GAMING VOICE REACTION SYSTEM

A system for collecting, analyzing, filtering, adapting, and reacting to voice information during game play is provided. The system utilizes voice recognition and alteration algorithms to voice characteristics and adapts game play to react to the specific voice criterion, including pitch, volume, articulation, background noise and the like. The system is capable of reacting to the voice criterion including altering game play based on the information it collects, filters and analyzes. The system further will analyze information from individual players and may adapt the game to respond to particular voice recognition of volume, pitch and the like to increase and enhance game interaction by the individual game player whereby the game may react to any of these voice criteria which may create a more realistic game environment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY APPLICATION

The present application claims priority to the earlier filed U.S. Provisional Application Ser. No. 61/161,366 filed on Mar. 18, 2009, the content of which is hereby incorporated by reference in its entirety.

TECHNICAL BACKGROUND

The present invention generally relates to a system and method for online game play adaption and reaction. More specifically, the present invention relates to a system for analyzing, filtering and processing volume and voice fluctuation during game play for adaption and reaction to voice characteristics by the game.

BACKGROUND

There are many multi-player online games in today's society that allow large numbers of individual players to participate and play the same, singular game, both as allies and as enemies. There are many popular games that have thousands of users all playing the same game together, sometimes in virtual worlds and utilizing virtual characters. These games can be very realistic from a game playing viewpoint, yet many have drawbacks that may take away from the realism of the game.

One of the many advantages to these games and a factor that draws many individuals to play these games is that several individual users and/or players can participate in the game at the same time. Moreover, another factor that draws many individuals to play online games, is the ability to play utilizing an avatar, which is an online representation of the character that they wish to display to other online gamers. An individual player may be represented by many different types of avatars and characters. The characteristics may be chosen by the individual player and may be changed at will. Additionally, because some of these avatars become synonymous with the individual player, many other individual players know only the created avatar of a particular individual. Another enticing factor to many online gamers is the ability to socialize, network and play with other individuals that are also playing in the same virtual world. Typical users will have a microphone or headset which allows them to speak to other individuals that are also engaged in online game play.

It is very typical for multiple players to know each other and for them to engage with other players. Online game participants can cooperate and/or compete with each other to achieve specific goals within the game. In many cases, cooperation between several players is essential in order for certain objectives to be achieved and competition between teams of players is not uncommon.

Individual players of an online-gaming system typically utilize either a text-based communication that is typed in or may have voice communication between the individual players.

Existing online gaming voice control has a number of drawbacks. First, because the individual user is using a headset or other voice system, the information is digitally fed into the game whereby the voice patterns, pitch and volumes are simply projected to other players with no real effect in game play. Additionally, because voice characteristics do not affect game play, no thought or strategy is given as to how communication is made during online game play. For example, when a player desires to communicate with another player, they simply speak into their headset to alert or communicate. If the player yells or whispers, there is no effect on game play.

Therefore, a need still exists for analyzing and incorporating voice characteristic reaction and alteration during online game play. Additionally, a need exists for analyzing, filtering and processing voice criterion and allowing the game and/or software to react to voice fluctuations depending on speech analysis, volume, pitch and other speech characteristics and altering game play based on the speech analysis of each individual player.

SUMMARY OF THE INVENTION

The present invention relates generally to a system for collecting, analyzing, filtering, and adapting voice information for reaction of the system to said voice information typically during game play. The system utilizes a proprietary software that enables voice recognition and changes to voice characteristics and may precipitate reaction by the game to changes in voice characteristics based on specific voice criterion, including pitch, volume, articulation, background noise and the like, and may alter game play based on this information. The system further will analyze information from individual players and may allow the game to react to analyzed information received from a particular user whereby the system would recognize changes in voice volume, pitch and the like to increase and enhance game interaction by the individual game player whereby the game may react to any of these voice criterion which may create a more realistic game environment.

To this end, in an exemplary embodiment of the present invention, a system for voice adaption, the system comprising: a computer implemented software adapted to monitor, filter and analyze voice criterion whereby the software allows for use by a plurality of end users, each utilizing the computer implemented software.

In an exemplary embodiment of the present invention, a system for voice reaction, the system comprising: a computer implemented software adapted to monitor, filter and analyze voice criterion; a plurality of end users, each utilizing a processing unit; and each of said plurality of end users utilizing the computer implemented software.

In an exemplary embodiment, wherein the system has a voice recognition system whereby the system is able to recognize, monitor and store voice information from each of the plurality of end users.

In an exemplary embodiment, wherein the system monitors specific voice criterion and adapts associated software to react to the specific voice criterion accordingly.

In an exemplary embodiment, wherein the system is utilized for multi-player gaming.

In an exemplary embodiment, wherein the system is utilized for online multi-player gaming applications.

In an exemplary embodiment, wherein the system alters game play based on voice criterion inputted into the system to create more realistic game play.

In an exemplary embodiment, wherein the system monitors, analyzes and filters voice criterion including voice pitch, volume, articulation, background noise and alters game play in response to any of the voice criterion.

In an exemplary embodiment, wherein the system randomly reacts to voice information inputted into the system and adapts to the voice criterion.

In an exemplary embodiment, wherein the system at least a game reaction control module associated with an input mechanism.

In an exemplary embodiment, wherein the system at least a voice recognition module whereby the module allows for a baseline test of the individual user's voice characteristics.

In an exemplary embodiment, wherein the system monitors and analyzes voice characteristics including voice pitch, volume, articulation, background noise and stores the voice characteristics in a processing unit.

In an exemplary embodiment, wherein the system receiving device for receiving audio signals from a individual user, the receiving device including microphones, speakerphones, throat mics and the like.

In an exemplary embodiment, wherein the system a game controlling module to allow for alteration and reaction of game play by the system.

In an exemplary embodiment, wherein the system a game command unit which interacts with the game algorithm to alter reaction of game characters in response to input voice characteristics.

In an exemplary embodiment, wherein the system a voice recognition module which allows for input and analysis of voice characteristics.

In another exemplary embodiment, wherein said system has a voice recognition system whereby the system is able to recognize, monitor and store voice information from each of the plurality of end users.

In another exemplary embodiment, wherein the system monitors specific voice criterion and adapts associated software accordingly to react to the specific voice criterion.

In another exemplary embodiment, wherein the system is utilized for multi-player gaming.

In another exemplary embodiment, wherein the system is utilized for online multi-player gaming applications.

In another exemplary embodiment, wherein the system reacts to gaming play based on voice criterion inputted into the system to create more realistic game play.

In another exemplary embodiment, wherein the system monitors, analyzes and filters voice criterion including voice pitch, volume, articulation, background noise and alters game play in response to any of the voice criterion.

In another exemplary embodiment, wherein the system randomly reacts to voice information inputted into the system and reacts to the voice criterion.

In an exemplary embodiment of the present invention, an improved voice reactive system is provided.

In yet another exemplary embodiment of the present invention, an improved voice reactive system is provided whereby the system may be utilized for online gaming play.

Still another exemplary embodiment of the present invention is to provide an improved voice reactive system which allows the program affiliated with the voice adaptive system to react to criteria associated with the system.

In an exemplary embodiment of the present invention, an improved voice reactive system is provided whereby the system may provide more realistic game play during online gaming.

In yet another exemplary embodiment of the present invention, an improved voice reactive system is provided whereby the voice adaptive system may monitor voice criterion such as voice pitch.

In yet another exemplary embodiment of the present invention, an improved voice reactive system is provided whereby the voice adaption system may monitor voice criterion such as voice volume.

Still another exemplary embodiment is to provide an improved voice reactive system whereby the system may monitor audible criteria such as volume, pitch, length, duration of voice elements and the like.

Yet another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may be integrated into gaming content to improve game play.

In yet another exemplary embodiment of the present invention, an improved voice reactive system may be provided whereby the system may be applied to a plurality of computing devices.

In still another exemplary embodiment of the present invention, an improved voice reactive system may be provided whereby the system may be applied to a plurality of computing devices including personal computers, laptops, smartphones, PDAs, digital organizers, and other consumer electronics including TIVO®, gaming systems and the like.

Yet another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may alter programming to react to specific voice changes in response to pre-determined voice criterion.

Still another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may monitor, filter and adapt to voice criterion input by the individual end user.

Another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may be implemented into gaming content and more specifically, gaming content having a plurality of players whereby the plurality of players are capable of communicating with one another.

In yet another exemplary embodiment of the present invention is to provide an improved voice reactive system, whereby the system may be integrated into online game play including multiple player applications whereby the multi-player application allows for communication between the plurality of game players and whereby the system may be integrated into the online game play to adapt to voice criterion displayed by each individual player in the multi-player application.

Still another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may be integrated into online games having a plurality of players whereby the game may adapt to certain voice criterion identified by the system and whereby the system may alter game play based on these voice criterion.

Another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may be configured to allow for continual adaption of multi-player gaming based on voice criteria and characteristics displayed by any of the individual users of a multi-game system.

Yet another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may monitor and collect data relating to individual user voice characteristics and may alter user content and use when the system detects changes in individual user voice characteristics.

In yet another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may produce real time changes in gaming experience based on voice detection changes.

Still another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system parameters may be established by each individual end user such as frequency, urgency and adaptive response to such criterion while utilizing the system.

In yet another exemplary embodiment, an improved voice reactive system may be provided whereby the system may filter voice criterion and randomly select which criterion to utilize, thus producing random reaction by the program such as random reaction by an online game in response to only certain voice criterion while ignoring other voice criterion.

Still another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system is capable of voice filtering, voice data collection and background noise filters.

Yet another exemplary embodiment of the present invention is to provide an improved voice reactive system whereby the system may be activated or de-activated by the individual user to enhance the experience by each individual user.

Still another exemplary embodiment of the present invention is to provide an improved voice adaptive system whereby the system may enhance online game play during use of same.

Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

The invention will now be described in greater detail with preferred embodiments of the invention. Nevertheless, it should be recognized that the preferred embodiments of the invention are only for illustrating. Besides the preferred embodiments mentioned here, the present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the present invention is expressly not limited as specified in the accompanying claims.

In an exemplary embodiment, a voice reaction and adaption game controlling apparatus and system in accordance with one embodiment of the present invention is provided. The voice reaction/adaption system may have a plurality of function portions that may include at least a voice recognition portion or module and a game reaction control portion or module which are both contained within a centralized processing unit. The voice recognition module may be an algorithm, or in an alternative, may be a piece of circuitry within associated hardware whereby the voice recognition module may process inputted audio signals from a desired user, convert the audio signals and transmit the voice signals received from a microphone or other audio device. In the present embodiment, a voice recognition module may be connected with receiving devices including microphones and the like to receive audio signals from the individual game user. The receiving device may be any number of devices that are capable of receiving and transmitting audio data to the system. In an exemplary embodiment, the receiving device may include conventional, prior art devices such as microphones, speakerphones, throat mics and the like. The acoustic signals uttered by users, for example, a word, a term, or even a sentence, may be received and inputted to the voice recognition module through the receiving devices. The device may further have at least a processing portion in voice recognition module which is further coupled with the acquisition devices. For example, a microphone may be utilized to capture voice info' nation from an individual user. The microphone will relay the audio data to the voice recognition module having a processor portion therein. The processor portion will monitor audio data receiving including pitch, volume, frequency and other information received to determine if and what information needs to be relayed to the game system associated with the voice reaction system. The game system associated with the voice reaction system may upon receipt of audio characteristic information, change game play depending on the audio information received.

The processing portion of the voice reaction system may have audio circuitry which may convert analog audio signals to digital signals prior to introducing the audio information to the processor portion. It is further contemplated that prior to commencement of game play, a base line reading of an individual user's normal audio frequencies and other voice characteristics may be tested to determine the changes in frequency, pitch, volume, diction and speed which may be utilized to alter game play for the individual user once these voice characteristic baseline analysis is completed and the module has stored the same. This step may take place prior to beginning game play, which may allow the user to determine if they wish to have the game play altered, modified or increase game sensitivity to the user's changing voice characteristics.

In an exemplary embodiment, it is contemplated that the processing portion of the voice recognition module may be associated with a command registration unit which may be associated with at least the game console apparatus. The command unit communicates with a game control module located in the game console and relays voice characteristic information from the recognition module to the game console apparatus to allow for information relay and adaption of the game algorithms in response to the voice characteristic data received from the processing portion of the voice recognition module. It is contemplated that the command unit may allow for audio information received from the voice recognition module to be received, sent to the game controlling module in the game console or computer to be used to alter, change or adapt game play depending on the audio signals and audio digital data received from the recognition module. This may allow game play to change with the individual user's voice information. The net effect of allowing alteration of game play is to make the entire gaming experience more realistic for the user.

In an exemplary embodiment, it is contemplated that the command unit may have the ability to store voice signals which are received from the processing portion of the voice recognition module. In an exemplary embodiment, the registration unit may be a common memory unit, such as DRAM or flash. In the embodiment of the present invention, users can choose the operation mode of game controlling apparatus to determine if the individual gaming user wishes to have game adaption based on voice signal information received by the game console or computer system which contains the game algorithms. Prior to commencement of game play, an associated algorithm in the processing unit of the game console or computer may prompt the individual user to determine if that user wishes to utilize reaction and adaption systems based on audio information received from the voice recognition module. If the individual user so desires, they may activate the reaction/adaption portion for enhanced game play. Further to this, the individual game user may wish to de-activate the enhanced adaption/reaction unit. The game controlling unit may allow for the system to be de-activated at any time by the individual user when desired.

Prior to entering game play, a sample voice/audio signal may be provided to the command unit which may serve as a baseline for the audio signal information input later into the unit. The baseline will allow the registration unit to monitor for changes in audio data received from the voice recognition module and alter game play based on these changes. The command registration may also utilize this baseline audio information for the purposes of identification of each individual game user. The baseline information may be stored in the registration unit for later use by the same player, such that the game player does not need to go through the identification, authentification and sample process each time they access the game. Moreover, the baseline audio signals may be stored in the processing unit of the voice recognition module such that once stored, the individual user may just load the game to play and the system will know what the normal voice characteristics are for that particular user and may begin game adaption and reaction based on previously loaded and stored audio data.

For this operation, the voice processing module may have associated therewith a comparative unit which is may make a determination between voice characteristic data received from the acquisition device to identify and determine if changes in voice information is detected.

This comparative unit may be a type of signal comparator which may be utilized to both identify voice characteristics of an individual user and compare the baseline data with later inputted voice character tics like volume, diction, speed and the like. When the game controlling apparatus is in adaption/reaction mode, the voice signals digitalized by the processing unit are transmitted to the comparative unit to determine if changes in voice characteristics are found and if they are found, then the digital audio information is forwarded to the command registration unit which is associated with the game console and/or computer. Then, if characteristics in the audio data are found, such as changed volume, speed of speech or other voice characteristics are noted by the command registration unit, the command unit may check against a pre-determined adaption/reaction to those changed characteristics. For example, if the volume of the audio information is determined to be much greater than the baseline volume during the baseline authentication process, the command unit may alter game play to allow the game to react to the voice characteristics. For example, if the command unit observes increased volume, the command unit may alter game play such that a character in the game itself reacts to the increased volume as if the character realizes that the individual user has yelled. Typically, game play utilizes an avatar, which is the game player representation of themselves in the game. The avatar will be presumed to be yelling, whereby other characters in the game which are controlled by the command unit may change pre-determined play characteristics in response to the yelling of the avatar controlled by the individual game player. By allowing the other computer controlled characters in the game to react and adapt to voice characteristics on an individual game player, the gaming experience is greatly enhanced by providing much greater authenticity to the entire gaming experience.

It is contemplated that the game control system may have at least an input portion and an output portion, and an encoding unit which may be coupled with the input portion and output portion. Additionally, the system may also have a software algorithm with an encoder that is configured to work in association with the command unit. The software algorithm may utilize a pre-associated code which gives information to the command unit to alter game play or react to voice commands and characteristics.

In an exemplary embodiment, a plurality of input devices may be utilized with the input portion of the voice recognition system to effect adaption and reaction of the game play to the individual user's voice characteristics thereby effecting the game controlling apparatus. It is contemplated that the input devices may include a plurality of different input devices such as a controllers, keyboards, mouse, game joysticks and other game controlling devices, which may be operated by the individual game player to perform gaming performance during game play. In operation, the aforementioned input devices may produce a series of input signals, i.e. game commands, to be transmitted to the game controlling apparatus through cable. The game command received by input portion may be further transferred to an encoding unit coupled with input portion. It is contemplated that the encoding unit may encode the input signal into a computer-executable signal which may be processed by the components in the game controlling module. The encoding unit may be provided with the capability to manipulate all kinds of game command signals inputted because every game platform or game console has its own input/output signal format. And also, the encoding unit must have the capability to output all kinds of signal formats used by various game platforms to perform the desired action in the game. Game commands inputted by the individual game user may be encoded into a serial of scan codes to be received by a software driver unit and then be transmitted to a command registration unit which is coupled with a software driver unit. When the game is in reaction/adaption mode, the input signals are analyzed along with the audio signals that the acquiring device receives and both the input signals from game command devices, such as game controllers and the audio signals are analyze and utilized by the game console and/or computer to provide adequate feedback to the individual user in the form of game adaption to those different control mechanisms.

In the embodiment of the present invention, the system is set up to collect, analyze, filter, adapt, and react to voice information during game play. When the system is set up for reaction configuration, the user may request that the game responds and reacts during game play to the voice information received by the system. Each piece of voice characteristics may be evaluated and stored in the processor by the system. Characteristics include pitch, volume, articulation, speed and the like. Any combination of voice characteristics may be utilized and stored in the system to be utilized for altering or adapting game play to the voice characteristics. When a user utters a valid, registered voice signal into the input device, the software driver unit in game controlling module will retrieve the corresponding voice characteristic and forward those characteristics to the command registration unit and transmit it to the encoding unit which may alter game play based on the audio characteristic. A plurality of game platforms (ex. game console or PC) are connected with output terminal on game controlling apparatus and receive said activated game command to perform the desired gaming action.

In another exemplary embodiment, the game console or computer may allow for conversion of a audio signal to a digital signal, whereby the voice recognition and adaption system may coordinate with the processing unit in the system to determine if changes in voice characteristics are noted. The system may do this by having the voice recognition and adaption system/module coupled to the processing unit. It is contemplated that the voice recognition module is utilized to recognize the voice characteristics of an individual user. The audio signals received and processed by the voice recognition module can be any time of audio signal including speech, or other audio data. The voice recognition and adaption engine may coordinate with the processing unit to determine if changes in voice characteristics are noted. The characteristic data extracted by voice recognition engine may be transmitted directly to encoding unit without passing determination unit and command registration unit. Subsequently, the data is encoded and outputted to the desired game console and/or computer having associated adaption software or algorithms that may allow for adaption of game play based on the voice characteristics received. Thereby, the voice characteristics displayed by the individual game user may be utilized by the gaming console or computer system to adapt game play and react to the characteristics depending on the conversion and control of the software algorithm associated with the system. Thereby the user may enhance game play by allowing adaption and reaction by the game to the user's voice characteristics to provide higher reality to the game during play.

The voice recognition and adaption system may originate from a number of external voice acquisition devices. These device may include speakers, microphones, bluetooth devices, headsets and the like to receive audio signals from the individual user. Additionally, in combination with the external voice acquisition devices, a number of game control devices may be utilized including game controllers, control pads, keyboards, mouse and the may be utilized and in combination the information received from the acquisition devices and the game control devices may be forwarded to the game command unit within the game console to allow for adaption and reaction of the game algorithm in response to these acquisition devices. It is contemplated that the game adaption/reaction system may be configured to be adapted to a plurality of different game platforms currently available for game play including PCs, Playstation, Wii, Xbox and other known game console units. It is further contemplated that the voice adaption system may allow the individual user to either activate or de-active the system while the user is currently “in-game”.

While the embodiments of the present invention disclosed herein are presently considered to be preferred embodiments, various changes and modifications can be made without departing from the spirit and scope of the present invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.

Claims

1. A system for voice reaction, the system comprising:

a computer implemented software adapted to monitor, filter and analyze voice criterion;
a plurality of end users, each utilizing a processing unit; and
each of said plurality of end users utilizing the computer implemented software.

2. The system described in claim 1 wherein said system has a voice recognition system whereby the system is able to recognize, monitor and store voice information from each of the plurality of end users.

3. The system described in claim 1 wherein the system monitors specific voice criterion and adapts associated software to react to the specific voice criterion accordingly.

4. The system described in claim 1 wherein the system is utilized for multi-player gaming.

5. The system described in claim 1 wherein the system is utilized for online multi-player gaming applications.

6. The system described in claim 1 wherein the system alters game play based on voice criterion inputted into the system to create more realistic game play.

7. The system described in claim 1 wherein the system monitors, analyzes and filters voice criterion including voice pitch, volume, articulation, background noise and alters game play in response to any of the voice criterion.

8. The system described in claim 1 wherein the system randomly reacts to voice information inputted into the system and adapts to the voice criterion.

9. The system described in claim 1 further comprising: at least a game reaction control module associated with an input mechanism.

10. The system described in claim 1 further comprising: at least a voice recognition module whereby the module allows for a baseline test of the individual user's voice characteristics.

11. The system described in claim 1 whereby the system monitors and analyzes voice characteristics including voice pitch, volume, articulation, background noise and stores the voice characteristics in a processing unit.

12. The system described in claim 1 further comprising: a receiving device for receiving audio signals from a individual user, the receiving device including microphones, speakerphones, throat mics and the like.

13. The system described in claim 1 further comprising: a game controlling module to allow for alteration and reaction of game play by the system.

14. The system described in claim 1 further comprising: a game command unit which interacts with the game algorithm to alter reaction of game characters in response to input voice characteristics.

15. The system described in claim 1 further comprising: a voice recognition module which allows for input and analysis of voice characteristics.

Patent History
Publication number: 20120015731
Type: Application
Filed: Mar 18, 2010
Publication Date: Jan 19, 2012
Applicant: INXILE ENTERTAINMENT, INC. (Newport Beach, CA)
Inventor: Brian Fargo (Newport Beach, CA)
Application Number: 13/256,898
Classifications
Current U.S. Class: Player-actuated Control Structure (e.g., Brain-wave Or Body Signal, Bar-code Wand, Foot Pedal, Etc.) (463/36)
International Classification: A63F 9/24 (20060101);