SOLAR PANEL MOUNTING RACK SYSTEM
A solar panel mounting rack includes a plurality of riser components. Each riser component includes a body, a first support member extending from a first end of the body and a second support member extending from a second end of the body. A roof engaging member is fixedly coupled to the first support member of each of the riser components. Each roof engaging member defines an aperture therethrough for securing the riser components to a roof. A plurality of transverse rails is also provided. The second support members of each of the riser components are fixedly coupled to the transverse rails. The riser components are spaced apart relative to one another along a length of the transverse rails. The plurality of transverse rails is positioned substantially parallel with respect to one another and defines at least one gap therebetween for securing a solar panel to the riser components.
The present disclosure relates to a mounting rack. More particularly, the present disclosure relates to a mounting rack system for mounting solar panels on a roof.
TECHNICAL FIELDSolar power has become increasingly popular in recent years as an alternative to finite energy sources such as oil and coal. In particular, commercial and residential property roof solar panel systems have become a viable, cost-effective option for business owners and homeowners. A typical roof solar panel system includes several solar modules, or panels that are mounted on the roof. Each solar panel includes a plurality of solar cells arranged in a grid-like configuration for converting sunlight into DC power. An inverter is coupled to the solar panels for converting the DC power into AC power for powering utilities within the building, e.g., lighting systems, appliances, motors, etc. Batteries are also included in a typical solar panel system so that the AC power generated during sunny daylight hours may be used during the night and/or on non-sunny days. Another major component of a typical solar panel system is a mounting bracket, or mounting system for mounting the solar panels to the roof.
Solar panels are typically about 2 inches thick, 5 feet long and 2½ feet wide (although some may be larger or smaller) and weigh up to about 30 lbs. each. Residential roof solar panel systems may include up to 12 (or more) solar panels. Further, specific roof features, e.g., angled roofs, skylights, chimneys, etc., trees or other obstructions that may shade portions of the roof, and the direction of best sunlight are all factors that must be taken into account when determining how and where to mount the solar panels on the roof.
As can be appreciated, a solar panel mounting system must have sufficient strength to secure each solar panel to the roof and to withstand severe weather, e.g., wind and snow, and must be versatile enough to permit mounting of the solar panels on various roof configurations, e.g., roofs of varying size, shape, slope, frame structure and/or shingling, while taking into account the direction of best sunlight as well as the positioning of trees or other obstructions.
SUMMARYIn accordance with one embodiment of the present disclosure, a solar panel mounting rack is provided. The solar panel mounting rack includes a plurality of riser components. Each riser component includes a body portion, a first support member extending from a first end of the body portion and a second support member extending from a second end of the body portion. A plurality of roof engaging members is also provided. Each roof engaging member is fixedly coupled to the first support member of one of the riser components. Each roof engaging member further defines an aperture therethrough for securing the riser components to a roof. A plurality of transverse rails is also provided. The second support members of each of the riser components are fixedly coupled to the transverse rails. The riser components are spaced-apart relative to one another along a length of the transverse rails. The plurality of transverse rails is positioned substantially parallel with respect to one another and define one or more gaps therebetween for securing a solar panel to the riser components.
In one embodiment, the plurality of riser components is equally spaced along the transverse rails. The roof engaging members may be sufficiently spaced with respect to one another such that each roof engaging member is engageable with a roof rafter.
In another embodiment, the first support members extend normally from the first ends of the body portions in a first direction and the second support members extend normally from the second ends of the body portions in a second, opposite direction.
In yet another embodiment, the roof engaging members are configured and dimensioned for positioning between overlapping, adjacent roof shingles such that the integrity of the roof shingles is not compromised during installation of the mounting rack.
In still another embodiment, one or more of the roof engaging members includes an adjustable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point. Alternatively, one or more of the riser components may include a bendable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
In another embodiment, two substantially parallel transverse rails interconnect the riser components along a length of the transverse rails.
Each riser component may be formed as a single, integrated piece. Further, the first support member of each riser component may be welded to one of the roof engaging members and/or the transverse rails may be welded to the second support members of each riser component.
In yet another embodiment, the transverse rails are configured and dimensioned to secure at least one solar panel longitudinally along a longitudinal side of the solar panel. Further, the transverse rails may define a substantially linear configuration.
In still another embodiment, when the roof engaging members are engaged to the roof and when the solar panel is engaged to the transverse rails, the solar panel is spaced-apart from the roof.
In accordance with another embodiment of the present disclosure, a solar panel mounting system is provided. The solar panel mounting system includes first and second solar panel mounting racks according to any of the above embodiments. The first solar panel mounting rack secures the solar panel thereto toward a first longitudinal side of the solar panel and the second solar panel mounting rack secures the solar panel thereto toward a second, opposite longitudinal side of the solar panel.
In one embodiment, a length of the body portions of each of the first and second solar panel mounting racks may be substantially equal such that the solar panel is substantially parallel with respect to the roof when mounted thereon. Alternatively, the length of the body portions of the first solar panel mounting rack may be different from the length of the body portions of the second solar panel mounting rack such that the solar panel is angled with respect to the roof when mounted thereon.
In another embodiment, the roof engaging members of each of the first and second solar panel mounting racks are sufficiently spaced for engaging one (or more) roof rafters. More particularly, the roof engaging members may be sufficiently spaced such that each roof engaging member is engageable with a roof rafter. Further, the roof engaging members may be spaced to engage adjacent roof rafters.
In accordance with yet another embodiment of the present disclosure, a method of attaching a solar panel to a roof is provided. The method includes providing first and second solar panel mounting racks according to any of the above embodiments. The method also includes attaching each roof engaging member of the first solar panel mounting rack to the roof and attaching each roof engaging member of the second solar panel mounting rack to the roof such that the first and second solar panel mounting racks are spaced-apart from one another a distance not greater than a width of the solar panel. Next, the solar panel may be attached to the transverse rails of the first solar panel mounting rack toward a first longitudinal side of the solar panel and to the transverse rails of the second solar panel mounting rack toward a second longitudinal side of the solar panel.
In one embodiment, additional solar panels may be mounted to the solar panel mounting racks. The additional solar panels may be positioned end-to-end with respect to one another to extend longitudinally along the transverse rails of the first and second mounting racks.
A securing member(s), e.g., screws, bolts, nails or the like, may be disposed through the apertures defined within each of the roof engaging members for attaching the solar panel mounting racks to the roof and/or may be disposed through the at least one gap defined between the transverse rails for attaching the solar panel to the solar panel mounting racks at various positions along a length thereof.
Various illustrative embodiments of the present disclosure are described herein with reference to the drawings, wherein:
Illustrative embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements.
Turning now to
Solar panel mounting racks 100, 200 may be formed from any suitable bendable stock material, for example, heavy-gauge wire stock material having sufficient strength to support a plurality of solar panels mounted thereon and to withstand severe weather, e.g., wind and ice. However, it is also envisioned that solar panel mounting racks 100, 200 have some degree of flexibility to prevent fracture and/or disengagement from the roof in severe conditions. Some flexibility may also permit solar panel mounting racks 100, 200 to be bent in order to accommodate solar panels 300 of varying sizes and/or such that solar panel mounting racks 100, 1200 may be positioned on roofs of varying configurations. Thus, solar panel mounting racks 100, 200 may be formed from any suitable material with sufficient strength and flexibility. Further, solar panel mounting racks 100, 200 may be made from a non-corrosive material or may be coated with a non-corrosive material to inhibit rusting and to help maintain the strength and flexibility of solar panel mounting racks 100, 200 over time. Additionally, due to the wire-frame configuration of solar panel mounting system 10, solar panel mounting system 10 may be relatively light-weight and easy to maneuver while still maintaining sufficient strength to fixedly-retain one or more solar panels thereon.
With reference now to
With continued reference to
Referring now to
More specifically, the first support member 114 of each riser 110 of mounting rack 100 is generally centered on and aligned with a corresponding roof engaging member 120. First support members 114 may be coupled, e.g., welded, to a top surface 128a of roof engaging members 120. With the first support member 114 of each riser 110 of mounting rack 100 engaged to a top surface 128a of a roof engaging member 120, roof engaging members 120 each define a generally planar bottom surface 128b that permits roof engaging members 120 to mate flush with roof 410 (see
Risers 210 (
With reference now to
Referring momentarily back to
With reference now to
With continued reference to
The adjustable configuration of roof engaging member 120″ allows mounting racks 100, 200 to be positioned between the shingles of a roof, e.g., shingles 440 (
Referring now to
Initially, the positioning of first solar panel mounting rack 100 is determined. More specifically, first solar panel mounting rack 100 may be positioned on roof 410, away from obstructions that may shade a portion of the solar panels 300 when mounted thereto. It is also contemplated that the first solar panel mounting rack 100 be positioned to align roof engaging members 120 with one or more roof rafters 420 of building structure 410, such that first solar panel mounting rack 100 may be secured thereto and to help ensure a secure engagement. When the positioning has been determined, exposed portion 444 of a roof shingle 400, e.g., roof shingle 440a, as shown in
When properly positioned, a securing member 500, e.g., a screw, bolt, nail, etc., is inserted through the slot 122 (or aperture 122′) defined within roof engaging member 120 and is fixedly-engaged, e.g., anchored, within roof 410 to secure roof engaging member 120 to roof 410. In embodiments where roof engaging member 120 is positioned adjacent a roof rafter 420, securing member 500 is advanced into roof rafter 420 for securing roof engaging member 120 to roof 410. As can be appreciated, due to the positioning of roof engaging member 120, securing member 500 is advanced directly through roof 410, and not through any of shingles 440. Thus, the integrity of shingles 440 is maintained. Similarly, each of the other roof engaging members 120 disposed on first support members 114 of risers 110 of mounting rack 100 are fixedly-secured to roof 410 in a similar fashion, e.g., between adjacent shingles 440, such that first solar panel mounting rack 100 is fixedly-secured to roof 410 along a substantially length thereof without interfering with the shingling 440. It is envisioned that washers, braces, plates, or other additional securing components (not explicitly shown) may be used to facilitate securing of roof engaging members 120 to roof 410. Alternatively, roof engaging members 120 may be secured to roof 410 via any other suitable mechanism.
Next, second solar panel mounting rack 200 is positioned on roof 410, similarly as discussed above with regard to solar panel mounting rack 100, spaced-apart from first solar panel mounting rack 100 an appropriate distance for engaging first and second longitudinal sides 310, 320, respectively, of solar panel 300 to first and second solar panel mounting racks 100, 200, respectively. It is envisioned that second solar panel mounting rack 200 be substantially parallel to first solar panel mounting rack 100. As discussed above with respect to the embodiment of
With second solar panel mounting rack 200 properly positioned, each roof engaging member 220 of second solar panel mounting rack 200 may be inserted between adjacent shingles 440 and secured to roof 410 similarly as mentioned above regarding first solar panel mounting rack 100 to fixedly-secure second solar panel mounting rack 100 to roof 410 and roof rafters 420.
With continued reference to
Solar panel 300 may be secured to first and second pairs of transverse rails 130, 140 and 230, 240, respectively, of first and second solar panel mounting racks 100, 200, respectively, as described above, at multiple positions (using a plurality of securing members 500) along the length of transverse rail pairs 130, 140, and 230, 240. The number and/or positioning of securing members 500 for securing solar panel 300 to solar panel mounting racks 100, 200 may be determined by the number of pre-defined apertures within solar panel 300 (which is determined by the manufacturer of the solar panel). As can be appreciated, the ability to position securing members 500 substantially along the entire length of transverse rail pairs 130, 140 and 230, 240 allows solar panel mounting system 10 to be adapted for use with solar panels having varying configurations, e.g., solar panels having varying number, size, shape and positioning of the securing components (e.g., threaded apertures) therealong.
With reference now to FIGS. 8 and 9A-9B, solar panel 300 is shown fixedly-secured to roof 410 of building 400, although solar panel mounting system 10 may be configured for mounting on a roof of any building structure. As best shown in
As shown in
However, where the roof is too flat (or too steep), positioning solar panel 300 substantially parallel with respect to the roof may limit the time, area and/or intensity of direct sunlight exposure to top surface 340 of solar panel 300. Accordingly, as shown in
Referring now to
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims
1. A solar panel mounting rack, comprising:
- a plurality of riser components, each riser component including a body portion, a first support member extending from a first end of the body portion and a second support member extending from a second end of the body portion;
- a plurality of roof engaging members, each roof engaging member fixedly coupled to the first support member of one of the riser components, each roof engaging member defining an aperture therethrough for securing the riser components to a roof; and
- a plurality of transverse rails, the second support members of each of the riser components fixedly coupled to the transverse rails, the riser components spaced apart relative to one another along a length of the transverse rails, the plurality of transverse rails positioned substantially parallel with respect to one another and defining at least one gap therebetween for securing a solar panel to the riser components.
2. The solar panel mounting rack according to claim 1, wherein the plurality of riser components are equally spaced along the transverse rails.
3. The solar panel mounting rack according to claim 1, wherein the first support members extend normally from the first ends of the body portions in a first direction and wherein the second support members extend normally from the second ends of the body portions in a second, opposite direction.
4. The solar panel mounting rack according to claim 1, wherein the roof engaging members are configured and dimensioned for positioning between overlapping roof shingles such that the integrity of the roof shingles is not compromised.
5. The solar panel mounting rack according to claim 1, wherein the roof engaging members are spaced relative to one another a pre-determined distance such that each of the roof engaging members is engageable with a roof rafter.
6. The solar panel mounting rack according to claim 1, wherein at least one of the roof engaging members includes an adjustable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
7. The solar panel mounting rack according to claim 1, wherein at least one of the riser components includes a bendable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
8. The solar panel mounting rack according to claim 1, wherein two substantially parallel transverse rails interconnect the riser components along a length of the transverse rails.
9. The solar panel mounting rack according to claim 1, wherein each riser component is formed as a single, integrated piece.
10. The solar panel mounting rack according to claim 1, wherein the first support member of each riser component is welded to one of the roof engaging members.
11. The solar panel mounting rack according to claim 1, wherein the transverse rails are welded to the second support members of each riser component.
12. The solar panel mounting rack according to claim 1, wherein the transverse rails are configured and dimensioned to secure at least one solar panel longitudinally along a longitudinal side of the solar panel.
13. The solar panel mounting rack according to claim 1, wherein, when the roof engaging members are engaged to the roof and when the solar panel is engaged to the transverse rails, the solar panel is spaced-apart from the roof.
14. The solar panel mounting rack according to claim 1, wherein the transverse rails define a substantially linear configuration.
15. A solar panel mounting system, comprising:
- first and second solar panel mounting racks, each solar panel mounting rack including: a plurality of riser components, each riser component including a body portion, a first support member extending from a first end of the body portion and a second support member extending from a second end of the body portion; a plurality of roof engaging members, each roof engaging member fixedly coupled to the first support member of one of the riser components, each roof engaging member defining an aperture therethrough for securing the riser components to a roof; and a plurality of transverse rails, the second support members of each of the riser components fixedly coupled to the transverse rails, the riser components spaced apart relative to one another along a length of the transverse rails, the plurality of transverse rails positioned substantially parallel with respect to one another and defining at least one gap therebetween for securing a solar panel to the riser components; and
- wherein, the first solar panel mounting rack is configured to secure the solar panel thereto toward a first longitudinal side of the solar panel and wherein the second solar panel mounting rack is configured to secure the solar panel thereto toward a second, opposite longitudinal side of the solar panel.
16. The solar panel mounting system according to claim 15, wherein a length of the body portions of each of the first and second solar panel mounting racks is substantially equal such that the solar panel is substantially parallel with respect to the roof when mounted thereon.
17. The solar panel mounting system according to claim 15, wherein a length of the body portions of the first solar panel mounting rack is different from a length of the body portions of the second solar panel mounting rack such that the solar panel is angled with respect to the roof when mounted thereon.
18. The solar panel mounting system according to claim 15, wherein the roof engaging members are configured and dimensioned for positioning between overlapping roof shingles such that the integrity of the roof shingles is not compromised.
19. The solar panel mounting system according to claim 15, wherein at least one of the roof engaging members includes an adjustable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
20. The solar panel mounting system according to claim 15, wherein at least one of the riser components includes a bendable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
21. The solar panel mounting system according to claim 15, wherein the roof engaging members of each of the first and second solar panel mounting racks are sufficiently spaced relative to one another for engaging at least one roof rafter.
22. The solar panel mounting system according to claim 15, wherein the roof engaging members of each of the first and second solar panel mounting racks are sufficiently spaced relative to one another such that each of the roof engaging members is engageable a roof rafter.
23. The solar panel mounting system according to claim 22, wherein the roof engaging members are spaced such that adjacent roof engaging members are engageable with adjacent roof rafters.
24. The solar panel mounting system according to claim 15, wherein the plurality of riser components of each of the first and second solar panel mounting racks are equally spaced along the transverse rails.
25. The solar panel mounting system according to claim 15, wherein the first support members extend normally from the first ends of the body portions in a first direction and wherein the second support members extend normally from the second ends of the body portions in a second, opposite direction.
26. The solar panel mounting system according to claim 15, wherein two substantially parallel transverse rails interconnect the riser components along a length of the transverse rails.
27. The solar panel mounting system according to claim 15, wherein each riser component is formed as a single, integrated piece.
28. The solar panel mounting system according to claim 15, wherein the first support member of each riser component is welded to one of the roof engaging members.
29. The solar panel mounting system according to claim 15, wherein the transverse rails are welded to the second support members of each riser component.
30. The solar panel mounting system according to claim 15, wherein the transverse rails are configured and dimensioned to secure at least one solar panel longitudinally along a longitudinal side of the solar panel.
31. The solar panel mounting system according to claim 15, wherein, when the roof engaging members are engaged to the roof and when the solar panel is engaged to the transverse rails, the solar panel is spaced-apart from the roof.
32. The solar panel mounting system according to claim 15, wherein the transverse rails define a substantially linear configuration.
33. A method of attaching a solar panel to a roof, the method comprising the steps of:
- providing first and second solar panel mounting racks, each solar panel mounting rack including: a plurality of riser components; a plurality of roof engaging members, each roof engaging member fixedly coupled to one of the riser components, each roof engaging members defining an aperture therethrough for securing the riser components to a roof; and a plurality of transverse rails, each riser component fixedly coupled to the transverse rails, the riser components spaced apart relative to one another along a length of the transverse rails, the plurality of transverse rails defining at least one gap therebetween for securing a solar panel to the riser components;
- attaching each roof engaging member of the first solar panel mounting rack to the roof;
- attaching each roof engaging member of the second solar panel mounting rack to the roof such that the first and second solar panel mounting racks are spaced-apart from one another a distance not greater than a width of the solar panel;
- attaching the solar panel to the transverse rails of the first solar panel mounting rack toward a first longitudinal side of the solar panel; and
- attaching the solar panel to the transverse rails of the second solar panel mounting rack toward a second longitudinal side of the solar panel.
34. The method according to claim 33, further comprising the step of attaching additional solar panels to the solar panel mounting racks such that the solar panels are positioned end-to-end with respect to one another and extend longitudinally along the transverse rails of the first and second mounting racks.
35. The method according to claim 33, wherein a securing member is disposed through the aperture defined within each of the roof engaging members for attaching the solar panel mounting racks to the roof.
36. The method according to claim 33, wherein securing members are disposed through the at least one gap defined between the transverse rails at a plurality of positions along the transverse rails for attaching the solar panel to the solar panel mounting racks.
37. The method according to claim 33, wherein, when the roof engaging members are engaged to the roof and when the solar panel is engaged to the transverse rails, the solar panel is spaced-apart from the roof.
38. The method according to claim 33, wherein a height of each of the first and second solar panel mounting racks is substantially equal such that the solar panel is substantially parallel with respect to the roof when mounted thereon.
39. The method according to claim 33, wherein a height of the first solar panel mounting rack is different from a height of the second solar panel mounting rack such that the solar panel is angled with respect to the roof when mounted thereon.
40. The method according to claim 33, wherein the roof engaging members of the first and second solar panel mounting racks are attached to the roof between overlapping roof shingles such that the integrity of the roof shingles is not compromised.
41. The method according to claim 33, wherein at least one of the roof engaging members of at least one of the first and second solar panel mounting racks includes an adjustable portion for adjusting the longitudinal distance between a roof engagement point and a solar panel engagement point.
42. The method according to claim 41, further comprising the step of adjusting the adjustable portions of the roof engaging members such that the first and second solar panel mounting racks are attached to the roof between overlapping roof shingles
Type: Application
Filed: Jun 29, 2010
Publication Date: Dec 29, 2011
Inventor: Roger Jette (West Islip, NY)
Application Number: 12/826,003
International Classification: E04D 13/18 (20060101); E04B 7/18 (20060101);