Locking Device For Connectors
A connector for high amperage, AC or DC connection includes a plug and a receptacle configured to securely mate and lock with each other. Connector receptacles include a locking mechanism having a sleeve unit having a plurality of openings configured to receive a plurality of alignment members, a control unit in communication with the alignment members, and at least one extension member coupling the sleeve unit to the control unit. The control unit is configured to bias the alignment members to engage a groove in a plug in a locked position. Upon rotation of the control unit, the control unit engages the sleeve unit and allows the alignment members to freely move, thus allowing a user to connect or disconnect the plug from the receptacle.
The present invention relates generally to a locking device. More particularly, the present invention is directed to an automatic locking device for single pole connectors.
BACKGROUND OF THE INVENTIONHeavy duty connectors include receptacles and plugs for high power cable connections and may be used, for example, in oil drilling applications. For instance, heavy duty connectors can safely carry power from generators to switch gear, selective catalytic reduction (SCR) packages, or traction motors, including mud pumps, draw works, rotary tables, cement pumps and other offshore applications. Conventionally, once a high power plug is inserted into a receptacle, an external “U” shaped clevis pin may be used to lock the plug in place and eliminate the possibility of accidental disengagement. Typically, the clevis pin is vertically inserted into a set of holes in the upper and lower portion the receptacle and seated within a groove molded in the plug to positively lock the plug within the receptacle. However, the process of inserting the clevis pin into the receptacle to lock the plug in place may be cumbersome for the user because the clevis pin must be aligned with the set of holes in the upper and lower portion of the receptacle as well as the molded groove in the plug.
Therefore, a need exists for a receptacle having an improved locking mechanism that is easier to use than conventional receptacles.
SUMMARY OF THE INVENTIONThe present invention attempts to satisfy the above-described need by providing a locking mechanism for automatically securing a plug within a receptacle. Generally, the locking mechanism is coupled to a plug receiving end of a connector receptacle. The locking mechanism includes a sleeve unit having openings configured to receive alignment members, and a control unit coupled to the sleeve unit by extension members. In certain aspects, the extension members are extension springs.
The alignment members are configured to engage and lock the plug once inserted in the receptacle. The control unit biases the alignment members in a locked position. Upon rotation of the control unit, in an unlocked position, the alignment members are free to move into grooves in the control unit, thus allowing a user to connect and disconnect the plug from the receptacle. The extension members bias some of the alignment members towards the locked position, thus once the plug is inserted into the receptacle, the alignment members automatically lock the plug into place by shifting into the locked position.
In certain aspects, the sleeve unit includes a push sleeve and a retainer. The retainer can include notches configured to engage a control unit when the locking mechanism is in the unlocked position. The retainer can be coupled to one end of the extension members.
In certain aspects, the control unit includes a spinner, locking ring, and a control wheel. The spinner can be coupled a second end of the extension members. The locking ring includes protrusions that bias the alignment members to a locked position, and grooves that engage the alignment members when in the unlocked position. In certain aspects, the locking ring includes notches that engage the notches on the retainer in the unlocked position. Upon rotation of the control wheel, the locking ring engages the retainer.
In certain aspects, the extension members are extension springs. In the unlocked position, the extension members are extended. Alternating alignment members may be exposed to tension from the extension members, and the tension forces the alignment members towards the locked position and allow the extension members to return to their original state.
These and other aspects, objects, features and embodiments of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode for carrying out the invention as presently perceived.
The present invention relates to connectors having an improved locking mechanism for securing a plug within a receptacle. The locking device described herein allows positive locking of a plug to a receptacle. The locking device can generally lock the plug in the same position each time with added strength over conventional locking devices. The locking device also can allow automatic positioning and locking of the plug to the receptacle.
The invention may be better understood by reading the following description of non-limitative, exemplary embodiments with reference to the attached drawings wherein like parts of each of the figures are identified by the same reference characters.
A bracket 115 is coupled to an exterior of the housing 105. The bracket 115 includes an opening 115a configured to accept a securing mechanism (not shown), such as a lock. The bracket 115 prevents a user from accidentally unlocking the plug from the receptacle 100.
The receptacle 100 includes a push sleeve 120 partially positioned within the cavity 105a and coupled to an interior of the plug receiving end 105b of the housing 105. The push sleeve 120 includes multiple alignment members 125a, 125b positioned within apertures 120a in the push sleeve 120. The alignment members 125a, 125b align and hold the plug in a locked position.
The receptacle 100 also includes an insert assembly housing 135 positioned within the cavity 105a of the housing 105. The insert assembly housing 135 houses an insert assembly (not shown) configured to mate with a connector plug. The receptacle 100 further includes a control wheel 140 coupled to an exterior of the push sleeve 120. The control wheel 140 is movable between a first position and a second position, and allows a user to disengage a plug from the receptacle 100 upon rotation.
The receptacle 100 includes a circular retainer 145 having a plurality of apertures 145a corresponding to and aligned with the apertures 120a on the push sleeve 120 when the retainer 145 is coupled to the push sleeve 120. In certain embodiments, the retainer 145 may be coupled to the push sleeve 120 via screws 150 extending from holes 145c on the retainer 145 through holes 120c on the push sleeve 120. The receptacle 100 also includes a circular spinner 160. The spinner 160 is movably coupled to the retainer 145 by springs 170 extending from holes 145d on the retainer 145 to holes 160d on the spinner 160.
The receptacle 100 further includes a locking ring 165 coupled to the control wheel 140. The locking ring 165 includes notches 165a on an exterior and configured to receive protrusions 140a positioned on an interior of the control wheel 140. The spinner 160 is also coupled to the control wheel 140. The spinner 160 is positioned within the control wheel 140, and includes protrusions 160b configured to engage grooves 140b of the control wheel 140. As a result, the control wheel 140, the spinner 160, and the locking ring 165 are partially rotatable about the remaining components of the receptacle 100 by way of the springs 170.
The receptacle 100 also includes a gasket 175 positioned between the control wheel 140 and the plug receiving end 105b of the housing 105. The receptacle 100 further includes the bracket 115 coupled to an exterior of the housing 105 via screw 180. The bracket 115 includes an opening 115a configured to accept a securing mechanism (not shown).
The push sleeve 200 also includes four holes 220 configured to receive fastening means (not shown) for coupling to a retainer (not shown), and four holes 225 configured to receive fastening means (not shown) for coupling to a receptacle housing 105.
The retainer 400 includes four notches 415 located on alternating apertures 410. The notches 415 are configured to engage corresponding notches on a locking ring (not shown). The retainer 400 also includes four protrusions 420, each having a spring attachment member 425 extending therefrom.
The locking ring 700 further includes eight rectangular notches 725 spaced apart along an exterior surface 730. The notches 725 are configured to receive corresponding rectangular protrusions on an interior surface of a control wheel (not shown). One having ordinary skill in the art will recognize that the notches 725 can have any shape for engaging corresponding protrusions on the control wheel. One having ordinary skill in the art also will recognize that any number of notches 725 may be included in the locking ring 700, and corresponding to the number of protrusions on the control wheel.
The control wheel 800 further includes eight rectangular protrusions 820 extending inwardly from and orthogonal to the interior surface 810. The protrusions 820 are configured to engage the rectangular notches 520 on the spinner 500 (
The control wheel 800 also includes eight notches 825 positioned on an end of an exterior surface 830. At least one of the notches 825 align with the bracket 300 (
Generally, the components of the locking mechanism on the receptacles of the present invention may be fabricated from any material that is corrosion-resistant. Suitable materials include, but are not limited to, stainless steel, and corrosion-resistant aluminum. The locking mechanisms of the present invention are capable of preventing accidental disengagement of a plug from the receptacle. The inclusion of alignment members in communication with a locking ring and a control wheel allow a user to safely and easily engage and disengage a plug from a receptacle.
Any spatial references herein, such as, for example, “top,” “bottom,” “upper,” “lower,” “above”, “below,” “rear,” “between,” “vertical,” “angular,” “beneath,” etc., are for purpose of illustration only and do not limit the specific orientation or location of the described structure.
Therefore, the invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those having ordinary skill in the art and having the benefit of the teachings herein. For instance, the features of the locking ring may be integrated into the control wheel to form a single control unit. Also, the features of the retainer may be integrated into the push sleeve to form a single sleeve unit. While numerous changes may be made by those having ordinary skill in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention as defined by the claims below. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Claims
1. A receptacle comprising:
- a receptacle housing;
- a locking mechanism coupled to a plug receiving end of the receptacle housing, the locking mechanism comprising: a sleeve unit having a plurality of openings; a plurality of alignment members, wherein each alignment member is positioned within the plurality of openings, and wherein the plurality of alignment members are movable between a first position and a second position; a control unit movable between a locked position and an unlocked position, wherein the control unit allows movement of the alignment members towards the first position in an unlocked position, and wherein the control unit biases the alignment members towards the second position in a locked position; at least one extension member coupling the control unit to the sleeve unit, wherein the at least one extension member is extended when the control unit is in the unlocked position.
2. The receptacle of claim 1, wherein the sleeve unit comprises a push sleeve coupled to a retainer, wherein the at least one extension member is coupled to the retainer.
3. The receptacle of claim 1, wherein the control unit comprises a spinner, wherein the at least one extension member is coupled to the spinner.
4. The receptacle of claim 1, wherein the control unit comprises a control wheel coupled to a locking ring, wherein the locking ring biases the alignment members towards the second position in the locked position.
5. The receptacle of claim 1, wherein the at least one extension member is an extension spring.
6. The receptacle of claim 1, wherein at least one alignment member is exposed to tension from the at least one extension member in the unlocked position, wherein the tension forces the at least one alignment member towards the second position.
7. The receptacle of claim 1, wherein the control unit comprises at least one first notch, wherein the sleeve unit comprises at least one second notch, wherein the at least one first notch engages the at least one second notch when the control unit is in the unlocked position.
8. The receptacle of claim 7, wherein the control unit comprises a locking ring, wherein the locking ring comprises the at least one first notch.
9. The receptacle of claim 7, wherein the control unit comprises a control wheel, wherein the control wheel comprises the at least one first notch.
10. The receptacle of claim 7, wherein the sleeve unit comprises a retainer, wherein the retainer comprises the at least one second notch.
11. The receptacle of claim 7, wherein the sleeve unit comprises a push sleeve, wherein the push sleeve comprises the at least one second notch.
12. A locking mechanism comprising:
- a sleeve unit having a plurality of openings;
- a plurality of alignment members, wherein each alignment member is positioned within the plurality of openings, and wherein the plurality of alignment members are movable between a first position and a second position;
- a control unit movable between a locked position and an unlocked position, wherein the control unit allows movement of the alignment members towards the first position in an unlocked position, and wherein the control unit biases the alignment members towards the second position in a locked position;
- at least one extension member coupling the control unit to the sleeve unit, wherein the at least one extension member is extended when the control unit is in the unlocked position.
13. The receptacle of claim 12, wherein the sleeve unit comprises a push sleeve coupled to a retainer, wherein the at least one extension member is coupled to the retainer.
14. The receptacle of claim 12, wherein the control unit comprises a spinner, wherein the at least one extension member is coupled to the spinner.
15. The receptacle of claim 12, wherein the control unit comprises a control wheel coupled to a locking ring, wherein the locking ring biases the alignment members towards the second position in the locked position.
16. The receptacle of claim 12, wherein the at least one extension member is an extension spring.
17. The receptacle of claim 12, wherein at least one alignment member is exposed to tension from the at least one extension member in the unlocked position, wherein the tension forces the at least one alignment member towards the second position.
18. The receptacle of claim 12, wherein the control unit comprises at least one first notch, wherein the sleeve unit comprises at least one second notch, wherein the at least one first notch engages the at least one second notch when the control unit is in the unlocked position.
19. The receptacle of claim 18, wherein the control unit comprises a locking ring, wherein the locking ring comprises the at least one first notch.
20. The receptacle of claim 18, wherein the sleeve unit comprises a retainer, wherein the retainer comprises the at least one second notch.
21. A locking mechanism comprising:
- a means for housing a means for engaging a plug, the housing means having a plurality of openings, wherein the means for engaging a plug are positioned within the plurality of openings, and wherein the means for engaging a plug are movable between a first position and a second position;
- a means for controlling movement of the means for engaging a plug, wherein the controlling means allows movement of the means for engaging a plug towards the first position in an unlocked position, and wherein the controlling means biases movement of the means for engaging a plug towards the second position in a locked position;
- at least one extension member coupling the controlling means to the housing means, wherein the at least one extension member is extended when the controlling means is in the unlocked position.
Type: Application
Filed: May 3, 2010
Publication Date: Nov 3, 2011
Applicant: Cooper Techologies Company (Houston, TX)
Inventor: Michael John Saber (Carmel, IN)
Application Number: 12/772,419
International Classification: H01R 13/62 (20060101);