichloroethane (5.00 mL) was added 1′-(2-piperidin-4-ylethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride (0.12 g, 0.28 mmol) and sodium triacetoxyborohydride (0.10 g, 0.45 mmol). The reaction mixture was stirred for 16 hrs and concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting with ethyl acetate/methanol/ammonium hydroxide (15/1/0.1) to give 1-[2-(1-cyclopentylpiperidin-4-yl)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one as a white solid, which was treated with 4.0 M HCl in dioxane to give the title compound (0.05 g, 32% yield): mp 153-155° C.; 1H NMR (300 MHz, CD3OD) δ 7.37 (td, 1H), 7.21-7.08 (m, 3H), 6.53 (s, 1H), 6.11 (s, 1H), 5.88 (s, 1H), 5.87 (s, 1H), 4.83 (d, 1H), 4.69 (d, 1H), 3.98-3.75 (m, 2H), 3.68-3.38 (m, 3H), 3.01-2.83 (m, 2H), 2.25-2.08 (m, 4H), 1.92-1.37 (m, 11H); 13C NMR (75 MHz, CD3OD) δ 179.8, 157.6, 150.4, 143.8, 143.4, 133.6, 130.3, 124.9, 124.8, 120.8, 110.3, 103.7, 103.0, 94.3, 81.4, 69.1, 59.8, 53.2, 38.6, 34.3, 32.5, 30.6, 30.5, 29.4, 24.7; MS (ES+) m/z 461 (M+1).

Example 10.99 Synthesis of 1′-[2-(1-isopropylpiperidin-4-yl)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.98, and making non-critical variations using acetone to replace cyclopentanone, the title compound was obtained (42%) as a white solid: mp 155-156° C.; 1H NMR (300 MHz, CD3OD) δ 7.37 (t, 1H), 7.21-7.08 (m, 3H), 6.53 (s, 1H), 6.11 (s, 1H), 5.87 (s, 2H), 4.84 (d, 1H), 4.69 (d, 1H), 3.98-3.75 (m, 2H), 3.58-3.38 (m, 3H), 3.05-2.85 (m, 2H), 2.23-2.09 (m, 2H), 1.82-1.44 (m, 5H), 1.35 (d, 6H); 13C NMR (75 MHz, CD3OD) δ 179.8, 157.6, 150.5, 143.8, 143.4, 133.6, 130.3, 125.0, 124.8, 120.8, 110.3, 103.7, 103.0, 94.3, 81.4, 59.8, 59.6, 38.6, 34.2, 32.7, 30.6, 30.5, 24.2, 16.9, 15.4; MS (ES+) m/z 435 (M+1).

Example 10.100 Synthesis of 1′-[2-(1-cyclobutylpiperidin-4-yl)ethyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.98, and making non-critical variations using cyclobutanone to replace cyclopentanone, the title compound was obtained (81%) as a white solid: mp 158-160° C.; 1H NMR (300 MHz, CD3OD) δ 7.37 (t, 1H), 7.21-7.05 (m, 3H), 6.52 (s, 1H), 6.10 (s, 1H), 5.86 (s, 2H), 4.83 (d, 1H), 4.67 (d, 1H), 3.98-3.39 (m, 5H), 2.85-2.59 (m, 2H), 2.43-1.42 (m, 13H); 13C NMR (75 MHz, CD3OD) δ 179.8, 157.6, 150.4, 143.7, 143.4, 133.6, 130.3, 124.9, 124.8, 120.8, 110.4, 103.8, 103.0, 94.2, 81.5, 60.5, 59.8, 50.8, 38.6, 34.4, 32.5, 30.1, 26.8, 14.4; MS (ES+) m/z 447 (M+1).

Example 10.101 Synthesis of 1′-{2-[1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl]ethyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 10.98, and making non-critical variations using tetrahydro-4H-pyran-4-one to replace cyclopentanone, the title compound was obtained (45%) as a white solid: mp 168-170° C.; 1H NMR (300 MHz, CD3OD) δ 7.37 (t, 1H), 7.21-7.06 (m, 3H), 6.52 (s, 1H), 6.11 (s, 1H), 5.86 (s, 2H), 4.83 (d, 1H), 4.67 (d, 1H), 4.12-3.31 (m, 9H), 3.05-2.85 (m, 2H), 2.25-1.45 (m, 11H); 13C NMR (75 MHz, CD3OD) δ 179.8, 157.6, 150.4, 143.7, 143.4, 133.6, 130.3, 125.0, 124.8, 120.8, 110.3, 103.8, 102.9, 94.3, 81.4, 67.2, 64.1, 59.8, 50.7, 38.6, 34.2, 32.7, 30.6, 30.5, 28.7; MS (ES+) m/z 477 (M+1).

Example 11 Synthesis of 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid

Following the procedure described in EXAMPLE 6, and making non-critical variations using methyl 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate to replace methyl 2-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoate, the title compound was obtained (100%): 1H NMR (300 MHz, CDCl3) δ 12.96 (s, 1H), 7.90 (d, 2H), 7.43 (d, 2H), 7.22 (t, 1H), 7.17 (d, 1H), 7.00 (t, 1H), 6.94 (d, 1H), 6.68 (s, 1H), 6.21 (s, 1H), 5.90 (s, 2H), 4.98 (s, 2H), 4.76 (ABq, 2H); 13C NMR (75 MHz, CDCl3) δ 177.4, 167.5, 156.0, 148.9, 142.6, 142.3, 141.8, 132.1, 130.5, 130.3, 129.3, 127.7, 124.2, 123.7, 120.1, 109.9, 103.5, 101.9, 93.8, 80.4, 58.0, 43.4.

Example 12 Synthesis of N-(3-fluorophenyl)-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

A. Preparation of stock solution of 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoyl chloride

To a stirred slurry of 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzoic acid (2.08 g, 5.00 mmol) in dry chloroform (50.0 mL) was added oxalyl chloride (0.95 g, 7.50 mmol) at ambient temperature followed by 1 drop of DMF. The mixture was stirred at ambient temperature for 2 h and evaporated to dryness in vacuo. The residue was dissolved in dry dichlormethane (60.0 mL) to form an acid chloride stock solution for use.

B. Synthesis of N-(3-fluorophenyl)-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)methyl]benzamide

To a solution of 3-fluorophenylamine (0.02 mL, 0.24 mmol) in dry dichloromethane (2.00 mL) and triethylamine (0.05 mL, 0.32 mmol) was added the acid chloride stock solution (2.0 mL, 0.081 M in dichloromethane) obtained above at ambient temperature. The mixture was stirred for 2 h, washed with 15% HCl solution and water. The organic layer was separated, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in ethyl acetate, and the product was precipitated by the addition of hexane. The white solid was filtered and collected to yield the title compound (0.06 g) in 70% yield: 1H NMR (300 MHz, CDCl3) δ 8.30 (s, 1H), 7.83 (d, 2H), 7.58 (ddd, 1H), 7.38 (d, 2H), 7.27-7.23 (m, 2H), 7.21-7.16 (m, 2H), 7.04 (dt, 1H), 6.85-6.78 (m, 1H), 6.74 (d, 1H), 6.46 (s, 1H), 6.10 (s, 1H), 5.77 (d, 1H), 5.68 (d, 1H), 4.97 (ABq, 2H), 4.76 (ABq, 2H); MS (ES+), m/z 509.1 (M+1).

Example 12.1

The compounds listed in the following table were prepared using the similar procedure as described in EXAMPLE 12. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

MS Com- (m/z, pound M + Number Name 1) 500 N-butyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 471.2 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 501 N-(3-fluorobenzyl)-4-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 502 1′-[4-(piperidin-1-ylcarbonyl)benzyl]spiro[furo[2,3- 483.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 503 N,N-diisopropyl-4-[(2′-oxospiro[furo[2,3- 499.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 504 N-(4-chlorobenzyl)-4-[(2′-oxospiro[furo[2,3- 540.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 505 N-(3-chlorophenyl)-4-[(2′-oxospiro[furo[2,3- 526.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 506 N-(2-fluorophenyl)-4-[(2′-oxospiro[furo[2,3- 509.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 507 N-(2-ethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 508 N-(4-ethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 509 N-(4-methylphenyl)-4-[(2′-oxospiro[furo[2,3- 505.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 510 N-(3,5-dimethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 511 N-(2,3-dimethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 512 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 485.1 1′(2′H)-yl)methyl]-N-pentylbenzamide 513 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 457.1 1′(2′H)-yl)methyl]-N-propylbenzamide 514 N-isopropyl-4-[(2′-oxospiro[furo[2,3- 457.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 515 N-isobutyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 471.1 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 516 N-hexyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 499.2 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 517 N-cyclohexyl-4-[(2′-oxospiro[furo[2,3- 497.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 518 N-cyclopentyl-4-[(2′-oxospiro[furo[2,3- 483.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 519 N-heptyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 513.2 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 520 N-(2-methoxybenzyl)-4-[(2′-oxospiro[furo[2,3- 535.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 521 N-(2,6-dimethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 522 N-(2-methoxyphenyl)-4-[(2′-oxospiro[furo[2,3- 521.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 523 N-cyclopropyl-4-[(2′-oxospiro[furo[2,3- 455.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 524 N-(3-methoxypropyl)-4-[(2′-oxospiro[furo[2,3- 487.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 525 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 491.2 1′(2′H)-yl)methyl]-N-phenylbenzamide 526 N-(2,4-dimethylphenyl)-4-[(2′-oxospiro[furo[2,3- 519.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 527 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.2 1′(2′H)-yl)methyl]-N-(tetrahydrofuran-2- ylmethyl)benzamide 528 N,N-dibenzyl-4-[(2′-oxospiro[furo[2,3- 595.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 529 N-[2-(diethylamino)ethyl]-4-[(2′-oxospiro[furo[2,3- 514.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 530 N-methyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 429.2 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 531 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 559.1 1′(2′H)-yl)methyl]-N-[3- (trifluoromethyl)phenyl]benzamide 532 N-ethyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 443.1 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 533 N-(3-ethoxypropyl)-4-[(2′-oxospiro[furo[2,3- 501.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 534 N-(4-methoxybenzyl)-4-[(2′-oxospiro[furo[2,3- 535.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 535 N-(3,5-dichlorophenyl)-4-[(2′-oxospiro[furo[2,3- 560.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 536 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 492.2 1′(2′H)-yl)methyl]-N-pyridin-3-ylbenzamide 537 N-(4-cyanophenyl)-4-[(2′-oxospiro[furo[2,3- 516.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 538 N-(4-methylpentyl)-4-[(2′-oxospiro[furo[2,3- 499.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 539 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 497.2 1′(2′H)-yl)methyl]-N-(2,2,2- trifluoroethyl)benzamide 540 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.1 1′(2′H)-yl)methyl]-N-(pyridin-4- ylmethyl)benzamide 541 N-[2-(3-chlorophenyl)ethyl]-4-[(2′-oxospiro[furo[2,3- 554 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 542 N-(2-furylmethyl)-4-[(2′-oxospiro[furo[2,3- 495.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 543 N-(3-fluoro-2-methylphenyl)-4-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 544 N-hexyl-N-methyl-4-[(2′-oxospiro[furo[2,3- 513.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 545 N-(3-isopropoxypropyl)-4-[(2′-oxospiro[furo[2,3- 515.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 546 N-(2-ethoxyethyl)-4-[(2′-oxospiro[furo[2,3- 487.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 547 N-(cyclopropylmethyl)-4-[(2′-oxospiro[furo[2,3- 469.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 548 N-(4-methoxyphenyl)-4-[(2′-oxospiro[furo[2,3- 521.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 549 N-cyclobutyl-4-[(2′-oxospiro[furo[2,3- 469.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 550 N-(2,2-diphenylethyl)-4-[(2′-oxospiro[furo[2,3- 595.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 551 N-[2-(4-fluorophenyl)ethyl]-4-[(2′-oxospiro[furo[2,3- 537.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 552 N-(cyclohexylmethyl)-4-[(2′-oxospiro[furo[2,3- 511.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 553 N-(2-fluoro-4-methylphenyl)-4-[(2′-oxospiro[furo[2,3- 523.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 554 N-[2-(4-methylphenyl)ethyl]-4-[(2′-oxospiro[furo[2,3- 533.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 555 N-(2-ethylbutyl)-4-[(2′-oxospiro[furo[2,3- 499.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 556 N-benzyl-4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 505.1 7,3′-indol]-1′(2′H)-yl)methyl]benzamide 557 N-(2-methoxyethyl)-4-[(2′-oxospiro[furo[2,3- 473.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 558 1′-[4-(morpholin-4-ylcarbonyl)benzyl]spiro[furo[2,3- 485.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 559 N-(1-benzylpiperidin-4-yl)-4-[(2′-oxospiro[furo[2,3- 588.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 560 N-[2-(4-methoxyphenyl)ethyl]-4-[(2′-oxospiro[furo[2,3- 549.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 561 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 559.1 1′(2′H)-yl)methyl]-N-[2- (trifluoromethyl)phenyl]benzamide 562 N-[4-chloro-2-(trifluoromethyl)phenyl]-4-[(2′- 594.1 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 563 N-[4-fluoro-2-(trifluoromethyl)phenyl]-4-[(2′- 577.1 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 564 N-(2-cyanoethyl)-4-[(2′-oxospiro[furo[2,3- 468.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 565 N-[(1S)-1-cyclohexylethyl]-4-[(2′-oxospiro[furo[2,3- 525.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 566 N-[(1R)-1-cyclohexylethyl]-4-[(2′-oxospiro[furo[2,3- 525.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 567 N-(2,4-difluorophenyl)-4-[(2′-oxospiro[furo[2,3- 527.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 568 N-(2,3-dihydro-1H-inden-1-yl)-4-[(2′-oxospiro[furo[2,3- 531.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 569 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 511.2 1′(2′H)-yl)methyl]-N-(2-thienylmethyl)benzamide 570 N-[(1-ethylpyrrolidin-2-yl)methyl]-4-[(2′- 526.2 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 571 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 533.2 1′(2′H)-yl)methyl]-N-(4-propylphenyl)benzamide 572 N-(2,5-difluorobenzyl)-4-[(2′-oxospiro[furo[2,3- 541.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 573 N-(2,3-dihydro-1H-inden-5-yl)-4-[(2′-oxospiro[furo[2,3- 531.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 574 N-(2,5-difluorophenyl)-4-[(2′-oxospiro[furo[2,3- 527.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 575 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.1 1′(2′H)-yl)methyl]-N-[4- (trifluoromethyl)benzyl]benzamide 576 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 525.1 1′(2′H)-yl)methyl]-N-[2-(2-thienyl)ethyl]benzamide 577 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 506.2 1′(2′H)-yl)methyl]-N-(pyridin-3- ylmethyl)benzamide 578 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 573.1 1′(2′H)-yl)methyl]-N-[2- (trifluoromethyl)benzyl]benzamide 579 N-[2-(4-chlorophenyl)ethyl]-4-[(2′-oxospiro[furo[2,3- 554 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 580 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 512.2 1′(2′H)-yl)methyl]-N-(2-pyrrolidin-1- ylethyl)benzamide 581 N-(3-methylpyridin-2-yl)-4-[(2′-oxospiro[furo[2,3- 506.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 582 N-[3-(dimethylamino)propyl]-N-methyl-4-[(2′- 514.2 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide 583 N-1,3-benzodioxol-5-yl-4-[(2′-oxospiro[furo[2,3- 535.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 584 N-(2-morpholin-4-ylethyl)-4-[(2′-oxospiro[furo[2,3- 528.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 585 1′-{4-[(4-pyrimidin-2-ylpiperazin-1- 562.2 yl)carbonyl]benzyl}spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 586 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 498.1 1′(2′H)-yl)methyl]-N-1,3-thiazol-2-ylbenzamide 587 N-(6-methoxypyridin-3-yl)-4-[(2′-oxospiro[furo[2,3- 522.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 588 N-(3,5-dichlorobenzyl)-4-[(2′-oxospiro[furo[2,3- 574.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 589 N-1-naphthyl-4-[(2′-oxospiro[furo[2,3- 541.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 590 1′-(4-{[4-(1,3-benzodioxol-5-ylmethyl)piperazin-1- 618.2 yl]carbonyl}benzyl)spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 591 N-(4,6-dimethylpyridin-2-yl)-4-[(2′-oxospiro[furo[2,3- 520.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 592 4-[(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 493.1 1′(2′H)-yl)methyl]-N-pyrimidin-4-ylbenzamide 593 N-(5-methyl-1,3-thiazol-2-yl)-4-[(2′-oxospiro[furo[2,3- 512.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 594 N-(2-cyano-6-fluorophenyl)-4-[(2′-oxospiro[furo[2,3- 534.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 595 N-(4-methylbenzyl)-4-[(2′-oxospiro[furo[2,3- 519.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 596 N-[3-(1H-imidazol-1-yl)propyl]-4-[(2′-oxospiro[furo[2,3- 523.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 597 N-(4-morpholin-4-ylphenyl)-4-[(2′-oxospiro[furo[2,3- 576.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)methyl]benzamide 598 1′-{4-[(4-methylpiperazin-1- 498.2 yl)carbonyl]benzyl}spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 599 N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)-4-[(2′- 539.2 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)methyl]benzamide

Example 13 Synthesis of 1′-(3-hydroxypropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A suspension of 1′-[3-(benzyloxy)propyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (6.27 g, 14.5 mmol) and 10% Pd/C (0.5 g) in MeOH (150 mL) was hydrogenated under the normal pressure of hydrogen overnight and filtered through a pad of celite. The filtrate was concentrated in vacuo to dryness. The residue was crystallized from ether to yield the title compound (4.82 g) as a white solid in 98% yield: 1H NMR (300 MHz, CDCl3) δ 7.38-6.93 (m, 4H), 6.49 (s, 1H), 6.10 (s, 1H), 4.87 (m, 1H), 4.63 (m, 1H), 4.01-3.81 (m, 2H), 3.62 (t, 2H), 2.89 (br, 1H), 1.99-1.91 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.8, 156.0, 148.9, 142.4, 142.1, 132.3, 129.0, 128.9, 124.1, 123.9, 119.0, 108.6, 103.0, 101.5, 93.6, 80.4, 58.3, 37.8, 29.8; MS (ES+) m/z 340.2 (M+1).

Example 14 Synthesis of 3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propanal

To a solution of 1-(3-hydroxypropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (4.82 g, 14.2 mmol) in dichloromethane (150 mL) was added 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (7.00 g, 16.7 mmol) at 0° C. The resulting mixture was stirred at 0° C. for 4 h, diluted with ethyl acetate, washed sequentially with 10% Na2S2O3 solution, saturated NaHCO3 and brine, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash chromatography and the product was recrystallized from ethyl acetate/hexanes to afford the title compound (3.86 g) in 80% yield: 1H NMR (300 MHz, CDCl3) δ 9.83 (s, 1H), 7.33-6.92 (m, 4H), 6.48 (s, 1H), 6.08 (s, 1H), 4.86 (m, 1H), 4.61 (m, 1H), 4.15-3.98 (m, 2H), 2.97-2.84 (m, 2H); MS (ES+, m/z) 338.1 (M+1).

Example 15 Synthesis of 1′-{3-[(cyclopropylmethyl)amino]propyl}spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propanal (0.07 g, 0.20 mmol) in THF (5.00 mL) was added (aminomethyl)cyclopropane (0.30 mmol) and MP-triacetoxyborohydride (0.26 g, 0.60 mmol). After overnight shaking, the polymer-bound 4-phenyloxybenzaldehyde (0.25 g, 0.18 mmol) was added. After another overnight shaking, the mixture was diluted with ether (10.0 mL) and filtered. The filtrate was concentrated in vacuo to dryness. The residue was recrystallized to give the title compound (0.05 g) in 62% yield as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.32-6.92 (m, 4H), 6.49 (s, 1-H), 6.12 (s, 1H), 5.83 (m, 2H), 4.86 (m, 1H), 4.64 (m, 1H), 3.97-3.77 (m, 2H), 2.87-2.80 (m, 2H), 2.66-2.56 (m, 2H), 1.02-0.94 (m, 1H), 0.56-0.47 (m, 2H), 0.25-0.18 (m, 2H); MS (ES+) m/z 393.3 (M+1).

Example 15.1

The compounds listed in the following table were prepared using the similar procedure as described in EXAMPLE 15. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 600 1′-{3-[(4-fluorobenzyl)amino]propyl}spiro[furo[2,3- 447.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 601 1′-{3-[(4-chlorophenyl)amino]propyl}spiro[furo[2,3- 449.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 602 1′-[3-(pentylamino)propyl]spiro[furo[2,3- 409.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 603 1′-{3-[(2-ethoxyethyl)amino]propyl}spiro[furo[2,3- 411.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 604 1′-{3-[(3-methoxypropyl)amino]propyl}spiro[furo[2,3- 411.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 605 1′-{3-[(3-methylbutyl)amino]propyl}spiro[furo[2,3- 409.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 606 1′-{3-[(3-ethoxypropyl)amino]propyl}spiro[furo[2,3- 425.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 607 1′-{3-[(2,2-dimethylpropyl)amino]propyl}spiro[furo[2,3- 409.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 608 3-{[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 392.4 1′(2′H)-yl)propyl]amino}propanenitrile 609 1′-{3-[(2,2,2-trifluoroethyl)amino]propyl}spiro[furo[2,3- 421.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 610 1′-[3-(cyclopropylamino)propyl]spiro[furo[2,3- 379.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 611 1′-[3-(cyclobutylamino)propyl]spiro[furo[2,3- 393.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 612 1′-{3-[(2-cyclopropylethyl)amino]propyl}spiro[furo[2,3- 407.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 613 1′-[3-(isobutylamino)propyl]spiro[furo[2,3- 395.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 614 1′-[3-(hexylamino)propyl]spiro[furo[2,3-f][1,3]benzodioxole- 423.5 7,3′-indol]-2′(1′H)-one 615 1′-[3-(heptylamino)propyl]spiro[furo[2,3- 437.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 616 1′-[3-(isopropylamino)propyl]spiro[furo[2,3- 381.7 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 617 1′-{3-[(tetrahydrofuran-2- 423.1 ylmethyl)amino]propyl}spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 618 1′-[3-(benzylamino)propyl]spiro[furo[2,3- 429.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 619 1′-{3-[(2-phenylethyl)amino]propyl}spiro[furo[2,3- 443.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 620 1′-[3-(dibenzylamino)propyl]spiro[furo[2,3- 519.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 621 1′-[3-(propylamino)propyl]spiro[furo[2,3- 381.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 622 1′-(3-{[2-(3-fluorophenyl)ethyl]amino}propyl)spiro[furo[2,3- 461.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 623 1′-{3-[(3-phenylpropyl)amino]propyl}spiro[furo[2,3- 457.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 624 1′-{3-[(2,2-diphenylethyl)amino]propyl}spiro[furo[2,3- 519.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 625 1′-(3-{[2-(4-methylphenyl)ethyl]amino}propyl)spiro[furo[2,3- 457.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 626 1′-(3-{[2-(3-chlorophenyl)ethyl]amino}propyl)spiro[furo[2,3- 477.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 627 1′-{3-[(2-pyridin-4-ylethyl)amino]propyl}spiro[furo[2,3- 444.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 628 1′-{3-[(pyridin-4-ylmethyl)amino]propyl}spiro[furo[2,3- 430.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 629 1′-(3-{[2-(4-fluorophenyl)ethyl]amino}propyl)spiro[furo[2,3- 461.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 630 1′-{3-[(pyridin-2-ylmethyl)amino]propyl}spiro[furo[2,3- 430.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 631 1′-(3-{[(1R)-1-cyclohexylethyl]amino}propyl)spiro[furo[2,3- 449.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 632 1′-{3-[(2-furylmethyl)amino]propyl}spiro[furo[2,3- 419.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 633 1′-{3-[(4-chlorobenzyl)amino]propyl}spiro[furo[2,3- 463.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 634 1′-{3-[(4-methoxybenzyl)amino]propyl}spiro[furo[2,3- 459.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 635 1′-{3-[(3-isopropoxypropyl)amino]propyl}spiro[furo[2,3- 439.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 636 1′-(3-{[2-(2-fluorophenyl)ethyl]amino}propyl)spiro[furo[2,3- 461.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 637 1′-{3-[(3,3-dimethylbutyl)amino]propyl}spiro[furo[2,3- 423.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 638 1′-{3-[(cyclohexylmethyl)amino]propyl}spiro[furo[2,3- 435.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 639 1′-(3-{[(1S)-1-cyclohexylethyl]amino}propyl)spiro[furo[2,3- 436.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 640 1′-{3-[(2-piperidin-1-ylethyl)amino]propyl}spiro[furo[2,3- 449.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 641 1′-{3-[(2-pyrrolidin-1-ylethyl)amino]propyl}spiro[furo[2,3- 450.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 642 1′-{3-[(2-morpholin-4-ylethyl)amino]propyl}spiro[furo[2,3- 452.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 643 1′-[3-(cyclohexylamino)propyl]spiro[furo[2,3- 421.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 644 1′-[3-(cyclopentylamino)propyl]spiro[furo[2,3- 407.3 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 645 1′-{3-[(2-chlorobenzyl)amino]propyl}spiro[furo[2,3- 463.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 646 1′-(3-pyrrolidin-1-ylpropyl)spiro[furo[2,3- 393.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 647 1′-[3-(dibutylamino)propyl]spiro[furo[2,3- 451.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 648 1′-(3-piperidin-1-ylpropyl)spiro[furo[2,3- 407.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 649 1′-[3-(dipropylamino)propyl]spiro[furo[2,3- 423.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 650 1′-(3-{[2-(dimethylamino)ethyl]amino}propyl)spiro[furo[2,3- 410.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 651 1′-(3-{[2- 452.1 (diethylamino)ethyl](methyl)amino}propyl)spiro[furo[2, 3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 652 1′-(3-{[2- 466.1 (diisopropylamino)ethyl]amino}propyl)spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 653 1′-[3-(diisopropylamino)propyl]spiro[furo[2,3- 423.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 654 1′-[3-(methylamino)propyl]spiro[furo[2,3- 353.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 655 1′-[3-(ethylamino)propyl]spiro[furo[2,3-f][1,3]benzodioxole- 367.0 7,3′-indol]-2′(1′H)-one 656 1′-{3-[bis(2-methoxyethyl)amino]propyl}spiro[furo[2,3- 455.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 657 1′-{3-[(2-fluorobenzyl)amino]propyl}spiro[furo[2,3- 446.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 658 1′-{3-[(3,5-difluorobenzyl)amino]propyl}spiro[furo[2,3- 464.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 659 1′-(3-{[3- 424.0 (dimethylamino)propyl]amino}propyl)spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 660 1′-[3-(diethylamino)propyl]spiro[furo[2,3- 394.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 661 1′-[3-(octylamino)propyl]spiro[furo[2,3-f][1,3]benzodioxole- 451.5 7,3′-indol]-2′(1′H)-one 662 1′-{3-[(1-methylbutyl)amino]propyl}spiro[furo[2,3- 409.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 663 1′-{3-[butyl(methyl)amino]propyl}spiro[furo[2,3- 409.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 664 1′-{3-[(2-isopropoxyethyl)amino]propyl}spiro[furo[2,3- 425.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 665 1′-{3-[(2,4-difluorobenzyl)amino]propyl}spiro[furo[2,3- 464.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 666 1′-{3-[(2-methylbenzyl)amino]propyl}spiro[furo[2,3- 443.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 667 1′-{3-[(3-fluorobenzyl)amino]propyl}spiro[furo[2,3- 446.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 668 1′-{3-[(2,6-difluorobenzyl)amino]propyl}spiro[furo[2,3- 464.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 669 1′-{3-[(1,2-dimethylpropyl)amino]propyl}spiro[furo[2,3- 409.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 670 1′-(3-{[2-(1-methylpyrrolidin-2- 450.4 yl)ethyl]amino}propyl)spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 671 1′-{3-[(2-pyridin-3-ylethyl)amino]propyl}spiro[furo[2,3- 444.5 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 672 1′-{3-[(1-methyl-2-phenylethyl)amino]propyl}spiro[furo[2,3- 457.0 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 673 1′-(3-{[2-(2-chlorophenyl)ethyl]amino}propyl)spiro[furo[2,3- 476.9 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 674 1′-{3-[(2-cyclohexylethyl)amino]propyl}spiro[furo[2,3- 448.1 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 675 1′-{3-[(2-pyridin-2-ylethyl)amino]propyl}spiro[furo[2,3- 444.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 676 1′-{3-[(2-biphenyl-4-ylethyl)amino]propyl}spiro[furo[2,3- 519.6 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 677 1′-{3-[(3-morpholin-4-ylpropyl)amino]propyl}spiro[furo[2,3- 466.2 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 678 1′-(3-{[(5-methyl-2- 433.3 furyl)methyl]amino}propyl)spiro[furo[2,3- f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one 679 1′-{3-[(3-methylbenzyl)amino]propyl}spiro[furo[2,3- 443.4 f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

Example 16 Synthesis of 1′-(3-aminopropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a solution of 2-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-1H-isoindole-1,3(2H)-dione (3.20 g, 6.80 mmol) in ethanol (70.0 mL) was added hydrazine monohydrate (1.87 g, 37.0 mmol). The mixture was stirred at ambient temperature for 4 h. The solvent was removed under reduced pressure and the residue was re-dissolved in ethyl acetate. The solution was washed with sodium bicarbonate and brine solution, dried over MgSO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was crystallized from hexane to yield the title compound (2.50 g) in 75% yield: 1H NMR (300 MHz, CDCl3) δ 7.31-7.24 (m, 1H), 7.16-7.14 (m, 1H), 7.06-7.01 (m, 1H), 6.94-6.91 (m, 1H), 6.48 (s, 1H), 6.10 (s, 1H), 5.82 (m, 2H), 4.90-4.87 (m, 1H), 4.61 (d, 1H), 3.98-3.71 (m, 2H), 2.77-2.73 (m, 2H), 1.97 (br, 2H), 1.84-1.81 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 177.8, 155.9, 148.9, 142.3, 142.2, 132.4, 129.0, 124.0, 123.4, 119.4, 108.7, 103.0, 101.5, 93.6, 80.5, 58.2, 38.8, 37.5, 30.6; MS (ES+) m/z 339.3 (M+1).

Example 17 Synthesis of 3-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]thiophene-2-carboxamide

To a solution of 1′-(3-aminopropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1H)-one (0.05 g, 0.13 mmol) in dichloromethane (4.00 mL) was added triethylamine (0.03 g, 0.26 mmol) and 3-chlorothiophene-2-carbonyl chloride (0.02 g, 0.12 mmol) at 0° C. The mixture was stirred for 2 h, washed with 15% HCl solution and water. The organic layer was dried over MgSO4 and filtered. The filtrate was concentrated in vacuo to dryness. The residue was dissolved in ethyl acetate, and the product was precipitated with the addition of hexane. The white solid was collected by filtration and dried in vacuo to yield the title compound (0.04 g) in 67% yield: 1H NMR (300 MHz, CDCl3) δ 7.60 (t, 1H), 7.41 (d, 1H), 7.33-7.27- (m, 1H), 7.17 (d, 1H), 7.08-7.03- (m, 1H), 6.93 (t, 1H), 6.49 (s, 1H), 6.11 (s, 1H), 5.95 (m, 2H), 4.90 (d, 1H), 4.65 (d, 1H), 3.96-3.79- (m, 2H), 3.53-3.36- (m, 2H), 2.04-1.93- (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.3, 160.6, 156.0, 149.0, 142.4, 141.8, 132.5, 129.4, 129.2, 129.1, 124.2, 123.7, 123.6, 119.2, 108.5, 102.9, 101.6, 93.7, 80.5, 58.3, 37.4, 36.5, 27.3; MS (ES+) m/z 483 (M+1).

Example 17.1

The compounds listed in the following table were synthesized using the similar procedure as described in EXAMPLE 17. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 680 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 407.3 1′(2′H)-yl)propyl]cyclopropanecarboxamide 681 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 421.3 1′(2′H)-yl)propyl]cyclobutanecarboxamide 682 2-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 478.3 7,3′-indol]-1′(2′H)-yl)propyl]nicotinamide 683 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 435.3 1′(2′H)-yl)propyl]cyclopentanecarboxamide 684 2,2-dimethyl-N-[3-(2′-oxospiro[furo[2,3- 423.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]propanamide 685 2-(4-methoxyphenyl)-N-[3-(2′-oxospiro[furo[2,3- 487.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 686 4-tert-butyl-N-[3-(2′-oxospiro[furo[2,3- 499.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 687 3,3-dimethyl-N-[3-(2′-oxospiro[furo[2,3- 437.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]butanamide 688 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 519.3 1′(2′H)-yl)propyl]biphenyl-4-carboxamide 689 3-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 497.2 7,3′-indol]-1′(2′H)-yl)propyl]-1-benzofuran-2- carboxamide 690 2-(benzyloxy)-N-[3-(2′-oxospiro[furo[2,3- 487.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 691 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 433.3 1′(2′H)-yl)propyl]-2-furamide 692 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 487.3 1′(2′H)-yl)propyl]-1,3-benzodioxole-5-carboxamide 693 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 494.3 1′(2′H)-yl)propyl]quinoline-2-carboxamide 694 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 457.4 1′(2′H)-yl)propyl]-2-phenylacetamide 695 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 450.3 1′(2′H)-yl)propyl]piperidine-1-carboxamide 696 2-methoxy-N-[3-(2′-oxospiro[furo[2,3- 411.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 697 4-(dimethylamino)-N-[3-(2′-oxospiro[furo[2,3- 486.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 698 4-ethoxy-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 487.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 699 2-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 423.3 7,3′-indol]-1′(2′H)-yl)propyl]butanamide 700 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 473.2 1′(2′H)-yl)propyl]-2-phenoxyacetamide 701 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 495.0 1′(2′H)-yl)propyl]quinoxaline-2-carboxamide 702 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 449.3 1′(2′H)-yl)propyl]cyclohexanecarboxamide 703 4-fluoro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 461.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 704 2-ethyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 437.3 7,3′-indol]-1′(2′H)-yl)propyl]butanamide 705 2-(4-fluorophenyl)-N-[3-(2′-oxospiro[furo[2,3- 475.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 706 6-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 478.0 7,3′-indol]-1′(2′H)-yl)propyl]nicotinamide 707 2-fluoro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 461.4 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 708 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 482.8 1′(2′H)-yl)propyl]-2- phenylcyclopropanecarboxamide 709 4-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 457.7 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 710 1-(4-fluorophenyl)-5-methyl-N-[3-(2′-oxospiro[furo[2,3- 541.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-1H- pyrazole-4-carboxamide 711 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 483.1 1′(2′H)-yl)propyl]-1-benzofuran-5-carboxamide 712 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 485.4 1′(2′H)-yl)propyl]-2,1,3-benzoxadiazole-5- carboxamide 713 2,4-dichloro-N-[3-(2′-oxospiro[furo[2,3- 513.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 714 1-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 498.4 7,3′-indol]-1′(2′H)-yl)propyl]-1H-1,2,3-benzotriazole- 5-carboxamide 715 5-fluoro-2-methyl-N-[3-(2′-oxospiro[furo[2,3- 475.1 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 716 2-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 478.1 7,3′-indol]-1′(2′H)-yl)propyl]isonicotinamide 717 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 501.1 1′(2′H)-yl)propyl]-2,3-dihydro-1,4-benzodioxine-6- carboxamide 718 5-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 448.2 7,3′-indol]-1′(2′H)-yl)propyl]isoxazole-3- carboxamide 719 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 483.1 1′(2′H)-yl)propyl]-1-benzofuran-2-carboxamide 720 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.1 1′(2′H)-yl)propyl]-1-benzothiophene-2-carboxamide 721 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 501.1 1′(2′H)-yl)propyl]-2,3-dihydro-1,4-benzodioxine-2- carboxamide 722 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 509.1 1′(2′H)-yl)propyl]-4-(1H-pyrazol-1-yl)benzamide 723 1,3-dimethyl-N-[3-(2′-oxospiro[furo[2,3- 461.2 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-1H- pyrazole-5-carboxamide 724 4-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 514.2 7,3′-indol]-1′(2′H)-yl)propyl]-3,4-dihydro-2H-1,4- benzoxazine-7-carboxamide 725 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 495.2 1′(2′H)-yl)propyl]quinoxaline-6-carboxamide 726 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 485.2 1′(2′H)-yl)propyl]-2,3-dihydro-1-benzofuran-2- carboxamide 727 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 499.1 1′(2′H)-yl)propyl]-2,3-dihydro-1-benzothiophene-5- carboxamide 728 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 526.9 1′(2′H)-yl)propyl]-2-(trifluoromethoxy)benzamide 729 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 445.2 1′(2′H)-yl)propyl]pentanamide 730 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 473.2 1′(2′H)-yl)propyl]heptanamide 731 3-cyclopentyl-N-[3-(2′-oxospiro[furo[2,3- 463.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]propanamide 732 9-oxo-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 545.0 indol]-1′(2′H)-yl)propyl]-9H-fluorene-4-carboxamide 733 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 511.4 1′(2′H)-yl)propyl]-4-(trifluoromethyl)benzamide 734 2,5-difluoro-N-[3-(2′-oxospiro[furo[2,3- 479.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 735 2,5-dimethyl-N-[3-(2′-oxospiro[furo[2,3- 461.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-3- furamide 736 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 523.3 1′(2′H)-yl)propyl]-4-phenoxybutanamide 737 4-fluoro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 529.0 7,3′-indol]-1′(2′H)-yl)propyl]-2- (trifluoromethyl)benzamide 738 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 463.3 1′(2′H)-yl)propyl]-2-(2-thienyl)acetamide 739 2-chloro-5-fluoro-N-[3-(2′-oxospiro[furo[2,3- 495.0 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 740 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 493.0 1′(2′H)-yl)propyl]-2-naphthamide 741 2-(4-chlorophenoxy)-N-[3-(2′-oxospiro[furo[2,3- 507.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 742 2,4-dimethoxy-N-[3-(2′-oxospiro[furo[2,3- 503.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 743 2-nitro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 488.4 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 744 2-(4-chlorophenyl)-3-methyl-N-[3-(2′-oxospiro[furo[2,3- 533.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]butanamide 745 4-amino-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 458.4 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 746 3,4-dimethoxy-N-[3-(2′-oxospiro[furo[2,3- 503.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 747 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 558.4 1′(2′H)-yl)propyl]-5H-dibenzo[b,f]azepine-5- carboxamide 748 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 501.5 1′(2′H)-yl)propyl]adamantane-1-carboxamide 749 2-[(2-isopropyl-5-methylcyclohexyl)oxy]-N-[3-(2′- 535.5 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)propyl]acetamide 750 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 579.3 1′(2′H)-yl)propyl]-3,5-bis(trifluoromethyl)benzamide 751 2-(2,5-dimethoxyphenyl)-N-[3-(2′-oxospiro[furo[2,3- 517.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 752 2-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 477.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 753 3-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 477.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 754 4-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 477.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 755 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 437.4 1′(2′H)-yl)propyl]hexanamide 756 2,6-difluoro-N-[3-(2′-oxospiro[furo[2,3- 479.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 757 2-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 415.3 7,3′-indol]-1′(2′H)-yl)propyl]acetamide 758 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 579.4 1′(2′H)-yl)propyl]-2,5-bis(trifluoromethyl)benzamide 759 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 436.4 1′(2′H)-yl)propyl]pyrrolidine-1-carboxamide 760 2-bromo-2,2-difluoro-N-[3-(2′-oxospiro[furo[2,3- 497.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 761 2,3,5-trifluoro-N-[3-(2′-oxospiro[furo[2,3- 497.3 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]benzamide 762 5-fluoro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 529.4 7,3′-indol]-1′(2′H)-yl)propyl]-2- (trifluoromethyl)benzamide 763 5-chloro-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 545.3 7,3′-indol]-1′(2′H)-yl)propyl]-2- (trifluoromethyl)benzamide 764 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 449.3 1′(2′H)-yl)propyl]thiophene-2-carboxamide 765 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 452.4 1′(2′H)-yl)propyl]morpholine-4-carboxamide 766 2-(1-naphthyl)-N-[3-(2′-oxospiro[furo[2,3- 507.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)propyl]acetamide 767 2-methyl-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 409.4 7,3′-indol]-1′(2′H)-yl)propyl]propanamide 768 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 451.4 1′(2′H)-yl)propyl]-N-propionylpropanamide 769 N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 513.3 1′(2′H)-yl)propyl]-4-pentylbenzamide 770 4,7,7-trimethyl-3-oxo-N-[3-(2′-oxospiro[furo[2,3- 519.4 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)propyl]-2- oxabicyclo[2.2.1]heptane-1-carboxamide 771 2-bromo-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 523.2 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 772 3-cyano-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 468.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide 773 4-cyano-N-[3-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 468.3 7,3′-indol]-1′(2′H)-yl)propyl]benzamide

Example 18 Synthesis of 1′-(2-aminoethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

To a suspension of 2-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]-1H-isoindole-1,3(2H)-dione (20.0 g, 44.0 mmol) in methanol (400 mL) was added hydrazine (8.00 mL). The mixture was stirred at ambient temperature for 48 h and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash chromatography eluting with ethyl acetate/methanol/ammonia (10/1/0.2) to afford the crude product which was recrystallized from ethyl acetate to yield the title compound (8.0 g) in 56% yield as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.34 (m, 1H), 7.17 (dd, 1H), 7.06 (dd, 1H), 6.95 (d, 1H), 6.51 (s, 1H), 6.18 (s, 1H), 5.89-5.82- (ABq, 2H), 4.93 (d, 1H), 4.66 (d, 1H), 3.95-3.74- (m, 2H), 3.06 (t, 2H), 1.59-1.35- (br, 2H); 13C NMR (75 MHz, CDCl3) δ 178.0, 155.9, 148.8, 142.3, 132.4, 128.9, 124.0, 123.4, 119.5, 108.6, 103.1, 101.5, 93.6, 80.5, 58.2, 43.4, 39.8; MS (ES+) m/z 325 (M+1), 308 (M−16).

Example 19 Synthesis of 1-(4-fluorophenyl)-3-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea

To a mixture of 1′-(2-aminoethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.15 mmol) and triethylamine (0.01 mmol) in anhydrous dichloromethane was added 1-fluoro-4-isocyanatobenzene (0.14 mmol) at ambient temperature. The mixture was stirred for 16 h, diluted with of dichloromethane (5.00 mL), washed with 10% HCl solution and brine, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo to dryness to give the title compound (0.05 g) in 82% yield: 1H NMR (300 MHz, DMSO-d6) δ 8.54 (s, 1H), 7.35-7.25 (m, 3H), 7.19 (d, 1H), 7.11 (d, 1H), 7.06-6.91 (m, 3H), 6.67 (s, 1H), 6.52 (t, 1H), 5.94-5.84 (ABq, 2H), 4.74 (d, 1H), 4.61 (d, 1H), 3.91-3.69 (m, 2H), 3.49-3.34 (m, 2H); MS (ES+) m/z 462 (M+1), 484 (M+23).

Example 19.1

The compounds listed in the following table were synthesized using the similar procedure as described in EXAMPLE 19. As previously noted, the compound numbers listed below do not correspond to the compound numbers provided in the general Reaction Schemes above.

Compound MS Number Name (m/z, M + 1) 774 1-benzyl-3-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 458 7,3′-indol]-1′(2′H)-yl)ethyl]urea 775 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 536 indol]-1′(2′H)-yl)ethyl]-3-(4-phenoxyphenyl)urea 776 1-butyl-3-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 424 7,3′-indol]-1′(2′H)-yl)ethyl]urea 777 1-cyclohexyl-3-[2-(2′-oxospiro[furo[2,3- 450 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 778 1-ethyl-3-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 396 7,3′-indol]-1′(2′H)-yl)ethyl]urea 779 1-isopropyl-3-[2-(2′-oxospiro[furo[2,3- 410 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 780 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 410 indol]-1′(2′H)-yl)ethyl]-3-propylurea 781 1-tert-butyl-3-[2-(2′-oxospiro[furo[2,3- 424 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 782 1-cyclopentyl-3-[2-(2′-oxospiro[furo[2,3- 436 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 783 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 438 indol]-1′(2′H)-yl)ethyl]-3-pentylurea 784 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 444 indol]-1′(2′H)-yl)ethyl]-3-phenylurea 785 1-(2-furylmethyl)-3-[2-(2′-oxospiro[furo[2,3- 448 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 786 1-hexyl-3-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 452 7,3′-indol]-1′(2′H)-yl)ethyl]urea 787 ethyl N-({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 454 7,3′-indol]-1′(2′H)-yl)ethyl]amino}carbonyl)glycinate 788 1-(3-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 458 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 789 1-(4-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 458 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 790 ethyl N-({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 468 7,3′-indol]-1′(2′H)-yl)ethyl]amino}carbonyl)-beta- alaninate 791 1-(4-cyanophenyl)-3-[2-(2′-oxospiro[furo[2,3- 469 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 792 N-({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 472 indol]-1′(2′H)-yl)ethyl]amino}carbonyl)benzamide 793 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 473 indol]-1′(2′H)-yl)ethyl]-3-(2-phenylethyl)urea 794 1-(4-methylbenzyl)-3-[2-(2′-oxospiro[furo[2,3- 472 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 795 1-(2-methylbenzyl)-3-[2-(2′-oxospiro[furo[2,3- 472 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 796 1-(4-ethylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 472 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 797 1-(3-methoxyphenyl)-3-[2-(2′-oxospiro[furo[2,3- 474 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 798 1-(2-fluoro-5-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 476 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 799 1-(3-fluoro-4-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 476 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 800 1-(4-chlorophenyl)-3-[2-(2′-oxospiro[furo[2,3- 479 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 801 2-[({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 480 indol]-1′(2′H)-yl)ethyl]amino}carbonyl)amino]ethyl 2-methylacrylate 802 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 480 indol]-1′(2′H)-yl)ethyl]-3-(1,1,3,3- tetramethylbutyl)urea 803 ethyl 4-[({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 482 7,3′-indol]-1′(2′H)- yl)ethyl]amino}carbonyl)amino]butanoate 804 1-[4-(cyanomethyl)phenyl]-3-[2-(2′-oxospiro[furo[2,3- 483 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 805 1-(2,3-dihydro-1H-inden-5-yl)-3-[2-(2′-oxospiro[furo[2,3- 483 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 806 1-(3-acetylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 484 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 807 1-(4-acetylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 486 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 808 1-(4-isopropylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 486 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 809 1-(2-methoxybenzyl)-3-[2-(2′-oxospiro[furo[2,3- 486 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 810 1-(4-methoxybenzyl)-3-[2-(2′-oxospiro[furo[2,3- 488 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 811 1-(4-methoxy-2-methylphenyl)-3-[2-(2′- 4882 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 812 1-(4-chloro-2-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 488 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 813 1-(3-chloro-4-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 493 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 814 1-(3-chloro-2-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 493 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 815 1-(5-chloro-2-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 493 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 816 1-(2-chlorobenzyl)-3-[2-(2′-oxospiro[furo[2,3- 493 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 817 1-(1-naphthyl)-3-[2-(2′-oxospiro[furo[2,3- 493 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 818 1-(2-naphthyl)-3-[2-(2′-oxospiro[furo[2,3- 494 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 819 1-(3-chloro-2-fluorophenyl)-3-[2-(2′-oxospiro[furo[2,3- 494 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 820 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 497 indol]-1′(2′H)-yl)ethyl]-3-(5,6,7,8- tetrahydronaphthalen-1-yl)urea 821 1-(4-tert-butylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 498 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 822 1-(4-butylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 500 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 823 1-[2-(4-ethylphenyl)ethyl]-3-[2-(2′-oxospiro[furo[2,3- 500 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 824 1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-[2-(2′- 500 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 825 methyl 4-[({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 502 7,3′-indol]-1′(2′H)- yl)ethyl]amino}carbonyl)amino]benzoate 826 1-(2-ethoxybenzyl)-3-[2-(2′-oxospiro[furo[2,3- 502 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 827 1-(3,4-dimethoxyphenyl)-3-[2-(2′-oxospiro[furo[2,3- 502 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 828 1-(3,5-dimethoxyphenyl)-3-[2-(2′-oxospiro[furo[2,3- 504 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 829 1-(3-chloro-4-methoxyphenyl)-3-[2-(2′- 504 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 830 1-[4-(difluoromethoxy)phenyl]-3-[2-(2′-oxospiro[furo[2,3- 509 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 831 1-[2-(difluoromethoxy)phenyl]-3-[2-(2′-oxospiro[furo[2,3- 510 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 832 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 510 indol]-1′(2′H)-yl)ethyl]-3-[3- (trifluoromethyl)phenyl]urea 833 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 512 indol]-1′(2′H)-yl)ethyl]-3-[2- (trifluoromethyl)phenyl]urea 834 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 512 indol]-1′(2′H)-yl)ethyl]-3-[4- (trifluoromethyl)phenyl]urea 835 1-(3,4-dichlorophenyl)-3-[2-(2′-oxospiro[furo[2,3- 512 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 836 1-(2,3-dichlorophenyl)-3-[2-(2′-oxospiro[furo[2,3- 513 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 837 1-(3,5-dichlorophenyl)-3-[2-(2′-oxospiro[furo[2,3- 513 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 838 ethyl 4-[({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 513 7,3′-indol]-1′(2′H)- yl)ethyl]amino}carbonyl)amino]benzoate 839 ethyl 2-[({[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole- 516 7,3′-indol]-1′(2′H)- yl)ethyl]amino}carbonyl)amino]benzoate 840 1-[2-(1,3-benzodioxol-5-yl)ethyl]-3-[2-(2′- 516 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 841 methyl 2-methyl-3-[({[2-(2′-oxospiro[furo[2,3- 516 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)- yl)ethyl]amino}carbonyl)amino]benzoate 842 1-(4-butoxyphenyl)-3-[2-(2′-oxospiro[furo[2,3- 516 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 843 1-(2-methoxy-4-nitrophenyl)-3-[2-(2′-oxospiro[furo[2,3- 516 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 844 1-biphenyl-2-yl-3-[2-(2′-oxospiro[furo[2,3- 519 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 845 1-[4-methyl-3-(trifluoromethyl)phenyl]-3-[2-(2′- 520 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 846 1-(2,4-dichlorobenzyl)-3-[2-(2′-oxospiro[furo[2,3- 526 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 847 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 527 indol]-1′(2′H)-yl)ethyl]-3-[2- (trifluoromethoxy)phenyl]urea 848 1-[4-fluoro-2-(trifluoromethyl)phenyl]-3-[2-(2′- 528 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 849 1-(5-tert-butyl-2-methoxyphenyl)-3-[2-(2′- 530 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 850 1-[2-(3,5-dimethoxyphenyl)ethyl]-3-[2-(2′- 530 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea 851 1-(9H-fluoren-2-yl)-3-[2-(2′-oxospiro[furo[2,3- 532 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 852 1-(9H-fluoren-9-yl)-3-[2-(2′-oxospiro[furo[2,3- 532 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 853 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 532 indol]-1′(2′H)-yl)ethyl]-3-(3,4,5- trimethoxyphenyl)urea 854 1-(diphenylmethyl)-3-[2-(2′-oxospiro[furo[2,3- 534 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 855 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 534 indol]-1′(2′H)-yl)ethyl]-3-(2-phenoxyphenyl)urea 856 1-(2-biphenyl-4-ylethyl)-3-[2-(2′-oxospiro[furo[2,3- 536 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 857 1-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′- 548 indol]-1′(2′H)-yl)ethyl]-3-(3,4,5- trimethoxybenzyl)urea 858 1-(2-nitrophenyl)-3-[2-(2′-oxospiro[furo[2,3- 548 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 859 1-(1,3-benzodioxol-5-yl)-3-[2-(2′-oxospiro[furo[2,3- 489 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 860 1-[4-(dimethylamino)phenyl]-3-[2-(2′-oxospiro[furo[2,3- 488 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 861 1-(2-fluorobenzyl)-3-[2-(2′-oxospiro[furo[2,3- 487 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 862 1-(4-fluoro-3-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 476 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 863 1-(3-fluorobenzyl)-3-[2-(2′-oxospiro[furo[2,3- 476 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 864 1-(cyclohexylmethyl)-3-[2-(2′-oxospiro[furo[2,3- 476 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 865 1-(2-methylphenyl)-3-[2-(2′-oxospiro[furo[2,3- 464 f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]urea 866 1-[4-(6-methyl-1,3-benzothiazol-2-yl)phenyl]-3-[2-(2′- 458 oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]- 1′(2′H)-yl)ethyl]urea

Example 20 Synthesis of 1′-pentyl-7H-spiro[furo[3,4-f][1,3]benzodioxole-5,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1, and making non-critical variations using 3-hydroxy-3-[6-(hydroxymethyl)-1,3-benzodioxol-5-yl]-1-pentyl-1,3-dihydro-2H-indol-2-one to replace 1-(2-cyclopropylethyl)-3-(6-hydroxy-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-1,3-dihydro-2H-indol-2-one, the title compound was obtained (45%) as a colorless solid: mp 113-115° C.; 1H NMR (300 MHz, CDCl3) δ 7.24-7.33 (m, 1H), 7.12 (dd, 1H), 7.01 (t, 1H), 6.87 (d, 1H), 6.74 (s, 1H), 6.15 (s, 1H), 5.92 (dd, 2H), 5.48 (d, 1H), 5.27 (d, 1H), 3.76-3.56 (m, 2H), 1.71-1.64- (m, 2H), 1.37-1.27- (m, 4H), 0.89-0.84 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 175.9, 148.7, 148.1, 143.6, 133.7, 132.1, 130.3, 129.8, 125.3, 125.0, 123.1, 113.5, 109.1, 108.7, 101.9, 101.7, 88.7, 74.4, 40.0, 29.7, 29.0, 25.3, 13.3; MS (ES+) m/z 352.1 (M+1).

Example 21 Synthesis of 1′-pentylspiro[indeno[5,6-d][1,3]dioxole-5,3′-indole]-2′,7(1′H,6H)-dione

To a solution of [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetic acid (0.28 g, 0.73 mmol) was added one drop of DMF and oxalyl chloride (0.32 mL, 3.7 mmol) in toluene (10 mL). The mixture was stirred at ambient temperature overnight and concentrated under vacuum to dryness to afford a brown oil. This substance was dissovled in dichloromethane (15.0 mL) followed by the addition of tin (IV) chloride (0.07 mL, 0.57 mmol) at 0° C. The mixture was stirred at ambient temperature overnight and quenched with ice water. The mixture was poured into water (100 mL), and the mixture was extracted with dichloromethane (150 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.09 g, 67%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.31 (td, 1H), 7.14 (s, 1H), 7.02 (td, 1H), 6.97-6.92 (m, 2H), 6.22 (s, 1H), 6.03-5.98 (m, 2H), 3.87-3.63 (m, 2H), 3.17 (d, 1H), 2.85 (d, 1H), 1.79-1.66 (m, 2H), 1.41-1.30 (m, 4H), 0.88 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 201.4, 177.5, 154.8, 151.8, 149.6, 143.1, 132.5, 131.6, 128.9, 123.4, 123.2, 108.9, 103.5, 102.6, 102.5, 53.8, 47.7, 40.5, 29.0, 27.1, 22.3, 14.0; MS (ES+), m/z 386.1 (M+23), 364.1 (M+1).

Example 22 Synthesis of 1-pentyl-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxole]-2,8′(1H,7′H)-dione

Following the procedure as described in EXAMPLE 21, and making non-critical variations using 3-[3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]propanoic acid to replace [3-(1,3-benzodioxol-5-yl)-2-oxo-1-pentyl-2,3-dihydro-1H-indol-3-yl]acetic acid, the title compound was obtained (32%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.57 (s, 1H), 7.37-7.28 (m, 1H), 7.08-7.03 (m, 2H), 6.95 (d, 1H), 6.02 (s, 1H), 5.95-5.91 (m, 2H), 3.73 (t, 2H), 3.37-3.24 (m, 1H), 2.79-2.67 (m, 1H), 2.41-2.32 (m, 2H), 1.76-1.64 (m, 2H), 1.38-1.28 (m, 4H), 0.87 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 195.4, 177.4, 152.3, 148.0, 142.7, 138.9, 133.6, 128.8, 128.4, 124.1, 122.9, 108.9, 106.9, 106.6, 101.9, 51.7, 40.2, 33.1, 32.8, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 400.1 (M+23), 378.1 (M+1).

Example 23 Synthesis of 1-pentyl-6,7-dihydrospiro[indeno[5,6-d][1,3]dioxole-5,3′-indol]-2′(1′H)-one

A mixture of 1′-pentylspiro[indeno[5,6-d][1,3]dioxole-5,3′-indole]-2′,7(1′H,6H)-dione (0.04 g, 0.11 mmol), triethylsilane (1.50 mL) and trifluoroacetic acid (2.00 mL, excess) was stirred at ambient temperature overnight. The mixture was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.02 g, 47%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.25 (td, 1H), 7.06-6.95 (m, 2H), 6.88 (d, 1H), 6.77 (s, 1H), 6.05 (s, 1H), 5.88-5.82 (m, 2H), 3.81-3.60 (m, 2H), 3.37-3.24 (m, 1H), 3.13-3.01 (m, 1H), 2.70-2.59 (m, 1H), 2.44-2.32 (m, 1H), 1.76-1.64 (m, 2H), 1.39-1.28 (m, 4H), 0.88 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 179.5, 147.9, 147.0, 142.9, 138.2, 136.7, 134.7, 128.1, 123.5, 122.6, 108.3, 105.3, 103.6, 101.2, 59.9, 40.0, 38.3, 31.6, 29.0, 27.1, 22.6, 14.0; MS (ES+) m/z 372.1 (M+23), 350.1 (M+1).

Example 24 Synthesis of 1-pentyl-7′,8′-dihydro-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxol]-2(1H)-one

Following the procedure as described in EXAMPLE 23, and making non-critical variations using 1-pentyl-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxole]-2,8′(1′H,7′H)-dione to replace 1′-pentylspiro[indeno[5,6-d][1,3]dioxole-5,3′-indole]-2′,7(1′H,6H)-dione, the title compound was obtained (69%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.25 (td, 1H), 7.08-6.94 (m, 2H), 6.90 (d, 1H), 6.60 (s, 1H), 5.89 (s, 1H), 5.81-5.76 (m, 2H), 3.81-3.66 (m, 2H), 2.96-2.77 (m, 2H), 2.38-2.24 (m, 1H), 2.17-2.06 (m, 1H), 2.02-1.83 (m, 2H), 1.78-1.65 (m, 2H), 1.42-1.29 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 180.3, 146.7, 146.1, 142.4, 137.3, 131.6, 127.8, 127.8, 124.1, 122.5, 109.0, 108.3, 107.3, 100.7, 52.0, 40.0, 34.0, 29.4, 29.1, 27.1, 22.4, 18.8, 14.0; MS (ES+) m/z 364.1 (M+1).

Example 25 Synthesis of 8′,8′-difluoro-1-pentyl-7′,8′-dihydro-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxol]-2(1H)-one

A mixture of 1-pentyl-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxole]-2,8′(1H,7′H)-dione (0.02 g, 0.05 mmol), bis(2-methoxyethyl)aminosulfur trifluoride (0.50 mL) and one drop of ethanol was stirred at 85° C. for 72 hours in a Teflon bottle and quenched by slowly addition of water. The mixture was poured into water (100 mL) and extracted with ethyl acetate (100 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.01 g, 47%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.57 (s, 1H), 7.38-7.28 (m, 1H), 7.09-7.01 (m, 2H), 6.95 (d, 1H), 6.03 (s, 1H), 5.96-5.90 (m, 2H), 3.73 (t, 2H), 3.38-3.24 (m, 1H), 2.79-2.67 (m, 1H), 2.41-2.32 (m, 2H), 1.77-1.63 (m, 2H), 1.39-1.28 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 195.4, 177.4, 152.3, 148.0, 142.7, 138.9, 133.6, 128.8, 128.4, 124.1, 122.9, 108.9, 106.9, 106.6, 101.9, 51.7, 40.2, 33.1, 32.8, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 422.2 (M+23), 380.2 (M+1).

Example 26 Synthesis of 7-hydroxy-1′-pentyl-6,7-dihydrospiro[indeno[5,6-d][1,3]dioxole-5,3′-indol]-2′(1′H)-one

To a solution of 1′-pentyl-6′H-spiro[indole-3,5′-naphtho[2,3-d][1,3]dioxole]-2,8′(1H,7′H)-dione (0.20 g, 0.55 mmol) in methanol (10.0 mL) was added sodium borohydride (0.03 g, 0.83 mmol). The reaction mixture was stirred at ambient temperature for 2 h and poured into of water (100 mL) and extracted with ethyl acetate (100 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.18 g, 90%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.36-7.29 (m, 1H), 7.11-6.99 (m, 3H), 6.93 (d, 1H), 5.98 (s, 1H), 5.94-5.87 (m, 2H), 5.16 (d, 1H), 3.80-3.61 (m, 2H), 2.69 (br, 1H), 2.39 (d, 1H), 1.75-1.62 (m, 2H), 1.38-1.22 (m, 4H), 0.87 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 180.5, 148.9, 148.5, 143.7, 140.5, 136.9, 132.1, 128.7, 123.7, 123.3, 108.8, 105.7, 103.2, 101.5, 74.8, 59.6, 40.4, 28.9, 27.0, 22.3, 14.0; MS (ES+) m/z 388.4 (M+23).

Example 27 Synthesis of 7-methoxy-1′-pentyl-6,7-dihydrospiro[indeno[5,6-d][1,3]dioxole-5,3′-indol]-2′(1′H)-one

To a solution of 7-hydroxy-1′-pentyl-6,7-dihydrospiro[indeno[5,6-d][1,3]dioxole-5,3′-indol]-2′(1′H)-one (0.05 g, 0.14 mmol) in THF (10.0 mL) was added sodium hydride (0.01 mg, 0.21 mmol) at 0° C. The reaction mixture was stirred for half an hour followed by the addition of iodomethane (0.50 mL). The mixture was stirred at ambient temperature for two hours, then poured into water (100 mL), and extracted with ethyl acetate (100 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.03 g, 57%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.26-7.18 (m, 1H), 6.98-6.82 (m, 4H), 6.10 (s, 1H), 5.88 (s, 2H), 5.26 t, 1H), 3.88-3.63 (m, 2H), 3.45 (s, 3H), 2.71-2.54 (m, 2H), 1.80-1.65 (m, 2H), 1.45-1.29 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 178.3, 148.9, 148.4, 142.4, 136.8, 136.6, 135.1, 128.1, 123.1, 122.6, 108.5, 105.0, 103.2, 101.5, 82.7, 57.9, 55.6, 43.4, 40.3, 29.1, 27.2, 22.4, 14.0: MS (ES+) m/z 402.4 (M+23).

Example 28 Synthesis of 1′-pentyl-6,7-dihydro-5H-spiro[1,3-dioxolo[4,5-g]isoquinoline-8,3′-indole]-2′,5(1H)-dione

A mixture of 1′-pentylspiro[indeno[5,6-d][1,3]dioxole-5,3′-indole]-2′,7(1′H,6H)-dione (0.10 g, 0.28 mmol), sodium azide (0.09 g, 1.40 mmol) and trifluoroacetic acid (2.00 mL) was stirred at 50° C. overnight. The mixture was poured into water (100 mL) and extracted with ethyl acetate (100 mL). The organic layer was washed with water, dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to flash column chromatography to afford the title compound (0.08 g, 74%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.60 (s, 1H), 7.30 (td, 1H), 7.20 (dd, 1H), 6.98 (td, 1H), 6.93 (d, 1H), 6.32 (br, 1H), 6.21 (s, 1H), 5.97-5.92 (m, 2H), 4.02 (dd, 1H), 3.87-3.70 (m, 2H), 3.47 (dd, 1H), 1.80-1.66 (m, 2H), 1.42-4.30 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 175.8, 165.2, 151.6, 147.9, 141.7, 134.3, 130.9, 129.0, 124.5, 123.2, 122.9, 109.0, 108.5, 105.4, 101.9, 51.9, 48.2, 40.4, 29.1, 27.1, 22.3, 14.0; MS (ES+) m/z 379.3 (M+1).

Example 29 Synthesis of 2′-oxo-1′-pentyl-N-pyridin-2-yl-1′,2′-dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indole]-4′-carboxamide

A mixture of 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.28 g, 0.65 mmol), tetrakis(triphenylphosphine)palladium(0) (0.08 g, 10 mole %), triethylamine (0.33 g, 0.50 mL, 3.25 mmol) and 2-aminopyridine (0.12 g, 1.30 mmol) in N,N-dimethylformamide (5.00 mL) was subjected to carbon monoxide (40 Psi). The reaction mixture was heated at 80° C. for 16 h. After cooling down to ambient temperature, the reaction mixture was diluted with ethyl acetate (20.0 mL), washed with water (3×20.0 mL), brine (2×20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography to give the title compound (0.04 g, 14%) as a solid: 1H NMR (300 MHz, CDCl3) δ 8.52 (d, 1H), 7.87 (br, 1H), 7.69-7.62 (m, 3H), 7.53-7.51 (m, 1H), 7.47-7.38 (m, 3H), 7.04-6.98 (m, 1H), 5.79 (d, 2H), 4.97 (ABq, 2H), 3.84-3.66 (m, 2H), 1.77-1.67 (m, 2H), 1.38-1.33 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.5, 158.2, 156.7, 149.2, 143.5, 142.1, 132.2, 132.0, 131.9, 131.8, 129.6, 128.6, 128.4, 121.8, 118.2, 110.7, 102.0, 101.4, 93.9, 79.5, 77.2, 58.5, 40.6, 29.0, 27.0, 22.3, 14.0; MS (ES+) m/z 473.2 (M+2).

Example 29.1 Synthesis of N-(3-methoxyphenyl)-2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indole]-4′-carboxamide

Following the procedure described in EXAMPLE 29, and making non-critical variations using 3-methoxyaniline to replace 2-aminopyridine, the title compound was obtained (20%) as a colorless solid: mp 173-175° C.; 1H NMR (300 MHz, CDCl3) δ 7.42 (t, 1H), 7.30-7.27 (m, 1H), 7.14 (t, 1H), 7.04-6.97 (m, 2H), 7.23 (s, 1H), 6.74-6.62 (m, 2H), 6.31 (s, 1H), 6.16 (s, 1H), 5.83 (dd, 2H), 4.87-5.01 (m, 2H), 3.91-3.63 (m, 5H), 1.73-1.78 (m, 2H), 1.37-1.32 (m, 4H), 0.93-0.86 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 165.1, 159.9, 149.3, 143.6, 143.5, 142.1, 138.1, 134.5, 129.7, 129.5, 127.9, 122.4, 118.3, 112.2, 110.7, 110.5, 105.6, 101.9, 101.6, 94.3, 79.2, 58.3, 55.3, 40.5, 28.9, 26.9, 22.3, 13.9; MS (ES+) m/z 501.5 (M+1).

Example 30 Synthesis of 2′-oxo-1′-pentyl-1′,2′-dihydrospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indole]-4′-carbonitrile

A mixture of 4′-bromo-1-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one (0.10 g, 0.23 mmol), tris(dibenzylideneacetone)dipalladium(0) (0.21 g, 0.23 mmol) and 2-(di-tert-butylphosphino)biphenyl (0.07, 0.23 mmol), tributyltin cyanide (0.07 g, 0.23 mmol) and potassium cyanide (0.02 g, 0.23 mmol) was purged with nitrogen and anhydrous acetonitrile (10.0 mL) was added. The reaction mixture was refluxed for 16 h. After cooling down to ambient temperature, the reaction mixture was diluted with ethyl acetate (20.0 mL), washed with water (20.0 mL), brine (20.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The brown residue was subjected to column chromatography eluting with ethyl acetate/hexane (65%) to give the title compound (0.03 g, 33%) which was recrystallized from ether to get a colorless solid: mp 128-129° C.; 1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 7.42-7.37 (m, 1H), 7.29-7.27 (m, 1H), 7.09 (d, 1H), 6.53 (s, 1H), 6.03 (s, 1H), 5.87 (dd, 2H), 4.91 (q, 2-H), 3.86-3.63 (m, 2H), 1.74-1.62 (m, 2H), 1.43-1.26 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.5, 157.1, 149.5, 143.5, 142.4, 135.4, 129.7, 128.3, 126.4, 116.3, 114.8, 112.3, 108.8, 102.2, 93.7, 78.7, 58.3, 40.6, 28.9, 26.7, 22.2, 13.9; MS (ES+) m/z 377.5 (M+1).

Example 31 Synthesis of 1′-hexylspiro[1,3-dioxolo[4,5-g]chromene-8,3′-indole]-2′,6(1′H,7H)-dione

To a solution of 2-(1-hexyl-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-2-oxoindolin-3-yl)acetate (0.19 g, 0.43 mmol) in THF:H2O (2:1) was added lithium hydroxide (0.04 g, 0.86 mmol). The mixture was stirred at ambient temperature for 4 hrs. The organic solvent was removed in vacuo and the pH of the aqueous residue was adjusted to 2 followed by extraction with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness and the residue was subjected to column chromatography eluting with 25% ethyl acetate/hexane to yield the title compound (0.09 g, 53%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.33 (dt, 1H), 7.14-7.03 (m, 2H), 6.93 (d, 1H), 6.66 (s, 1H), 6.06 (s, 1H), 5.88 (dd, 2H), 3.76-3.63 (m, 2H), 2.94 (q, 2H), 1.69-1.62 (m, 2H) 1.34-1.22 (m, 6H), 0.83 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 175.9, 165.8, 148.3, 147.2, 144.6, 142.6, 129.9, 129.6, 123.8, 123.4, 114.7, 109.2, 105.1, 101.9, 99.8, 49.6, 40.3, 37.2, 31.2, 27.2, 26.4, 22.4, 13.9; MS (ES+) m/z 394.5 (M+1).

Example 32 Synthesis of 1′-pentylspiro[1-benzofuran-3,3-indol]-2′(1′H)-one

A mixture of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.10 g, 0.27 mmol) and palladium/carbon (0.09 g, 0.01 mmol) in methanol/ethyl acetate (1/1, 4.00 mL) was stirred under hydrogen at atmospheric pressure for 16 h. The solvent was evaporated and the black residue was subjected to column chromatography (ethyl acetate/hexane, 1/6) to give the title compound (0.08 g, 97%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.30 (dd, 1H), 7.18 (dd, 1H), 7.20 (d, 1H), 7.02 (dd, 1H), 6.96-6.90 (m, 2H), 6.79 (dd, 1H), 6.69 (d, 1H), 4.93 (d, 1H), 4.67 (d, 1H), 3.89-3.64 (m, 2H), 1.81-1.66 (m, 2H), 1.44-1.31 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.2, 160.7, 142.5, 132.8, 129.7, 129.0, 128.8, 123.9, 123.3, 123.1, 121.3, 110.4, 108.6, 58.1, 40.4, 29.0, 27.2, 22.3, 14.0; MS (ES+) m/z 308.5 (M+1).

Example 33 Synthesis of 6-anilino-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a solution of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′1H)-one (0.08 g, 0.19 mmol) in anhydrous toluene (4.00 mL) was added aniline (0.03 g, 0.29 mmol), xanthphos (0.02 g, 0.03 mmol) and tris(dibenzylideneacetone)dipalladium(0) (0.02 g, 0.02 mmol). The reaction mixture was refluxed for 16 h, cooled down to ambient temperature and concentrated in vacuo to dryness. The black residue was subjected to column chromatography (ethyl acetate/hexane, 1/7) to give the title compound (0.05 g, 62%) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.40-7.25 (m, 6H), 7.18 (d, 1H), 7.12-7.05 (m, 3H), 6.98-6.90 (m, 2H), 6.71 (d, 1H), 6.57 (d, 1H), 6.48 (dd, 1H), 4.93 (d, 1H), 4.67 (d, 1H), 3.88-3.64 (m, 2H), 1.80-1.65 (m, 2H), 1.45-1.30 (m, 4H), 0.92 (t, 3H); MS (ES+) m/z 399.5 (M+1).

Example 34 Synthesis of 6-morpholin-4-yl-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (1:1)

Following the procedure as described in EXAMPLE 33, and making non-critical variations using morphine to replace aniline, the title compound was obtained (42%) as a brown oil: 1H NMR (300 MHz, CDCl3) δ 7.32 (d, 1H), 7.15 (d, 1H), 7.05 (dd, 1H), 6.91 (d, 1H), 6.59 (d, 1H), 6.50 (d, 1H), 6.35 (dd, 1H), 4.95 (d, 1H), 4.65 (d, 1H), 3.89-3.60 (m, 6H), 3.15-3.05 (m, 4H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.5, 162.2, 153.4, 142.6, 132.9, 128.7, 123.9, 123.4, 123.0, 120.1, 108.9, 108.5, 97.9, 80.3, 66.9, 57.7, 49.4, 40.3, 29.0, 27.1, 22.4, 14.0; MS (ES+) m/z 393.5 (M+1).

Example 35 Synthesis of 6-amino-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

A. Synthesis of 6-[(diphenylmethylene)amino-]-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a solution of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.10 g, 0.26 mmol) in anhydrous toluene (5.00 mL) was added benzophenone imine (0.09 g, 0.52 mmol), sodium t-butoxide (0.03 g, 0.36 mmol), tris(dibenzylideneacetone) dipalladium(0) (0.01 g, 0.07 mmol) and (±)-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (0.12 g, 0.19 mmol). The reaction mixture was refluxed for 16 h, cooled down to ambient temperature, diluted with dichloromethane (50.0 mL) and filtered through a celite bed. The filtrate was concentrated in vacuo to dryness to give the title compound which was used in next step without purification.

B. Synthesis of 6-amino-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a solution of 6-[(diphenylmethylene)amino]-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one in anhydrous tetrahydrofuran (4.00 mL) was added aqueous 10% hydrochloric acid (2.00 mL). The reaction mixture was stirred for 15 min, diluted with aqueous sodium bicarbonate (5.00 mL) and extracted with ethyl acetate (3×25.0 mL). The combined organic solution was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/1) to give the title compound (0.02 g, 24% yield) as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.26 (td, 1H), 7.12 (d, 1H), 6.99 (dd, 1H), 6.89 (d, 1H), 6.43 (d, 1H), 6.23 (d, 1H), 6.08 (dd, 1H), 4.86 (d, 1H), 4.60 (d, 1H), 3.86-3.60 (m, 2H), 1.77-1.65 (m, 2H), 1.41-1.30 (m, 4H), 0.89 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 177.8, 171.2, 162.1, 148.7, 142.5, 133.1, 128.6, 127.8, 123.9, 123.7, 123.0, 118.5, 108.5, 108.4, 97.2, 80.2, 77.6, 77.4, 77.2, 76.8, 64.0, 60.4, 57.6, 40.3, 29.7, 29.0, 27.1, 22.6, 22.4, 22.1, 19.1, 14.2, 14.0, 13.7; MS (ES+) m/z 323.5 (M+1).

Example 36 Synthesis of 1′-pentyl-6-phenoxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a solution of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′1-1)-one (0.08 g, 0.19 mmol) in anhydrous dioxane (4.00 mL) was added copper iodide (0.01 g, 0.01 mmol), N,N-dimethyl glycine hydrochloride (0.01 g, 0.01 mmol), cesium carbonate (0.17 g, 0.52 mmol) and phenol (0.03 g, 0.32 mmol). The resulted mixture was refluxed for 16 h under nitrogen, diluted with dichloromethane (50.0 mL) and filtered through a celite bed. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/6) to give the title compound (0.07 g, 87%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.36-7.28 (m, 3H), 7.20-7.00 (m, 4H), 6.92 (d, 1H), 6.62 (dd, 1H), 6.58 (br, 1H), 6.44 (dd, 1H), 4.95 (d, 1H), 4.71 (d, 1H), 3.92-3.64 (m, 2H), 1.70-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.92 (t, 3H); MS (ES+) m/z 400.5 (M+1).

Example 37 Synthesis of 1′-pentyl-6-pyridin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

A mixture of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.08 g, 0.19 mmol), pyridine-3-boronic acid (0.05 g, 0.41 mmol), palladium acetate (0.002 g, 0.07 mmol), tri-O-tolylphosphine (0.0015 g, 0.005 mmol), 2 M sodium carbonate (1.00 mL) and 1,2-dimethoxyethane (9.00 mL) was heated at reflux for 16 hours under N2. The solvent was evaporated and the black residue was extracted with ethyl acetate (4×15.0 mL). The combined organics was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 4/1) to give the title compound (0.07 g, 67% yield) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.60 (br, 1H), 7.85 (d, 1H), 7.45-7.24 (m, 3H), 7.20-7.10 (m, 2H), 7.12-6.98 (m, 2H), 6.95 (d, 1H), 6.81 (d, 1H), 5.05 (d, 1H), 4.78 (d, 1H), 3.89-3.64 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.9, 161.6, 149.5, 147.3, 142.6, 139.9, 136.4, 135.6, 133.4, 130.1, 129.2, 124.9, 121.7, 119.5, 110.3, 109.7, 107.7, 80.1, 57.8, 42.3, 28.8, 27.1, 22.3, 14.85; MS (ES+) m/z 385.5 (M+1).

Example 38 Synthesis of 1′-pentyl-6-pyridin-4-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 37, and making non-critical variations using 4-pyridine boronic acid to replace 3-pyridine boronic acid, the title compound was obtained (38%) as white solid: mp 107-110° C.; 1H NMR (300 MHz, CDCl3) δ 8.64-8.58 (m, 2H), 7.45-7.40 (m, 2H), 7.31 (dt, 1H), 7.19-7.13 (m, 2H), 6.93 (d, 1H), 6.79 (d, 1H), 4.95 (d, 1H), 4.75 (d, 1H), 3.88-3.64 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.90 (t, 3H); MS (ES+) m/z 385.5 (M+1).

Example 39 Synthesis of 6-(methylsulfonyl)-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′-H)-one

A mixture of 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.60 g, 1.55 mmol), sodium methanesulfinate (0.19 g, 1.86 mmol), copper iodide (0.03 g, 0.16 mmol), and L-proline (0.04 g, 0.31 mmol) in dimethyl sulfoxide (3.00 mL) was heated at 100° C. for 2 days under N2. The reaction mixture was diluted with water (50.0 mL) and extracted with ethyl acetate (4×15.0 mL). The combined organics was dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 2/3) to give the title compound (0.03 g, 46%) as a light yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.46-7.48 (m, 1H), 7.38 (dt, 1H), 7.34 (dt, 1H), 7.13-7.02 (m, 2H), 6.94 (d, 1H), 6.86 (d, 1H), 5.03 (d, 1H), 4.78 (d, 1H), 3.87-3.64 (m, 2H), 3.02 (s, 3H), 1.79-1.68 (m, 2H), 1.41-1.32 (m, 4H), 0.90 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.1, 161.2, 142.6, 142.1, 135.4, 131.5, 129.5, 124.3, 124.0, 123.5, 120.7, 109.5, 109.0, 80.5, 57.7, 44.5, 40.6, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 386.5 (M+1).

Example 40 Synthesis of 1′-pentyl-6-(phenylsulfonyl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 39, and making non-critical variations using sodium phenyl sulfinate to replace sodium methanesulfinate, the title compound was obtained (50%) as a yellowish oil: 1H NMR (300 MHz, CDCl3,) δ 7.94-7.88 (m, 2H), 7.60-7.44 (m, 4H), 7.40 (dd, 1H), 7.31 (dt, 1H), 7.10-6.99 (m, 2H), 6.92 (d, 1H), 6.78 (d, 1H), 4.98 (d, 1H), 4.72 (d, 1H), 3.84-3.61 (m, 2H), 1.75-1.65 (m, 2H), 1.39-1.30 (m, 4H), 0.88 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.1, 161.2, 143.2, 142.5, 141.2, 134.9, 133.3, 129.4, 129.3, 127.8, 124.1, 124.0, 123.5, 121.1, 109.8, 108.9, 80.5, 57.7, 40.5, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 448.5 (M+1).

Example 41 Synthesis of 1′-pentyl-5-phenoxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 36, and making non-critical variations using 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (10% yield) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.32-7.10 (m, 5H), 7.06-6.82 (m, 6H), 6.42 (d, 1H), 4.95 (d, 1H), 4.71 (d, 1H), 3.82-3.62 (m, 2H), 1.75-1.63 (m, 2H), 1.43-1.34 (m, 4H), 0.85 (t, 3H); MS (ES+) m/z 400.4 (M+1).

Example 42 Synthesis of 1′-(diphenylmethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

A mixture of 5-bromo-1′-(diphenylmethyl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (3.00 g, 6.22 mmol), bis(pinacolato)diboron (1.80 g, 7.09 mmol), (1,1′-bis(diphenylphosphino)ferrocene)dichloropalladium(II) (0.45 g, 9 mole %), and potassium acetate (5.49 g, 56.0 mmol) in anhydrous dimethyl sulfoxide (40.0 mL) was stirred at 100° C. under N2 for 16 h. The reaction mixture was diluted with water (600 mL). The aqueous mixture was extracted with ethyl acetate (3×200 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/6) to give the title compound (1.00 g, 30%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.68 (dd, 1H), 7.40-7.25 (m, 10H), 7.18 (br, 1H), 7.11 (dd, 1H), 7.06-6.91 (m, 4H), 6.50 (d, 1H), 4.99 (d, 1H), 4.74 (d, 1H), 1.27 (d, 12H); MS (ES+) m/z 530.32 (M+1).

Example 43 Synthesis of 1′-(diphenylmethyl)-5-hydroxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

A mixture of 1′-(diphenylmethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (4.50 g, 8.50 mmol), hydrogen peroxide (4.86 mL, 30% solution, 42.5 mmol), sodium hydroxide (16.38 mL, 10% solution, 40.82 mmol) in methanol was stirred at 0° C. for 30 min and ambient temperature for 16 h. The reaction mixture was quenched with sodium bisulfite. The pH of the reaction mixture was adjusted to 4 using 14% hydrochloric acid. The mixture was extracted with ethyl acetate (3×250 mL). The combined organic layers was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was triturated with hexane (20.0 mL), followed by ether (15.0 mL) to give the title compound (3.20 g, 90%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.45-7.38 (m, 10H), 7.13 (dd, 1H), 7.07-6.91 (m, 3H), 6.79 (d, 1H), 6.63 (dd, 1H), 6.50 (d, 1H), 6.12 (d, 1H), 4.96 (d, 1H), 4.69 (d, 1H); MS (ES+) m/z 420.23 (M+1).

Example 44 Synthesis of 5-hydroxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.28, and making non-critical variations using 1′-(diphenylmethyl)-5-hydroxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 1′-(diphenylmethyl)-5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (48%) as a white solid: 1H NMR (300 MHz, DMSO-d6) δ 10.58 (s, 1H), 8.85 (s, 1H), 7.21 (dt, 1H), 7.06 (d, 1H), 6.94 (dd, 1H), 6.89 (d, 1H), 6.72 (d, 1H), 6.54 (dd, 1H), 6.02 (d, 1H), 4.70 (d, 1H), 4.57 (d, 1H); MS (ES+) m/z 254.2 (M+1).

Example 45 Synthesis of 2′-oxo-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl trifluoromethanesulfonate

To a mixture of 5-hydroxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.18 g, 0.70 mmol) and trifluoromethane sulfonic anhydride (0.26 g, 0.91 mmol) in dichloromethane (5.00 mL) was added triethylamine (0.14 g, 1.93 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and diluted with dichloromethane (100 mL). After washing with aqueous saturated sodium chloride (2×20.0 mL), the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/2) to give the title compound (0.07 g, 25%) as a light yellow solid: 1H NMR (300 MHz, CDCl3) δ 7.92 (br, 1H), 7.29 (dt, 1H), 7.15-7.03 (m, 3H), 7.99-6.94 (m, 2H), 6.69 (d, 1H), 5.03 (d, 1H), 4.76 (d, 1H); MS (ES+) m/z 386.5 (M+1).

Example 46 Synthesis of 2′-oxo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl trifluoromethanesulfonate

To a mixture of 2′-oxo-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl trifluoromethanesulfonate (0.42 g, 1.10 mmol) and sodium hydroxide (0.07 g, 1.65 mmol) in N,N-dimethylformamide (5.00 mL) was added 2-(bromomethyl)-5-(trifluoromethyl)furan (0.50 g, 2.20 mmol) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h and diluted with ethyl acetate (200 mL). After washing with aqueous saturated sodium chloride (2×20.0 mL), the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/3) to give the title compound (0.47 g, 80%) as a clear oil: 1H NMR (300 MHz, CDCl3) δ 7.34 (t, 1H), 7.18-6.94 (m, 5H), 6.74 (dd, 1H), 6.55 (dd, 1H), 6.40 (d, 1H), 5.09-4.72 (m, 4H); MS (ES+) m/z 534.4 (M+1).

Example 47 Synthesis of 5-pyridin-3-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 2′-oxo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-1,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl trifluoromethanesulfonate to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, and pyridin-3-ylboronic acid to replace pyrimidine-5-boronic acid, 5-pyridin-3-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one was obtained (74%) as a white solid, which was treated with HCl in ether to give the title compound: mp 98-100° C.; 1H NMR (300 MHz, CD3OD) δ 8.96 (br, 1H), 8.74-8.65 (m, 2H), 8.04 (dd, 1H), 7.73 (dd, 1H), 7.37 (dt, 1H), 7.25-7.09 (m, 5H), 6.95 (dd, 1H), 6.67 (d, 1H), 5.20-4.83 (m, 4H); 13C NMR (75 MHz, CD3OD) δ 175.7, 161.3, 151.1, 142.1, 140.2, 138.6, 137.5, 137.4, 130.0, 129.4, 128.1, 127.5, 125.6, 125.5, 122.3, 122.1, 120.8, 111.4, 111.3, 109.7, 108.1, 107.7, 78.7, 58.3, 34.9; MS (ES+) m/z 463.1 (M+1).

Example 48 Synthesis of 1′-pentyl-5-pyridin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, and pyridin-3-ylboronic acid to replace pyrimidine-5-boronic acid, the title compound was obtained (70%) was obtained as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.65 (d, 1H), 7.45-6.98 (m, 7H), 6.92 (d, 1H), 6.85 (d, 1H), 4.98 (d, 1H), 4.72 (d, 1H), 3.89-3.64 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.86 (t, 3H); MS (ES+) m/z 385.5 (M+1).

Example 49 Synthesis of 1′-pentyl-5-pyrimidin-5-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, the title compound was obtained (40%) was obtained as a white solid: mp 115-117° C.; 1H NMR (300 MHz, CDCl3) δ 9.08 (s, 1H), 8.74 (s, 1H), 7.41 (dd, 1H), 7.33 (dt, 1H), 7.16 (dd, 1H), 7.11-7.01 (m, 2H), 6.95 (d, 1H), 6.86 (d, 1H), 5.01 (d, 1H), 4.75 (d, 1H), 3.89-3.64 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.88 (t, 3H); MS (ES+) m/z 386.4 (M+1).

Example 50 Synthesis of 1′-pentyl-5-pyridin-4-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, and pyridin-4-ylboronic acid to replace pyrimidine-5-boronic acid, the title compound was obtained (95%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 8.55-8.47 (m, 2H), 7.52-7.46 (dd, 1H), 7.35-7.26 (m, 3H), 7.15 (dd, 1H), 7.07-7.00 (m, 2H), 6.97-6.92 (m, 2H), 4.99 (d, 1H), 4.73 (d, 1H), 3.89-3.67 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.34 (m, 4H), 0.92 (t, 3H); MS (ES+) m/z 385.5 (M+1).

Example 51 Synthesis of 2′-oxo-1′-pentyl-1′,2′-dihydrospiro[1-benzofuran-3,3′-indole]-5-carbonitrile

Following the procedure as described in EXAMPLE 30, and making non-critical variations using 5-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′-H)-one to replace 4′-bromo-1′-pentylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained (78%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.51 (dt, 1H), 7.34 (dt, 1H), 7.12-6.91 (m, 5H), 5.01 (d, 1H), 4.76 (d, 1H), 3.86-3.63 (m, 2H), 1.80-1.68 (m, 2H), 1.43-1.32 (m, 4H), 0.92 (t, 3H); 13C NMR (75 MHz, CDCl3) δ 176.2, 164.1, 142.6, 134.8, 131.4, 130.8, 129.6, 127.8, 123.9, 123.5, 118.8, 111.5, 109.1, 104.7, 80.6, 57.3, 40.6, 29.0, 27.1, 22.3, 14.0; MS (ES+) m/z 333.5 (M+1).

Example 52 Synthesis of N-(2-fluorophenyl)-2-(2′-oxo-5-pyridin-3-ylspiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)acetamide

Following the procedure as described in EXAMPLE 37, and making non-critical variations using 2-(5-bromo-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide to replace 6-bromo-1′-pentylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one, the title compound was obtained (55% yield) was obtained as a white solid: mp 98-100° C.; 1H NMR (300 MHz, CDCl3) δ 8.60-8.53 (m, 2H), 8.14 (dd, 1H), 7.65 (dd, 1H), 7.41 (dd, 1H), 7.32-6.90 (m, 11H), 5.02 (d, 1H), 4.76 (d, 1H), 4.72 (d, 1H), 4.56 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 177.9, 164.8, 160.9, 154.2, 151.0, 147.1, 141.7, 134.2, 131.7, 131.5, 129.9, 129.4, 129.1, 125.1, 124.6, 124.5, 124.2, 124.0, 122.5, 122.2, 115.1, 114.8, 111.0, 109.1, 80.0, 58.1, 44.6; MS (ES+) m/z 466.4 (M+1).

Example 53 Synthesis of 1′-[(5-fluoro-1H-benzimidazol-2-yl)methyl]spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one

A mixture of (2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)-acetic acid (0.50 g, 1.47 mmol) and 4-fluorobenzene-1,2-diamine (0.15 g, 1.18 mmol) in anhydrous toluene (20.0 mL) was refluxed overnight under N2. The reaction mixture was diluted with water (250 mL) and extracted with ethyl acetate (2×200 mL). The combined organic extracts was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to dryness. The residue was subjected to column chromatography (ethyl acetate/hexane, 2/1) to give the title compound (0.13 g, 22%): mp 138-142° C.; 1H NMR (300 MHz, CDCl3) δ 7.47-7.39 (m, 1H), 7.32-7.22 (m, 2H), 7.16-6.93 (m, 3H), 6.18 (s, 1H), 6.07 (s, 1H), 5.84-5.78 (m, 2H), 5.20-5.14 (m, 2H), 4.98 (d, 1H), 4.60 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 179.2, 161.3, 158.1, 156.2, 149.2, 149.1, 142.5, 141.2, 131.5, 129.5, 124.4, 124.0, 118.0, 111.6, 111.2, 109.9, 103.1, 101.7, 93.5, 80.5, 58.5, 38.9; MS (ES+) m/z 430.2 (M+1).

Example 54 Synthesis of 1′-(diphenylmethyl)-5-pyridin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 5-bromo-1′-(diphenylmethyl)spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, and pyridin-3-ylboronic acid to replace pyrimidine-5-boronic acid, the title compound was obtained (74%) as a white solid: mp 204-207° C.; 1H NMR (300 MHz, CDCl3) δ 8.62-8.46 (m, 2H), 7.62 (d, 1H), 7.43-7.26 (m, 11H), 7.16 (dd, 1H), 7.03-6.94 (m, 4H), 6.76 ((d, 1H), 6.54 (d, 1H), 5.09 (d, 1H), 4.82 (d, 1H); MS (ES+) m/z 481.5 (M+1).

Example 55 Synthesis of tert-butyl 3-(2′-oxo-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl)piperidine-1-carboxylate

A. Synthesis of 5-piperidin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

Following the procedure as described in EXAMPLE 1.28, and making non-critical variations using 1′-(diphenylmethyl)-5-pyridin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one to replace 1′-(diphenylmethyl)-5′-methylspiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, the title compound was obtained that was used in the next step.

B. Synthesis of tert-butyl 3-(2′-oxo-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl)piperidine-1-carboxylate

To a mixture of 5-piperidin-3-ylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one, triethylamine (0.95 g, 9.36 mmol) in anhydrous dichloromethane (15.0 mL) was added di-tert-butyl dicarbonate (1.02 g, 4.68 mmol) at 0° C. The reaction mixture was stirred at ambient temperature and stirred over night under N2, diluted with dichloromethane (100 mL) and filtered through celite. The filtrate was concentrated in vacuo to dryness. The brown residue was subjected to column chromatography (ethyl acetate/hexane, 1/1) to give the title compound (0.50 g, 40%) as a white solid: mp 120-123° C.; 1H NMR (300 MHz, CDCl3) δ 7.82 (br, 1H), 7.23-7.21 (m, 2H), 7.14-6.86 (m, 5H), 6.63 (br, 1H), 4.95 (d, 1H), 4.69 (d, 1H), 4.10-4.00 (m, 2H), 2.70-2.45 (m, 2H), 1.95-1.80 (m, 2H), 1.48-1.38 (m, 11H); MS (ES+) m/z 443.4 (M+1).

Example 56 Synthesis of tert-butyl 3-(2′-oxo-1-{[5-(trifluoromethyl)-2-furyl]methyl}-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl)piperidine-1-carboxylate

Following the procedure as described in PREPARATION 1A, and making non-critical variations using tert-butyl 3-(2′-oxo-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl)piperidine-1-carboxylate to replace 4-bromoindole, and 2-(bromomethyl)-5-(trifluoromethyl)furan to replace 1-bromopentane, the title compound was obtained (10%) as a white solid: mp 59-61° C.; 1H NMR (300 MHz, CDCl3) δ 7.34-7.23 (m, 2H), 7.12 (d, 1H), 7.04-6.96 (m, 2H), 6.89 (d, 1H), 6.75 (s, 1H), 6.50 (s, 1H), 6.41 (s, 1H), 5.10-4.86 (m, 3H), 4.66 (d, 1H), 4.16-3.94 (m, 2H), 2.68-2.38 (m, 2H), 1.90-1.60 (m, 3H), 1.40 (s, 10H), 1.27-1.21 (m, 1H); MS (ES+) m/z 591.2 (M+23).

Example 57 Synthesis of 5-pyridin-4-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one hydrochloride

Following the procedure as described in EXAMPLE 4.2, and making non-critical variations using 2′-oxo-1′-{[5-(trifluoromethyl)-2-furyl]methyl}-1′,2′-dihydrospiro[1-benzofuran-3,3′-indol]-5-yl trifluoromethanesulfonate to replace 2-(4′-bromo-5,6-difluoro-2′-oxospiro[1-benzofuran-3,3′-indol]-1′(2′H)-yl)-N-(2-fluorophenyl)acetamide, and pyridin-4-ylboronic acid to replace pyrimidine-5-boronic acid, 5-pyridin-4-yl-1′-{[5-(trifluoromethyl)-2-furyl]methyl}spiro[1-benzofuran-3,3′-indol]-2′(1′H)-one was obtained as a white solid, which was treated with HCl in ether to give the title compound (54%): mp 108-110° C.; 1H NMR (300 MHz, CDCl3) δ 8.57-8.47 (m, 2H), 7.52 (dd, 1H), 7.37-7.29 (m, 3H), 7.18 (dd, 1H), 7.12-7.00 (m, 3H), 6.92 (d, 1H), 6.75 (dd, 1H), 6.43 (d, 1H), 5.11 4.83 (m, 3H), 4.75 (d, 1H); 13C NMR (75 MHz, CDCl3) δ 176.2, 164.3, 156.7, 151.5, 141.5, 140.8, 131.5, 131.1, 130.7, 129.8, 127.7, 124.3, 124.1, 123.4, 123.1, 112.9, 112.2, 110.0, 109.4, 80.9, 57.5, 37.3; MS (ES+) m/z 466.4 (M+1).

Example 58 Synthesis of 5-methoxy-1′-methylspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one

To a mixture of 5-hydroxyspiro[1-benzofuran-3,3′-indol]-2′(1′H)-one (0.10 g, 0.39 mmol), triphenylphosphine (0.20 g, 0.76 mmol) and methanol (0.05 g, 1.6 mmol) in anhydrous tetrahydrofuran was added diethyl azodicarboxylate (0.14 g, 0.80 mmol) at 0° C. The reaction mixture was stirred at ambient temperature under N2 for 16 h and concentrated in vacuo to dryness. The brown residue was subjected to column chromatography (ethyl acetate/hexane, 1/1) to give the title compound (0.02 g, 14% yield) as a yellowish solid: mp 159-161° C.; 1H NMR (300 MHz, CDCl3) δ 7.32 (dt, 1H), 7.14 (d, 1H), 7.05 (t, 1H), 6.93-6.83 (m, 2H), 6.74 (dd, 1H), 6.25 (d, 1H), 4.89 (d, 1H), 4.63 (d, 1H), 3.63 (s, 3H), 3.28 (s, 3H); MS (ES+) 282.3 (M+1).

Example 59 Synthesis of N-[2-(2′-oxospiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-1′(2′H)-yl)ethyl]-2-(trifluoromethoxy)benzamide

Following the procedure as described in EXAMPLE 17, and making non-critical variations using 1′-(2-aminoethyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one to replace 1′-(3-aminopropyl)spiro[furo[2,3-f][1,3]benzodioxole-7,3′-indol]-2′(1′H)-one, and 2-(trifluoromethoxy)benzoyl chloride to replace 3-chlorothiophene-2-carbonyl chloride, the title compound was obtained (91%) as a colorless solid: mp 183-184° C.; 1H NMR (300 MHz, CDCl3) δ 7.86-7.83 (m, 1H), 7.50-7.45 (m, 1H), 7.37-7.27 (m, 3H), 7.16-7.11 (m, 2H), 7.07-7.02 (m, 1H), 6.84 (t, 1H), 6.47 (s, 1H), 6.10 (s, 1H), 5.82 (dd, 2H), 4.87 (d, 1H), 4.64 (d, 1H), 4.10-3.94 (m, 2H), 3.90-3.68 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 178.2, 165.0, 155.9, 148.8, 145.9, 142.3, 141.9, 132.4, 132.1, 131.3, 129.2, 127.6, 127.3, 124.0, 123.6, 121.2, 121.1, 119.2, 108.7, 103.0, 101.4, 93.6, 80.4, 58.2, 39.5, 38.2; MS (ES+) m/z 513.4 (M+1).

Biological Assays

Various techniques are known in the art for testing the activity of compounds of the invention. In order that the invention described herein may be more fully understood, the following biological assays are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.

Biological Example 1 Guanidine Influx Assay (In Vitro Assay)

This example describes an in vitro assay for testing and profiling test agents against human or rat sodium channels stably expressed in cells of either an endogenous or recombinant origin. The assay is also useful for determining the IC-50 of a sodium channel blocking compound. The assay is based on the guanidine flux assay described by Reddy, N. L., et al., J Med Chem (1998), 41(17):3298-302.

The guanidine influx assay is a radiotracer flux assay used to determine ion flux activity of sodium channels in a high-throughput microplate-based format. The assay uses 14C-guanidine hydrochloride in combination with various known sodium channel modulators, to assay the potency of test agents. Potency is determined by an IC-50 calculation. Selectivity is determined by comparing potency of the compound for the channel of interest to its potency against other sodium channels (also called ‘selectivity profiling’).

Each of the test agents is assayed against cells that express the channels of interest. Voltage gated sodium channels are either TTX sensitive or insensitive. This property is useful when evaluating the activities of a channel of interest when it resides in a mixed population with other sodium channels. The following Table 1 summarizes cell lines useful in screening for a certain channel activity in the presence or absence of TTX.

TABLE 1 CELL LINE mRNA Expression Functional Characterization CHO-K1 (Chinese Nav1.4 expression has been The 18-20-fold increase in [14C] Hamster Ovary; shown by RT-PCR Guanidine influx was completely recommended No other Nav expression has blocked using TTX. (Nav1.4 is a host cell line) been detected TTX sensitive channel) ATTC accession number CCL-61 L6 (rat myoblast Expression of Nav1.4 and 1.5 The 10-15 fold increase in [14C] cell) ATTC Guanidine influx was only Number CRL-1458 partially blocked by TTX (Nav1.5 is TTX resistant SH-SY5Y (Human Published Expression of The 10-16-fold increase in [14C] neuroblastoma) Nav1.9 and Nav1.7 (Blum et Guanidine influx above ATTC Number al) background. CRL-2266 was partially blocked by TTX (Nav1.9 is TTX resistant SK-N-BE2C (a Expression of NaV1.8 Stimulation of BE2C cells with human pyrethroids results in a 6 fold neuroblastoma cell increase in [14C] Guanidine influx line ATCC Number above background. CRL-2268) TTX partially blocked influx (NaV1.8 is TTX resistant) PC12 (rat Expression of Nav1.2 The 8-12-fold increase in [14C] pheochromocytoma) expression Guanidine influx was completely ATTC Number blocked using TTX. (Nav1.2 is a CRL-1721 TTX sensitive channel)

It is also possible to employ recombinant cells expressing these sodium channels. Cloning and propagation of recombinant cells are known to those skilled in the art (see, for example, Klugbauer, N, et al., EMBO J. (1995), 14(6):1084-90; and Lossin, C., et al., Neuron (2002), 34, pp. 877-884)

Cells expressing the channel of interest are grown according to the supplier or in the case of a recombinant cell in the presence of selective growth media such as G418 (Gibco/Invitrogen). The cells are disassociated from the culture dishes with an enzymatic solution (1×) Trypsin/EDTA (Gibco/Invitrogen) and analyzed for density and viability using haemocytometer (Neubauer). Disassociated cells are washed and resuspended in their culture media then plated into Scintiplates (Beckman Coulter Inc.) (approximately 100,000 cells/well) and incubated at 37° C./5% CO2 for 20-24 hours. After an extensive wash with Low sodium HEPES-buffered saline solution (LNHBSS) (150 mM Choline Chloride, 20 nM HEPES (Sigma), 1 mM Calcium Chloride, 5 mM Potassium Chloride, 1 mM Magnesium Chloride, 10 mM Glucose) agents diluted with LNHBSS are added to each well. (Varying concentrations of test agent may be used). The activation/radiolabel mixture contains aconitine (Sigma), and 14C-guanidine hydrochloride (ARC).

After loading the cells with test agent and activation/radiolabel mixture, the Scintiplates are incubated at ambient temperature. Following the incubation, the Scintiplates are extensively washed with LNHBSS supplemented with guanidine (Sigma). The Scintiplates are dried and then counted using a Wallac MicroBeta TriLux (Perkin-Elmer Life Sciences). The ability of the test agent to block sodium channel activity is determined by comparing the amount of 14C-guanidine present inside the cells expressing the different sodium channels. Based on this data, a variety of calculations, as set out elsewhere in this specification, may be used to determine whether a test agent is selective for a particular sodium channel.

IC-50 value of a test agent for a specific sodium channel may be determined using the above general method. IC-50 may be determined using a 3, 8, 10, 12 or 16 point curve in duplicate or triplicate with a starting concentration of 1, 5 or 10 μM diluted serially with a final concentration reaching the sub-nanomolar, nanomolar and low micromolar ranges. Typically the mid-point concentration of test agent is set at 1 μM, and sequential concentrations of half dilutions greater or smaller are applied (e.g. 0.5 μM; 5 μM and 0.25 μM; 10 μM and 0.125 μM; 20 μM etc.). The IC-50 curve is calculated using the 4 Parameter Logistic Model or Sigmoidal Dose-Response Model formula (fit=(A+((B−A)/(1+((C/x)̂D)))).

The fold selectivity, factor of selectivity or multiple of selectivity, is calculated by dividing the IC-50 value of the test sodium channel by the reference sodium channel, for example, NaV1.5.

Biological Example 2 Electrophysiological Assay (In Vitro Assay)

Cells expressing the channel of interest were cultured in DMEM growth media (Gibco) with 0.5 mg/mL G418, +/−1% PSG, and 10% heat-inactivated fetal bovine serum at 37 C.° and 5% CO2. For electrophysiological recordings, cells were plated on 10 mm dishes.

Whole cell recordings were examined by established methods of whole cell voltage clamp (Bean et al., op. cit.) using an Axopatch 200B amplifier and Clampex software (Axon Instruments, Union City, Calif.). All experiments were performed at ambient temperature. Electrodes were fire-polished to resistances of 2-4 Mohms Voltage errors and capacitance artifacts were minimized by series resistance compensation and capacitance compensation, respectively. Data were acquired at 40 kHz and filtered at 5 kHz. The external (bath) solution consisted of: NaCl (140 mM), KCl (5 mM), CaCl2 (2 mM), MgCl2 (1 mM), HEPES (10 mM) at pH 7.4. The internal (pipette) solution consisted of (in mM): NaCl (5), CaCl2 (0.1) MgCl2 (2), CsCl (10), CsF (120), HEPES (10), EGTA (10), at pH 7.2.

To estimate the steady-state affinity of compounds for the resting and inactivated state of the channel (Kr and K1, respectively), 12.5 ms test pulses to depolarizing voltages from −60 to +90 mV from a holding potential of −110 mV was used to construct current-voltage relationships (I-V curves). A voltage near the peak of the IV-curve (−30 to 0 mV) was used as the test pulse throughout the remainder of the experiment. Steady-state inactivation (availability) curves were then constructed by measuring the current activated during a 8.75 ms test pulse following 1 second conditioning pulses to potentials ranging from −110 to −10 mV. To monitor channels at steady-state, a single “diary” protocol with a holding potential of −110 mV was created to record the resting state current (10 ms test pulse), the current after fast inactivation (5 ms pre-pulse of −80 to −50 mV followed by a 10 ms test pulse), and the current during various holding potentials (35 ms ramp to test pulse levels). Compounds were applied during the “diary” protocol and the block was monitored at 15 s intervals.

After the compounds equilibrated, the voltage-dependence of the steady-state inactivation in the presence of the compound was determined. Compounds that block the resting state of the channel decreased the current elicited during test pulses from all holding potentials, whereas compounds that primarily blocked the inactivated state decreased the current elicited during test pulses at more depolarized potentials. The currents at the resting state (Irest) and the currents during the inactivated state (Iinactivated) were used to calculate steady-state affinity of compounds. Based on the Michaelis-Menton model of inhibition, the Kr and Ki, was calculated as the concentration of compound needed to cause 50% inhibition of the Irest or the Iinactivated, respectively.

% inhibition = V max * [ Drug ] h [ Drug ] h + K m h

Vmax is the rate of inhibition, h is the Hill coefficient (for interacting sites), Km is Michaelis-Menten constant, and [Drug] is the concentration of the test compound. At 50% inhibition (½Vmax) of the Irest or Iinactivated, the drug concentration is numerically equal to Km and approximates the Kr and Ki, respectively.

Biological Example 3 Analgesia Induced by Sodium Channel Blockers Heat Induced Tail Flick Latency Test

In this test, the analgesia effect produced by administering a compound of the invention was observed through heat-induced tail-flick in mice. The test includes a heat source consisting of a projector lamp with a light beam focused and directed to a point on the tail of a mouse being tested. The tail-flick latencies, which were assessed prior to drug treatment, and in response to a noxious heat stimulus, i.e., the response time from applying radiant heat on the dorsal surface of the tail to the occurrence of tail flick, were measured and recorded at 40, 80, 120, and 160 minutes.

For the first part of this study, 65 animals underwent assessment of baseline tail flick latency once a day over two consecutive days. These animals were then randomly assigned to one of the 11 different treatment groups including a vehicle control, a morphine control, and 9 compounds at 30 mg/kg were administered intramuscularly. Following dose administration, the animals were closely monitored for signs of toxicity including tremor or seizure, hyperactivity, shallow, rapid or depressed breathing and failure to groom. The optimal incubation time for each compound was determined via regression analysis. The analgesic activity of the test compounds was expressed as a percentage of the maximum possible effect (% MPE) and was calculated using the following formula:

% MPE Postdrug latency - Predrug latency Cut - off time ( 10 s ) - Predrug latency × 100 %

where:

Postdrug latency=the latency time for each individual animal taken before the tail is removed (flicked) from the heat source after receiving drug.

Predrug latency=the latency time for each individual animal taken before the tail is flicked from the heat source prior to receiving drug.

Cut-off time (10 s)=is the maximum exposure to the heat source.

Acute Pain (Formalin Test)

The formalin test is used as an animal model of acute pain. In the formalin test, animals were briefly habituated to the plexiglass test chamber on the day prior to experimental day for 20 minutes. On the test day, animals were randomly injected with the test articles. At 30 minutes after drug administration, 50 μL of 10% formalin was injected subcutaneously into the plantar surface of the left hind paw of the rats. Video data acquisition began immediately after formalin administration, for duration of 90 minutes.

The images were captured using the Actimetrix Limelight software which stores files under the *.llii extension, and then converts it into the MPEG-4 coding. The videos are then analyzed using behaviour analysis software “The Observer 5.1”, (Version 5.0, Noldus Information Technology, Wageningen, The Netherlands). The video analysis was done by watching the animal behaviour and scoring each according to type, and defining the length of the behaviour (Dubuisson and Dennis, 1977). Scored behaviours include: (1) normal behaviour, (2) putting no weight on the paw, (3) raising the paw, (4) licking/biting or scratching the paw. Elevation, favoring, or excessive licking, biting and scratching of the injected paw indicate a pain response. Analgesic response or protection from compounds is indicated if both paws are resting on the floor with no obvious favoring, excessive licking, biting or scratching of the injected paw.

Analysis of the formalin test data is done according to two factors: (1) Percent Maximal Potential Inhibitory Effect (% MPIE) and (2) pain score. The % MPIEs was calculated by a series of steps, where the first is to sum the length of non-normal behaviours (behaviours 1,2,3) of each animal. A single value for the vehicle group was obtained by averaging all scores within the vehicle treatment group. The following calculation yields the MPIE value for each animal:


MPIE(%)=100−[(treatment sum/average vehicle value)×100%]

The pain score is calculated from a weighted scale as described above. The duration of the behaviour is multiplied by the weight (rating of the severity of the response), and divided by the total length of observation to determine a pain rating for each animal. The calculation is represented by the following formula:


Pain rating=[0(To)+1(T1)+2(T2)+3(T3)]/(To+T1+T2+T3)

Compounds of the present invention were shown to be efficacious within a range of 30 mg/kg and 0.1 mg/kg.

CFA Induced Chronic Inflammatory Pain

In this test, tactile allodynia was assessed with calibrated von Frey filaments. Following a full week of acclimatization to the vivarium facility, 150 μl of the “Complete Freund's Adjuvant” (CFA) emulsion (CFA suspended in an oil/saline (1:1) emulsion at a concentration of 0.5 mg/mL) was injected subcutaneously into the plantar surface of the left hind paw of rats under light isoflurane anaesthesia. Animals were allowed to recover from the anaesthesia and the baseline thermal and mechanical nociceptive thresholds of all animals are assessed one week after the administration of CFA. All animals were habituated to the experimental equipment for 20 minutes on the day prior to the start of the experiment. The test and control articles were administrated to the animals, and the nociceptive thresholds measured at defined time points after drug administration to determine the analgesic responses to each of the six available treatments. The time points used were previously determined to show the highest analgesic effect for each test compound.

Thermal nociceptive thresholds of the animals were assessed using the Hargreaves test. Animals were placed in a Plexiglas enclosure set on top of an elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 30° C. for all test trials. Animals were allowed to accommodate for 20 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/Tail Stimulator Analgesia Meter (IITC, Woodland Hills, Calif.) was used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source were set at 1 and 45 respectively, and a cut off time of 20 seconds was employed to prevent tissue damage.

The response thresholds of animals to tactile stimuli were measured using the Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, Calif.) following the Hargreaves test. Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force was used because it represent approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus. The compounds of the present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

Postoperative Models of Nociception

In this model, the hyperalgesia caused by an intra-planar incision in the paw is measured by applying increased tactile stimuli to the paw until the animal withdraws its paw from the applied stimuli. While animals were anaesthetized under 3.5% isofluorane, which was delivered via a nose cone, a 1 cm longitudinal incision was made using a number 10 scalpel blade in the plantar aspect of the left hind paw through the skin and fascia, starting 0.5 cm from the proximal edge of the heel and extending towards the toes. Following the incision, the skin was apposed using 2, 3-0 sterilized silk sutures. The injured site was covered with Polysporin and Betadine. Animals were returned to their home cage for overnight recovery.

The withdrawal thresholds of animals to tactile stimuli for both operated (ipsilateral) and unoperated (contralateral) paws can be measured using the Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, Calif.). Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After at least 10 minutes of acclimatization, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 10 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continued until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represent approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus.

Compounds of the present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

Neuropathic Pain Model; Chronic Constriction Injury

Briefly, an approximately 3 cm incision was made through the skin and the fascia at the mid thigh level of the animals' left hind leg using a no. 10 scalpel blade. The left sciatic nerve was exposed via blunt dissection through the biceps femoris with care to minimize haemorrhagia. Four loose ligatures were tied along the sciatic nerve using 4-0 non-degradable sterilized silk sutures at intervals of 1 to 2 mm apart. The tension of the loose ligatures was tight enough to induce slight constriction of the sciatic nerve when viewed under a dissection microscope at a magnification of 4 fold. In the sham-operated animal, the left sciatic nerve was exposed without further manipulation. Antibacterial ointment was applied directly into the wound, and the muscle was closed using sterilized sutures. Betadine was applied onto the muscle and its surroundings, followed by skin closure with surgical clips.

The response thresholds of animals to tactile stimuli were measured using the Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, Calif.). Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represents approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus. Compounds of the present invention were shown to be efficacious within a range of 30 mg/kg and 0.1 mg/Kg.

Thermal nociceptive thresholds of the animals were assessed using the Hargreaves test. Following the measurement of tactile thresholds, animals were placed in a Plexiglass enclosure set on top of an elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 24 to 26° C. for all test trials. Animals were allowed to accommodate for 10 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/Tail Stimulator Analgesia Meter (IITC, Woodland Hills, Calif.) was used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source were set at 1 and 55 respectively, and a cut off time of 20 seconds was used to prevent tissue damage.

Biological Example 4 Aconitine Induced Arrhythmia Test

The antiarrhythmic activity of compounds of the invention is demonstrated by the following test. Arrhythmia was provoked by intravenous administration of aconitine (2.0 μg/Kg) dissolved in physiological saline solution. Test compounds of the invention were intravenously administered 5 minutes after the administration of aconitine. Evaluation of the anti-arrhythmic activity was conducted by measuring the time from the aconitine administration to the occurrence of extrasystole (ES) and the time from the aconitine administration to the occurrence of ventricular tachycardia (VT).

In rates under isoflurane anaesthesia (¼ to ⅓ of 2%), a tracheotomy was performed by first creating an incision in the neck area, then isolating the trachea and making a 2 mm incision to insert tracheal tube 2 cm into the trachea such that the opening of the tube was positioned just on top of the mouth. The tubing was secured with sutures and attached to a ventilator for the duration of the experiment.

Incisions (2.5 cm) were then made into the femoral areas and using a blunt dissection probe, the femoral vessels were isolated. Both femoral veins were cannulated, one for pentobarbital anaesthetic maintenance (0.02-0.05 mL) and one for the infusion and injection of drug and vehicle. The femoral artery was cannulated with the blood pressure gel catheter of the transmitter.

The ECG leads were attached to the thoracic muscle in the Lead II position (upper right/above heart—white lead and lower left/below heart—red lead). The leads were secured with sutures.

All surgical areas were covered with gauze moistened with 0.9% saline. Saline (1-1.5 mL of a 0.9% solution) was supplied to moisten the areas post-surgery. The animals' ECG and ventillation were allowed to equilibrate for at least 30 minutes.

The arrhythmia was induced with a 2 μg/Kg/min aconitine infusion for 5 minutes. During this time the ECG was recorded and continuously monitored. An intravenous bolus injection of a test compound of the invention (10, 30 or 100 μg/kg) resulted in a complete return to normal baseline ECG.

Accordingly, compounds of the invention, when tested in this model, demonstrated anti-arrhythmia activity.

Biological Example 5 Ischemia Induced Arrhythmia Test

Rodent models of ventricular arrhythmias, in both acute cardioversion and prevention paradigms have been employed in testing potential therapeutics for both atrial and ventricular arrhythmias in humans. Cardiac ischemia leading to myocardial infarction is a common cause of morbidity and mortality. The ability of a compound to prevent ischemia-induced ventricular tachycardia and fibrillation is an accepted model for determining the efficacy of a compound in a clinical setting for both atrial and ventricular tachycardia and fibrillation.

Anaesthesia is first induced by pentobarbital (i.p.), and maintained by an i.v. bolus infusion. Male SD rats have their trachea cannulated for artificial ventilation with room air at a stroke volume of 10 ml/Kg, 60 strokes/minute. The right femoral artery and vein are cannulated with PE50 tubing for mean arterial blood pressure (MAP) recording and intravenous administration of compounds, respectively.

The chest was opened between the 4th and 5th ribs to create a 1.5 cm opening such that the heart was visible. Each rat was placed on a notched platform and metal restraints were hooked onto the rib cage opening the chest cavity. A suture needle was used to penetrate the ventricle just under the lifted atrium and exited the ventricle in a downward diagonal direction so that a >30% to <50% occlusion zone (OZ) would be obtained. The exit position was ˜0.5 cm below where the aorta connects to the left ventricle. The suture was tightened such that a loose loop (occluder) was formed around a branch of the artery. The chest was then closed with the end of the occluder accessible outside of the chest.

Electrodes were placed in the Lead II position (right atrium to apex) for ECG measurement as follows: one electrode inserted into the right forepaw and the other electrode inserted into the left hind paw.

The body temperature, MAP, ECG, and heart rate were constantly recorded throughout the experiment. Once the critical parameters had stabilized, a 1-2 minute recording was taken to establish the baseline values. Infusion of a compound of the invention or control substance was initiated once baseline values were established. After a 5-minute infusion of compound or control, the suture was pulled tight to ligate the LCA and create ischemia in the left ventricle. The critical parameters were recorded continuously for 20 minutes after ligation, unless the MAP reached the critical level of 20-30 mmHg for at least 3 minutes, in which case the recording was stopped because the animal would be declared deceased and was then sacrificed. The ability of compounds of the invention to prevent arrhythmias and sustain near-normal MAP and HR was scored and compared to control.

Compound of the invention, when tested in this model, demonstrated the ability to prevent ischemia-induced ventricular tachycardia and fibrillation.

*****

All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims

1. A compound of formula (I):

wherein:
j and k are each independently 0, 1, 2 or 3;
Q is —S(O)m— (where m is 0, 1 or 2), —C(O)O—, —C(O)N(R5)— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; and R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R5—N(R4)R5, —R5—C(O)N(R4)R5, —R5—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, and —R8—NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R5—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

2-40. (canceled)

41. The compound of claim 1 wherein:

j is 0 and k is 1 or 2;
Q is —C(O)O— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4—C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4—C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

42-45. (canceled)

46. The compound of claim 41 wherein:

j is 0 and k is 1 or 2;
Q is —C(O)O— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R5—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8-NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

47. The compound of claim 46 wherein:

j is 0 and k is 1 or 2;
Q is —C(O)O— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
R2a, R2b, R2c and R2d are each hydrogen;
R3a and R3d are each hydrogen;
R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl;
each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain.

48. The compound of claim 47 wherein:

j is 0 and k is 1 or 2;
Q is —C(O)O— or —N(R5)C(O)—;
R1 is pentyl or hexyl;
R2a, R2b, R2c and R2d are each hydrogen;
R3a and R3d are each hydrogen;
R3b and R3c, together with the carbon ring atoms to which they are directly attached, form a fused dioxolyl ring; and
each R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl and heteroaryl.

49. The compound of claim 48 selected from the group consisting of the following:

1′-pentyl-6,7-dihydro-5H-spiro[1,3-dioxolo[4,5-g]isoquinoline-8,3′-indole]-2′,5(1′H)-dione; and 1′-hexylspiro[1,3-dioxolo[4,5-g]chromene-8,3′-indole]-2′,6(1′,7H)-dione.

50. A method of treating, preventing or ameliorating a disease or a condition in a mammal selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:
j and k are each independently 0, 1, 2 or 3;
Q is —S(O)m— (where m is 0, 1 or 2), —C(O)O—, —C(O)N(R5)— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)mR5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R5—N(R5)C(O)R4, —R5—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4; —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

51. The method of claim 50, wherein said disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, dental pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, and combinations thereof.

52. The method of claim 50, wherein said disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation.

53. A method of treating pain through inhibition of ion flux through a voltage-dependent sodium channel in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:
j and k are each independently 0, 1, 2 or 3;
Q is —S(O)m— (where m is 0, 1 or 2), —C(O)O—, —C(O)N(R5)— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)mR5 (where m is 0, 1 or 2), —R8—OR5, —R8—CN, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2b and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4—, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

54. A method of decreasing ion flux through a voltage-dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with a compound of formula (I):

wherein:
j and k are each independently 0, 1, 2 or 3;
Q is —S(O)m— (where m is 0, 1 or 2), —C(O)O—, —C(O)N(R5)— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R9—P(O)(OR5)2, or —R9—O—R9—OR5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—OR5, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, —R8—CN, —R8—OR5, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2;
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R5—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

55. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of formula (I):

wherein:
j and k are each independently 0, 1, 2 or 3;
Q is —S(O)m— (where m is 0, 1 or 2), —C(O)O—, —C(O)N(R5)— or —N(R5)C(O)—;
R1 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl; heterocyclyl, —R8—C(O)R5, —R8—C(O)OR5, —R8—C(O)N(R4)R5, —S(O)2—R5, —R9—S(O)m—R5 (where m is 0, 1 or 2), —R8—OR5, —R5—P(O)(OR5)2, or —R5—O—R5;
or R1 is aralkyl substituted by —C(O)N(R6)R7 where: R6 is hydrogen, alkyl, aryl or aralkyl; and R7 is hydrogen, alkyl, haloalkyl, —R9—CN, —R9—N(R4)R5, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroarylalkyl; or R6 and R7, together with the nitrogen to which they are attached, may form a heterocyclyl or heteroaryl; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R6 and R7 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, heterocyclyl and heteroaryl;
or R1 is aralkyl optionally substituted by one or more substituents selected from the group consisting of —R8—OR5, —C(O)OR5, halo, haloalkyl, alkyl, nitro, cyano, aryl, aralkyl, heterocyclyl and heteroaryl;
or R1 is —R9—N(R10)R11, —R9—N(R12)C(O)R11 or —R9—N(R10)C(O)N(R10)R11 where: each R10 is hydrogen, alkyl, aryl, aralkyl or heteroaryl; each R11 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R9—OC(O)R5, —R9—C(O)OR5, —R9—C(O)N(R4)R5, —R9—C(O)R5, —R9—N(R4)R5, —R9—OR5, or —R9—CN; R12 is hydrogen, alkyl, aryl, aralkyl or —C(O)R5; and wherein each aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R10 and R11 may be optionally substituted by one or more substituents selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, halo, haloalkyl, nitro, —R8—CN, —R8—OR5, —R8—C(O)R5, heterocyclyl and heteroaryl;
or R1 is heterocyclylalkyl or heteroarylalkyl where the heterocyclylalkyl or the heteroarylalkyl group is optionally substituted by one or more substituents selected from the group consisting of oxo, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—OR5, —R8—C(O)OR5, —R8—N(R4)R5, —R8—C(O)N(R4)R5, —R8—N(R5)C(O)R4, —R8—S(O)mR4 (where m is 0, 1 or 2), —R8—CN, or —R8—NO2,
R2a, R2b, R2c and R2d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(═N—CN)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2; and wherein each of the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl groups for R2a, R2b, R2c and R2d may be optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —S(O)mR4, —R8—S(O)nN(R4)R5, —R8—C(O)R4, —R8—C(O)OR4, —R8—C(O)N(R4)R5, —N(R5)C(O)R4, and —N(R5)S(O)nR4, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R2a and R2b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2c and R2d are as defined above;
or R2b and R2c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2d are as defined above;
or R2c and R2d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, aryl, heterocyclyl and heteroaryl, and R2a and R2b are as defined above;
R3a, R3b, R3c and R3d are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, haloalkenyl, haloalkoxy, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, aralkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, —R8—CN, —R8—NO2, —R8—OR5, —R8—N(R4)R5, —N═C(R4)R5, —S(O)mR4, —OS(O)2CF3, —R8—C(O)R4, —C(S)R4, —C(R4)2C(O)R5, —R8—C(O)OR4, —C(S)OR4, —R8—C(O)N(R4)R5, —C(S)N(R4)R5, —N(R5)C(O)R4, —N(R5)C(S)R4, —N(R5)C(O)OR4, —N(R5)C(S)OR4, —N(R5)C(O)N(R4)R5, —N(R5)C(S)N(R4)R5, —N(R5)S(O)nR4, —N(R5)S(O)nN(R4)R5, —R8—S(O)nN(R4)R5, —N(R5)C(═NR5)N(R4)R5, and —N(R5)C(N═C(R4)R5)N(R4)R5, wherein each m is independently 0, 1, or 2 and each n is independently 1 or 2;
or R3a and R3b, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3c and R3d are as defined above;
or R3b and R3c, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3d are as defined above;
or R3c and R3d, together with the carbon ring atoms to which they are directly attached, may form a fused ring selected from cycloalkyl, heterocyclyl, aryl or heteroaryl, and R3a and R3b are as defined above;
each R4 and R5 is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, and heteroarylalkyl;
or when R4 and R5 are each attached to the same nitrogen atom, then R4 and R5, together with the nitrogen atom to which they are attached, may form a heterocyclyl or heteroaryl;
each R8 is a direct bond or a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; and
each R9 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.
Patent History
Publication number: 20110251224
Type: Application
Filed: Apr 1, 2011
Publication Date: Oct 13, 2011
Applicant: (Burnaby)
Inventors: Mikhail Chafeev , Nagasree Chakka , Sultan Chowdhury , Robert Fraser , Jianmin Fu (Coquitlam), Duanjie Hou , Tom Hsieh , Rajender Kamboj , Shifeng Liu (Coquitlam), Vandna Ralna , Mehran Seid Bagherzadeh , Jianyu Sun ( San Mateo, CA), Shaoyi Sun , Serguei Sviridov
Application Number: 13/078,678
Classifications
Current U.S. Class: Spiro Ring System (514/278); Polycyclo Ring System Having The Six-membered Hetero Ring As One Of The Cyclos (546/18); Acyclic Chalcogen Attached Directly To The Five-membered Nitrogen Containing Spiro Hetero Ring By Nonionic Bonding (548/410); Spiro Ring System (514/409)
International Classification: A61K 31/4747 (20060101); A61K 31/407 (20060101); A61P 25/24 (20060101); A61P 25/04 (20060101); A61P 9/00 (20060101); A61P 11/00 (20060101); A61P 25/18 (20060101); A61P 29/00 (20060101); A61P 25/06 (20060101); A61P 25/00 (20060101); A61P 43/00 (20060101); A61P 25/22 (20060101); A61P 9/10 (20060101); A61P 19/02 (20060101); A61P 35/00 (20060101); A61P 25/08 (20060101); A61P 9/06 (20060101); C07D 491/20 (20060101);