INTELLIGENT MANAGEMENT FOR AN ELECTRONIC DEVICE
An electronic device is disclosed. The electronic device includes a first input device; a second input device capable of operating in a first operating mode; and a system management module in communication with the first input device and the second input device. The system management module is configured for switching the second input device to a second operating mode in response to detecting, by the first input device, a presence of a user without receiving any operation-specific input from the user.
This relates generally to managing the operating mode of an electronic device, and more specifically, to detecting user presence and/or behavior using one or more sensors of an electronic device and managing the operating mode of the device based on the detected user presence and/or behavior.
BACKGROUNDMany modern electronic devices are designed to automatically adjust their operating mode based on the presence or absence of user activities detected by the devices. For example, a computer may dim its screen, display a screensaver, or switch to a sleep/low power mode if no user activity is detected for a predetermined period of time. This can be done using an internal timer which tracks the duration of the idle state of the computer. Conversely, a user-initiated input event such as a movement of the mouse, a stroke on the keyboard, or a gesture detected on a touch pad may cause the computer to switch back to a full operating mode and be responsive to the various user inputs.
However, this timer-based management system is not flawless. For example, this type of system assumes that the system can switch to a power-saving mode when no user interaction is detected via the system's input devices. That may not be true, for example, when a user is reading from a device with a large screen that can display large amount of content without requiring the user to scroll up and down frequently. Another example is when a user is watching a movie on a handheld device. In this case, although the user is not actively interacting with the device (e.g., typing or moving the cursor around), the device should preferably remain in normal operation mode. If the device automatically displays a screen saver, dims the screen, or goes into sleep mode based on the idle-duration timer, it may become an inconvenience for the user who has to make some type of input every so often to switch the device back to its normal operating mode so that he can resume watching the movie.
In addition, existing device management systems are designed to manage the operating mode of the device as a whole, but not the operating mode of the individual component or applications running on the device. That is, there are often only a limited number of operating modes available for a particular device. For example, a desktop computer may only have four different operating modes: a normal mode, screensaver mode, sleep mode (i.e., low-power mode), and off mode. A handheld device such as a MP3 player or a cellular phone may have a normal mode, a dim mode (i.e., low-power mode), and an off mode. There is typically one setting for each of the available modes in terms of which components of the device are left on and which ones can be turned off. As a result, it is difficult to achieve optimal efficiency given the limited number of operating modes available.
As electronic devices become more and more sophisticated, they may include more hardware components such as a touch pad, touch screen, accelerometer, camera, etc, each of which can be a source of power consumption. Similarly, multiple software applications can run on a device and demand limited system resources such as memory and processor power at the same time. Thus, an internal management system that can intelligently manage the device at a component level and/or application level based on user presence and behavior is highly desirable.
SUMMARYThis generally relates to detecting a user's presence and/or behavior using one or more sensors of an electronic device, and managing the operating mode of the device at a component/application level based on the detected presence and/or behavior to improve usability and efficiency of the device.
To prevent unwanted interruptions that can be detrimental to user experience, a device management module of an electronic device can be programmed to detect the presence of a user even in the absence of any operation-specific user input. In various embodiments, this can be achieved using one or more sensors of the same or different types embedded in the one or more input devices.
For example, the device management module can use both an idle-duration timer and non-operation-specific proximity data from the input devices to determine whether to switch the device to a different operation mode. The device can start off operating in a normal operating mode which requires at least most of the components of the device to be powered up and fully operational. If the device has not been idle for more than a predetermined period of time, the device management module can take no actions and keep the device in its normal operating mode. If the device management module determines that the device has been idle for more than the predetermined period of time, it can then check to see if proximity data is being received by any of the input devices. Because the system is in an idle state, the received proximity data can be interpreted as a continued presence of the user even though no substantive input from the user is being received. Thus, the device management module can again maintain the normal operating mode of the system. In contrast, if none of the input devices senses a touch, the device management module can then switch the system to a power-saving mode, a screen saver mode, some other mode or even a shutdown mode because it may be unlikely that the user is still present and actively engaged in the use of the system.
In another embodiment, the device management module can do more than maintaining or switching the operating mode of the device based on the presence or the lack of proximity data while the system is idle. The device management module can also manage the mode of individual components of the system and/or the status of one or more applications running on the system. In another embodiment, the device management module can also manage the allocation of system resources among multiple applications running on the system.
In the following description, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments in which the disclosure can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the embodiments of this disclosure.
This generally relates to detecting a user's presence and/or behavior using one or more sensors of an electronic device, and managing the operating mode of the device at a component/application level based on the detected presence and/or behavior to improve usability and efficiency of the device.
In one embodiment, the electronic device can be a desktop or laptop computer system. As illustrated in
To prevent unwanted interruptions that can be detrimental to user experience, the device management module 108 can be programmed to detect the presence of a user even in the absence of any operation-specific user input. In various embodiments, this can be achieved using one or more sensors of the same or different types embedded in the one or more input devices.
One type of sensor that can be found in many electronic devices today is a touch sensor. For example, touch sensors can be incorporated into input devices such as touchpads, touch screens, keyboards (e.g., FingerWorks' Touchstream keyboard), mice (e.g., the Apple Magic Mouse), and trackpads (e.g., the Apple Magic Trackpad).
The mouse 206 of
Referring back to
To more accurately determine if a user is indeed present, other types of sensors such as the camera 116 of
In another embodiment, the device management module can do more than maintaining or switching the operating mode of the device based on the presence or the lack of proximity data while the system is idle. The device management module can also manage the mode of individual components of the system and/or the status of one or more applications running on the system. For example, if the keyboard 110 of the computer system 100 of
In another embodiment, the device management module 108 can also manage the allocation of system resources among multiple applications running on the system 100. For example, if one of the applications is a word processor application but there is no touch or near-touch detected by the keyboard 110, the mouse 112, and the trackpad 114, the device management module 108 can temporarily suspend the word processor application by, for example, moving it to the background behind other applications or minimizing it so that more screen space on the display can be allocated to other applications. Alternatively or additionally, the device management module 108 can devote less CPU cycles and/or memory to the word processor application. The extra resources can be given to other applications running on the system. If a touch is detected on the keyboard or the mouse, the word processor application can automatically be reactivated or moved to the foreground. Other types of applications can be managed similarly to increase the efficiency of the overall computer system. As another example, a game application may be suspended if none of the devices being used to play the game is receiving any user input or even detecting the presence of a user.
The concept disclosed in the embodiment above with respect to a desktop or laptop computer system can also be applied to other electronic devices such as the tablet PC of
Typically, if the touch screen 410 does not detect any touch input from a user for a certain period of time, the tablet PC 400 can enter a dim mode in which the backlight of the display 402 is dimmed to reduce power consumption by the display 402. Alternatively or additionally, the entire device can be switched to a low-power mode such as a sleep mode or an off mode if the touch screen does not receive any input from the user. However, as previously discussed, the absence of any touch or near-touch on the touch screen 410, which can be the main input device of the tablet PC 400, does not necessarily mean that the user is no longer using the tablet PC 400. He or she may still be reading or watching a movie from the display. According to the same concepts disclosed in the embodiments above, other types of user input can be used to determine whether a user is still present but simply not interacting with the touch screen 410.
Referring back to
In addition, the device management module 408 can also manage the operating mode of individual components and/or applications of the tablet PC 400. For example, if the only user input is being detected by the secondary touch and/or near-touch sensors or panels 412 at both edges of tablet PC 400, the touch sensor panel of the touch screen 410 can then be turned off to conserve battery power because the proximity data from the secondary touch panels 412 can be interpreted as indicating that the tablet PC 400 is being held by the user with both of his/her hands. Other components such as the wireless antenna (not shown), which is also likely not being used when the user is holding the tablet PC with both of his hands, can also be turned off. As another example, if the accelerometer 414 detects movement of the tablet PC 400, the secondary touch and/or near-touch sensors or panels 414 can be switched off because the movement alone can be sufficient enough to show that the user is actively using the device. Similarly, the accelerometer 414 can be turned off if the secondary touch and/or near-touch sensors or panels detect no touches by the user—indicating that the device is not being held by the user. By managing the operating mode of individual components, the device management module 408 can reduce power consumption by those components not in use and thus allow the device to have a longer battery life.
The device management module 408 can similarly manage the applications running on the tablet PC 400. For example, if the secondary touch and/or near-touch sensors or panels 412 detect that the user is holding the tablet PC 400 with both of his hands, any type of virtual input graphic user interface (GUI) such as a virtual keyboard or a virtual scroll wheel being displayed on the display 402 can be hidden. As soon as the touch or near-touch is no longer detected by at least one of the secondary touch and/or near-touch sensors or panels 412, the virtual keyboard or virtual scroll wheel can reappear on the display 418 so that the user can manipulate them using the touch screen 410. Again, these methods for intelligently managing the applications may improve user experience significantly.
Although
In fact, the disclosed concept of managing operating mode of a device at a component and/or application level can be useful to any electronic devices capable of detecting user presence and/or behavior to improve usability and efficiency of the device and reduce power consumption.
The device management module of the above-disclosed embodiments can be implemented in hardware, firmware, software, or a combination of any of the three. For example, the device management module can be implemented in firmware stored in memory and executed by a processor The firmware can also be stored and/or transported within any computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable storage medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such a CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like.
The firmware can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “transport medium” can be any medium that can communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The transport readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.
The various operating modes of a device or components of a device can include, but is not limited to, a full operating mode in which the device (or component) can be in a full power mode, an idle mode in which some of the components of the device may not operating at normal speed, a sleep mode in which the device can be set to power-saving mode in which all but the most essential components can be turned off; and a power-down mode in which the device can be essentially turned-off completely. In other embodiments, the different modes can dictate processor speed and the allocation of other resource distribution of the device among the various components and applications.
As described above, touch-based input devices such as touch screens and touch panels can be one type of device used for determining user presence and behavior. These touch-based input devices can use any existing touch technologies including, but not limited to, capacitive, resistive, in infrared and acoustic touch technologies.
Touch sensor panel 724 can include a capacitive sensing medium having a plurality of drive lines and a plurality of sense lines, although other sensing media can also be used. Either or both of the drive and sense lines can be coupled to a thin glass sheet according to embodiments of the disclosure. Each intersection of drive and sense lines can represent a capacitive sensing node and can be viewed as picture element (pixel) 726, which can be particularly useful when touch sensor panel 724 is viewed as capturing an “image” of touch. (In other words, after panel subsystem 706 has determined whether a touch event has been detected at each touch sensor in the touch sensor panel, the pattern of touch sensors in the multi-touch panel at which a touch event occurred can be viewed as an “image” of touch (e.g. a pattern of fingers touching the panel).) Each sense line of touch sensor panel 724 can drive sense channel 708 (also referred to herein as an event detection and demodulation circuit) in panel subsystem 706.
Computing system 700 can also include host processor 728 for receiving outputs from panel processor 702 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device coupled to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 728 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 732 and display device 730 such as an LCD panel for providing a UI to a user of the device. Display device 730 together with touch sensor panel 724, when located partially or entirely under the touch sensor panel, can form touch screen 718.
Although embodiments of this disclosure have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of embodiments of this disclosure as defined by the appended claims.
Claims
1. An electronic device comprising:
- a first input device;
- a second input device capable of operating in a first operating mode; and
- a system management module in communication with the first input device and the second input device,
- wherein the system management module is configured for switching the second input device to a second operating mode in response to detecting, by the first input device, a presence of a user without receiving any operation-specific input from the user.
2. The electronic device of claim 1, further comprising a display configured for operating in the first operating mode,
- wherein the system management module is further configured such that the presence of the user detected by the first input device without receiving any operation-specific input from the user prevents the display from being switched to the second operating mode, and
- wherein the system management module is further configured for switching the display to the second operating mode in response to a detected absence of a user for a predetermined period of time.
3. The electronic device of claim 2, wherein the first operating mode of the display is a full-power mode; and the second operating mode of the display is one of a power-saving mode, dim mode, and off mode.
4. The electronic device of claim 1, wherein the first input device comprises a first proximity sensor.
5. The electronic device of claim 4, wherein the first input device is one of a keyboard, mouse, trackpad, and touch screen.
6. The electronic device of claim 4, wherein the second input device comprises a second touch sensor, and
- wherein the first operating mode of the second input device is a full-power operation mode and the second operating mode of the second input device is one of a low-power mode and an off mode.
7. The electronic device of claim 1, wherein the electronic device is a handheld device, the first input device is a proximity sensor and the second input device is a touch screen, and wherein the first operating mode of the second input device is a touch-enabled mode and the second operating mode of the second input device is a touch-disabled mode.
8. A handheld device comprising:
- a touch screen;
- one or more proximity sensors separate from the touch screen, the one or more proximity sensors positioned to detect whether a user is holding the handheld device with both hands;
- a system management module in communication with the touch screen and the one or more proximity sensors,
- wherein the system management module is configured for turning off the touch screen in response to the one or more proximity sensors detecting a user holding the handheld device with both hands.
9. The handheld device of claim 8, further comprising a display, wherein the system management module is further configured for keeping the display in a normal operating mode in response to the one or more proximity sensors detecting a user holding the handheld device without making any operation-specific input.
10. The handheld device of claim 8, further comprising a wireless antenna, wherein the system management module is further configured for turning off the wireless antenna in response to the one or more proximity sensors detecting a user holding the handheld device without making any operation-specific input.
11. The handheld device of claim 8, further comprising an accelerometer, wherein the system management module is further configured for turning off the accelerometer in response to an absence of touches detected by the one or more proximity sensors indicating a user holding the handheld device.
12. A method for managing an operating mode of an electronic device, comprising:
- detecting a user's presence with a proximity sensor of the electronic device;
- maintaining the electronic device in a first operating mode when the user's presence is detected; and
- switching the electronic device to a second operating mode when the user is detected as being absent,
- wherein the user's presence is detected without receiving any operation-specific user input.
13. The method of claim 12, wherein the first operation mode is a full power mode of the electronic device.
14. The method of claim 12, wherein the proximity sensor comprises a touch sensor and detecting the user's presence comprises detecting the user touching the electronic device.
15. The method of claim 12, wherein switching to a second operating mode comprising changing an operating mode of at least one component of the electronic device.
16. A computer-readable storage medium storing instructions for performing a method comprising:
- detecting a user's presence with a sensor of the electronic device;
- maintaining the electronic device in a first operating mode when the user's presence is detected; and
- switching the electronic device to a second operating mode when the user is detected as being absent,
- wherein the user's presence is detected without receiving any operation-specific user input.
17. The computer-readable storage medium of claim 16, wherein switching to a second operating mode comprising changing the operating mode of at least one component of the electronic device.
18. A method for managing an application running on an electronic device, comprising:
- detecting a type of interaction between a user and the device;
- determining whether an application is in an idle mode in response to the detected type of interaction between the user and the device; and
- suspending the application if the application is determined to be in the idle mode.
19. The method of claim 18, wherein suspending the application comprises allocating less resources of the electronic device to the applications.
20. The method of claim 19, wherein the resources of the electronic device comprise an area of a display of the electronic device.
21. The method of claim 19, wherein determining whether an application is in an idle mode further comprises determining whether the user is likely to interact with the application with the detected type of interaction between the user and the device.
22. A computer-readable medium storing instructions for performing a method for managing an application running on an electronic device, the method comprising:
- detecting a type of interaction between the user and the device;
- determining whether an application is in an idle mode in response to the detected type of interaction between the user and the device;
- suspending the application if the application is determined to be in the idle mode.
23. The computer-readable medium of claim 22, wherein suspending the application comprises allocating less resources of the electronic device to the applications.
24. The computer-readable medium of claim 22, wherein the resources of the electronic device comprise an area of a display of the electronic device.
25. The computer-readable medium of claim 22, wherein determining whether an application is in an idle mode further comprises determining whether the user is likely to interact with the application with the detected type of interaction between the user and the device.
Type: Application
Filed: Aug 6, 2010
Publication Date: Feb 9, 2012
Inventors: Nima Parivar (South San Francisco, CA), Kelsey Y. Ho (Los Altos, CA)
Application Number: 12/852,056
International Classification: G06F 3/041 (20060101); G09G 5/00 (20060101); G06F 1/24 (20060101);